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	21	

ABSTRACT	22	

	23	

BACKGROUND:	24	

Metafounders	 are	 pseudo-individuals	 that	 condense	 the	 genetic	 heterozygosity	 and	25	

relationships	within	and	across	base	pedigree	populations,	i.e.	ancestral	populations.	This	26	

work	 addresses	 estimation	 and	 usefulness	 of	 metafounder	 relationships	 in	 Single	 Step	27	

GBLUP.	28	

RESULTS:	29	

	We	 show	 that	 the	 ancestral	 relationship	 parameters	 are	 proportional	 to	 standardized	30	

covariances	of	base	allelic	frequencies	across	populations,	like	Fst	fixation	indexes.	These	31	

covariances	of	base	allelic	frequencies	can	be	estimated	from	marker	genotypes	of	related	32	

recent	 individuals,	 and	 pedigree.	 Simple	 methods	 for	 estimation	 include	 naïve	33	

computation	 of	 allele	 frequencies	 from	 marker	 genotypes	 or	 a	 method	 of	 moments	34	

equating	 average	 pedigree-based	 and	 marker-based	 relationships.	 Complex	 methods	35	

include	generalized	least	squares	or	maximum	likelihood	based	on	pedigree	relationships.	36	

To	our	knowledge,	methods	to	infer	Fst	coefficients	and	Fst	differentiation	have	not	been	37	

developed	for	related	populations.		38	

A	compatible	genomic	relationship	matrix	constructed	as	a	crossproduct	of	{-1,0,1}	codes,	39	

and	 equivalent	 (up	 to	 scale	 factors)	 to	 an	 identity	 by	 state	 relationship	 matrix	 at	 the	40	

markers,	is	derived.	Using	a	simulation	with	a	single	population	under	selection,	in	which	41	

only	 males	 and	 youngest	 animals	 were	 genotyped,	 we	 observed	 that	 generalized	 least	42	
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3	
	

squares	 or	maximum	 likelihood	 gave	 accurate	 and	 unbiased	 estimates	 of	 the	 ancestral	43	

relationship	 parameter	 (true	 value:	 0.40)	whereas	 the	 other	 two	 (naïve	 and	method	 of	44	

moments)	 were	 biased	 (estimates	 of	 0.43	 and	 0.35).	 We	 also	 observed	 that	 genomic	45	

evaluation	by	Single	Step	GBLUP	using	metafounders	was	less	biased	in	terms	of	accurate	46	

genetic	trend	(0.01	instead	of	0.12	bias),	slightly	overdispersed	(0.94	instead	of	0.99)	and	47	

as	 accurate	 (0.74)	 than	 the	 regular	 Single	 Step	 GBLUP.	 Single	 Step	 GBLUP	 using	48	

metafounders	also	provided	consistent	estimates	of	heritability.	49	

CONCLUSIONS:	50	

Estimation	 of	 metafounder	 relationship	 can	 be	 achieved	 using	 BLUP-like	 methods	 with	51	

pedigree	and	markers.	 Inclusion	of	metafounder	 relationships	 improves	bias	of	genomic	52	

predictions	with	no	loss	in	accuracy.	53	

	54	

Keywords:	BLUP,	Fst,	relationships,	genomic	selection	55	
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BACGROUND	57	

The	concept	of	metafounders	gives	a	coherent	framework	for	a	comprehensive	theory	of	58	

genomic	evaluation	[1].	Genomic	evaluation	in	agricultural	species	often	implies	partially	59	

genotyped	populations,	i.e.	some	individuals	are	genotyped,	others	are	not,	and	60	

phenotypes	may	be	recorded	in	either	of	the	two	subsets.	An	integrated	solution	called	61	

Single	Step	has	been	proposed	[2–4].	This	solution	proposes	an	integrated	relationship	62	

matrix 63	

𝑯 = 𝑨$$ − 𝑨$&𝑨&&'$𝑨&$ +	𝑨$&𝑨&&'$𝑮𝑨&&'$𝑨&$ 𝑨$&𝑨&&'$𝑮
𝑮𝑨&&'$𝑨&$ 𝑮

, 64	

with	inverse	65	

𝑯'𝟏 = 𝑨'𝟏 + 𝟎 𝟎
𝟎 𝑮'𝟏 − 𝑨&&'$

 66	

where	𝑮	 is	 the	 genomic	 relationship	 matrix,	𝑨	 is	 the	 pedigree-based	 relationship	 matrix,	 and	67	

matrices	𝑨$$, 𝑨$&, 𝑨&$, 𝑨&&	are	submatrices	of	𝑨	with	labels	1	and	2	denoting	non-genotyped	and	68	

genotyped	individuals,	respectively.		69	

Because	genotyped	animals	are	not	a	random	sample	from	the	analyzed	populations	(they	70	

are	 younger	 or	 selected),	 it	 was	 quickly	 acknowledged	 that	 a	 proper	 analysis	 requires	71	

specifying	 different	 means	 for	 genotyped	 and	 non-genotyped	 individuals	 for	 the	 trait	72	

under	 consideration.	 These	 different	 means	 can	 be	 considered	 as	 parameters	 of	 the	73	

model,	which	are	either	fixed	[4]	or	random	[5,6].	In	the	latter	case,	the	random	variables	74	

induce	covariances	across	 individuals,	a	situation	that	 is	referred	to	as	“compatibility”	of	75	

genomic	 and	 pedigree	 relationships.	 In	 fact,	 compatibility	 implies	 comparability	 of	 the	76	
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average	breeding	value	of	the	base	population	and	of	the	genetic	variance	[7]	across	the	77	

different	measures	of	relationships.	78	

	79	

Numerically,	the	problem	shows	up	as	follows.	The	formulae	for	matrix	𝐇	and	its	inverse	80	

contain	 (𝐆 − 𝐀&&)	 and	 (𝐆'𝟏 − 𝐀&&'$)	 (assuming	𝐆	 is	 full	 rank),	 respectively.	 This	 suggests	81	

that	if	G	and	𝐀&&	are	too	different,	biases	may	appear.		82	

	83	

Genomic	relationships	are	usually	computed	in	one	of	two	manners:	the	“crossproducts”	84	

[8]	or	the	“corrected	identity	by	state	(IBS)”	[9].	Both	depend	critically	on	assumed	base	85	

allelic	frequencies	 (Toro	et	al.,	2011).	However,	for	most	purposes	allelic	frequencies	are	86	

not	 of	 interest	 per	 se	 and	 can	 be	 treated	 as	 nuisance	 parameters	 to	 be	 marginalized.	87	

Christensen	[10]	achieved	an	algebraic	integration	of	allele	frequencies,	leading	to	a	very	88	

simple	 covariance	 structure	with	allele	 frequencies	 in	genomic	 relationships	 fixed	at	0.5	89	

(e.g.,	 using	 genotypes	 coded	 as	 {-1,0,1}	 in	 the	 crossproducts)	 and	 a	 parameter	 called	𝛾	90	

which	describes	the	relationships	across	founders	i.e.	𝑨 𝜸 = 𝑰 1 − 5
&
+ 𝟏𝟏6𝛾	in	the	base	91	

population.	 A	 second	 parameter	 in	 Christensen’s	 marginalisation	 is	 𝑠,	 which	 is	 a	92	

counterpart	 of	 the	 heterozygosity	 of	 the	 markers	 at	 the	 base	 population.	 Therefore,	93	

instead	of	inferring	(thousands	of)	base	allelic	frequencies,	inference	can	be	based	on	two	94	

simple	parameters	𝛾	and	𝑠.	Both	can	be	estimated	maximizing	the	likelihood	of	observed	95	

genotypes.	Also	this	considers	the	fact	that	pedigree	depth	is	arbitrary	and	mostly	based	96	

on	historical	availability	of	records.	97	

	98	
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Legarra	et	al.	[1]	showed	the	equivalence	of	Christensen’s	ideas	to	metafounders:	pseudo-99	

individuals	 that	 simultaneously	 consider	 three	 ideas:	 (a)	 separate	means	 for	 each	 base	100	

population	[4,11],	(b)	randomness	of	these	separate	means		[5]	and	(c)	the	propagation	of	101	

the	 randomness	 of	 these	 means	 to	 the	 progeny	 [10],	 while	 accommodating	 several	102	

populations	 with	 complex	 crosses	 e.g.	 [12].	 Legarra	 et	 al.	 [1]	 also	 generalized	 one	103	

relationship	 across	 founders	 (scalar	 𝛾)	 to	 several	 relationships	 across	 founders	 in	 the	104	

pedigree,	 i.e.	 ancestral	 relationships	 (matrix	 𝜞),	 and	 suggested	 simple	 methods	 to	105	

estimate	them.	However,	the	performance	of	their	model,	both	for	estimation	of	ancestral	106	

relationships	and	for	genomic	evaluation,	has	not	been	tested	so	far.	107	

	108	

This	 work	 has	 two	 objectives.	 The	 first	 one	 is	 to	 delve	 into	 the	 structure	 of	 the	109	

metafounder	 approach	 to	 find	 an	 alternative	 parameterization	 and	 estimation	 of	 the	110	

ancestral	relationships.	By	doing	so	we	find	that	ancestral	relationships	are	generalizations	111	

of	Wright’s	 Fst	 fixation	 index.	 The	 second	 goal	 is	 to	 test,	 by	 simulation,	 (i)	 methods	 to	112	

estimate	 ancestral	 relationship	 parameters,	 (ii)	 the	quality	 of	 genomic	 predictions	 using	113	

metafounders	and	(iii)	the	quality	of	variance	component	estimation.	For	the	second	goal,	114	

the	simulated	population	 is	undergoing	selection	and	with	a	complete	pedigree	partially	115	

genotyped.	116	

	117	

	118	

METHODS	119	

Relationship	between	metafounders	and	allelic	frequencies	at	the	base	120	
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Single	population.	Let	𝑴	be	a	matrix	of	genotypes	coded	as	gene	content,	i.e.	{0,1,2}	and	121	

the	 genomic	 relationship	 matrix	 𝑮 = 𝑴− 𝑱 𝑴− 𝑱 6/𝑠	with	 𝑱	 a	 matrix	 of	 1’s,	 with	122	

reference	 alleles	 taken	 at	 random	 so	 that	 for	 a	 random	 locus	 the	 expected	 allelic	123	

frequency	𝑝	is	0.5.	[10].	In	other	words,	the	matrix	𝒁 = 𝑴− 𝑱 	contains	values	of	{-1,0,1}	124	

for	 each	 genotype.	 In	 a	 single	 population,	 let	 𝛾	 be	 a	 relationship	 coefficient	 across	125	

pedigree	 founders	 or,	 equivalently	 the	 self-relationship	 of	 the	 metafounder	 [1,10].	126	

Parameter	𝛾	 is	 the	 relationship	 coefficient	among	 the	 founders	of	 a	population,	 so	 that	127	

𝑮 = 𝑴− 𝑱 𝑴− 𝑱 6/𝑠	is	most	 likely	given	the	observed	pedigree.	This	relationship	𝛾	 is	128	

relative	 to	 a	 population	 with	 maximum	 heterozygosity	 and	 it	 is	 analogous	 to	 an	 Fst	129	

fixation	 index.	 The	 parameter	 𝑠	 is	 a	 measure	 of	 maximum	 heterozygosity	 in	 the	130	

population.	131	

Christensen	 (2012)	 estimated	 the	 two	 parameters,	 𝛾	 and	 𝑠	 using	 maximum	 likelihood,	132	

whereas	 Legarra	 et	 al.	 (2015)	 suggested	 methods	 of	 moments.	 Closer	 inspection	 of	133	

Appendix	A	in	Christensen	(2012)	leads	to	the	following	developments	(see	supplementary	134	

material	for	more	details).	135	

The	parameter	𝛾	is	such	that	𝛾 = >?@A(CD)
&?@A(CD)FG &CDHD

		with	𝑝I = 1 − 𝑞I 	the	allelic	frequency	at	136	

a	random	locus	𝑖.	The	parameter		𝑠 = 𝑛 2𝑉𝑎𝑟(𝑝I) + 𝐸 2𝑝I𝑞I 	with	𝑛	being	the	number	137	

of	 markers.	 However,	 𝐸 2𝑝I𝑞I = 2𝐸 𝑝I 𝐸 𝑞I − 2𝑉𝑎𝑟 𝑝I = 0.5 − 2𝑉𝑎𝑟(𝑝I),	 where	 it	138	

was	used	that	if	alleles	are	labelled	at	random	across	loci	then	𝐸 𝑝I = 𝐸(𝑞I) = 0.5.	From	139	

this	it	follows	that	𝑠 = U
&
	and	the	genomic	relationship	matrix	is	𝑮 = 2 𝑴− 𝑱 𝑴− 𝑱 6/𝑛.	140	

Interestingly,	 this	matrix	 is	 similar	 to	 a	matrix	 of	 IBS	 relationships,	 that	 can	 be	 written	141	
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as	𝑮VWX = 𝑴− 𝑱 𝑴− 𝑱 6/𝑛 + 𝟏𝟏6,	 so	 that	 𝑮VWX =
$
&
𝑮 + 𝟏𝟏6.	(See	 proof	 in	 the	142	

supplementary	Material).		143	

	144	

Substituting	𝐸 2𝑝I𝑞I = 0.5 − 2𝑉𝑎𝑟(𝑝I)	into	the	expression	𝛾 =
>?@A(CD)

&?@A(CD)FG &CDHD
	gives				145	

	 𝛾 = 8	𝑉𝑎𝑟 𝑝I = 8𝜎C&,	 (2)	

so	 that	𝛾	 for	a	 single	population	 is	eight	 times	 the	variance	of	allelic	 frequencies	at	 the	146	

base	population	 (this	variance	was	described	by	Cockerham	[13]).	These	equalities	were	147	

not	described	in	Christensen	[10].	We	stress	that	𝑉𝑎𝑟 𝑝I = 𝜎C&	to	imply	that	𝜎C&	(and	𝛾)	is	148	

a	parameter,	the	variance	of	allelic	 frequencies	[10,14–16].	On	the	other	hand,	𝑠	can	be	149	

seen	as	the	heterozygosity	in	the	case	that	all	markers	had	an	allelic	frequency	of	0.5.	150	

	151	

Multiple	populations.	In	an	analogous	manner,	the	relationship	across	two	metafounders	152	

𝑏	and	𝑏6	is	153	

	 𝛾\,\] = 8𝐶𝑜𝑣 𝑝\,I, 𝑝\],I = 8𝜎Ca,Ca] 	 (3)	

i.e.,	 the	 covariance	across	 loci	 between	allelic	 frequencies	of	 two	populations	𝑏	 and	𝑏6.	154	

This	 is	 almost	 tautological:	 the	 relationship	 is	 the	 covariance	 across	 gene	 contents	 at	 a	155	

locus,	 here	 applied	 for	 populations.	 Christensen	 et	 al.	 (2015)	 show	 this	 in	 Appendix	 A,	156	

somehow	 implicitly.	 Cockerham	 [13]	 and	 Robertson	 [17]	 interpret	 	 4𝜎Ca,Ca] 	 as	 the	157	

coancestry	 across	 two	 populations	 and	 Fariello	 et	 al.	 [18]	 use	 𝜎Ca,Ca] 	 to	 describe	 the	158	

divergence	 of	 populations.	 There	 are	 several	 measures	 of	 genetic	 distance	 between	159	

populations	(e.g.	[19]),	and	most	of	them	contain	a	term	related,	implicitly	or	explicitly,	to	160	
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𝜎Ca,Ca] .	In	particular,	the	average	square	of	the	Euclidean	distance	can	be	written	as	𝐷
& =161	

𝐸 𝑝\ − 𝑝\] & = −2𝜎Ca,Ca] .	Thus,	𝛾\,\] = −4𝐷&.	162	

	163	

Estimation	164	

Estimation	in	a	single	population.	Estimation	of	𝑠	is	trivial,	it	is	simply	half	the	number	of	165	

markers.	 Parameter	 𝛾	 is	 proportional	 to	 the	 variance	 of	 allele	 frequencies.	 If	 base	166	

population	individuals	were	genotyped,	computing	allele	frequencies	and	estimating	𝛾	 is	167	

trivial.		In	the	next	section	we	propose	methods	when	this	is	not	the	case,	i.e.	genotyped	168	

individuals	are	related	and	perhaps	several	generations	away	from	the	base.		169	

	170	

1-Assuming	 no	 pedigree	 structure.	 NAIVE:	 The	 simplest	model	 assumes	 that	 genotyped	171	

individuals	 are	 unrelated	 and	 constitute	 the	 base	 population.	 For	 locus	 𝑖,	 let	𝒎I 	 be	 a	172	

vector	of	gene	contents	in	the	form	{0,1,2},	defined	as	before.	The	mean	of	this	vector	is	173	

𝜇I = 2𝑝I.	For	each	locus,	estimate	𝜇I 	as	the	observed	mean	of	𝒎I,	then	compute	𝑉𝑎𝑟 𝝁 	174	

as	the	empirical	variance	across	loci	of	𝝁 = (𝜇$, … , 𝜇U),	and	because	𝑝I = 𝜇I/2	then	𝜎C& =175	

𝑉𝑎𝑟 𝝁 /4	and		𝛾 = 8𝜎C& = 2𝑉𝑎𝑟 𝝁 .		176	

	177	

2-Considering	pedigree	structure.	At	 locus	 𝑖,	 gene	content	can	be	seen	as	a	quantitative	178	

trait	where	the	mean	of	𝒎𝒊	in	the	base	population	is	2𝑝I,	where	𝑝I 	is	the	allelic	frequency	179	

at	the	base	population,	and	the	genetic	variance	is	2𝑝I𝑞I 	[20].	Cockerham	(1969)	showed	180	

that	the	covariance	of	gene	content	of	marker	𝑖	across	individuals	𝑗	and	𝑘	is	a	function	of	181	

relationship	𝐶𝑜𝑣 𝑚I,l, 𝑚I,m = 𝐴lm2𝑝I𝑞I.	A	linear	model	can	therefore	be	written	as:	182	
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𝒎I = 𝟏𝜇I +𝑾𝒖I + 𝒆	183	

where	𝑾	is	an	incidence	matrix	relating	individuals	in	pedigree	to	genotypes,	and	with	𝒖I 	184	

being	the	deviation	of	each	individual	from	the	mean	𝜇I 	for	all	individuals	(Gengler	et	al.,	185	

2007;	Forneris	et	al.,	2015).	Assuming	multivariate	normality:	186	

𝝁~𝑁 𝟎, 𝑰𝜎t& 	187	

𝒖I~	𝑁 𝟎, 𝑨 2𝑝I𝑞I 	 = 𝑁 𝟎, 𝑨𝜎uD
& 	188	

Equivalently,	 for	 the	 set	 of	 genotyped	 individuals	 (labelled	 as	 “2”),	189	

𝒖&,I~	𝑁 𝟎, 𝑨&& 2𝑝I𝑞I 	 	where	𝑨&& = 𝑾𝑨𝑾′	 is	an	additive	 relationship	matrix	 spanning	190	

only	the	genotyped	individuals.	From	this	formulation,	there	are	two	possible	strategies	to	191	

estimate	𝜎t&.		192	

	193	

Generalized	 Least	 Squares	 (GLS).	 This	 ignores	 the	 prior	 distribution	 of	𝝁	 and	 estimates	194	

each	 𝜇I 	 as	 a	 “fixed	 effect”	 using	 for	 each	 locus	 separate	 BLUP	 (or,	 equivalently,	 GLS)	195	

estimators	 of	 𝜇I.	 One	 option	 is	 to	 use	 the	 complete	𝑨'$	 and	 mixed	 model	 equations	196	

[20,21].	Equivalently,	the	corresponding	GLS	expression	is	197	

𝜇I = 𝟏6𝑨&&'$𝜎uD
'&𝟏 '$𝟏6𝑨&&'$𝒎I𝜎uD

'& = 𝟏6𝑨&&'$𝟏 '$𝟏6𝑨&&'$𝒎I 	198	

where	 𝟏6𝑨&&'$𝟏 	 is	 the	 sum	of	 elements	of	𝑨&&'$	 ,	𝜎uD
& = 2𝑝I𝑞I 	 and	𝟏6𝑨&&'$𝒎I 	 is	 simply	 a	199	

weighted	sum	of	genotypes.	Then,	estimate	𝜎t&	as	𝑉𝑎𝑟 𝜇 	and	because	𝑝I = 𝜇I/2	,	𝜎C& =200	

𝜎t&/4,	and	it	follows	that		𝛾 = 2𝜎t&.	201	

	202	

Maximum	 likelihood	 (ML).	 Actually	 (and	more	 exactly),	𝜇I 	 can	 be	 considered	 as	 drawn	203	

from	a	normal	distribution,	𝝁~𝑁 𝟎, 𝑰𝜎t& .	 Thus	𝜎t&	 is	 a	variance	component	 that	 can	be	204	
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estimated	by	Maximum	Likelihood.	The	equations	for	given	values	of	𝜎t&	and	𝜎uD
& = 2𝑝I𝑞I 	205	

are	 (𝟏6𝑨&&'$𝜎uD
'&𝟏 + 𝜎t'&)𝜇I = 𝟏6𝑨&&'$𝜎uD

'&𝒎I.	 An	 Expectation-Maximization	 scheme	 [22]	 is	206	

as	follows.	Pick	starting	values	for	𝜎t&, 𝜎uD
& 	.	Iterate	until	convergence	on:	207	

1. For	each	marker	𝑖,		208	

a. estimate	𝜇I = 𝟏6𝑨&&'$𝜎uD
'&𝟏 + 𝜎t'&

'$𝟏6𝑨&&'$𝜎uD
'&𝒎I 	209	

b. store	𝑃𝐸𝑉I 𝜇I = 𝜎t'& + 𝟏6𝑨&&'$𝜎uD
'&𝟏 '$

	210	

c. update	𝜎uD
& 	as	𝜎uD

& = 2𝑝I𝑞I 	with	𝑝I = 𝜇I/2	211	

2. Update	 𝜎t&	 as	 𝜎t& =
$
U
	𝝁6𝝁 + ∑𝑃𝐸𝑉I 𝜇I ,	 where	 the	 second	 part	 of	 the	212	

expression	 corresponds	 to	 the	 trace	 𝑇𝑟(𝑰𝑪),	 𝑰,	 the	 identity	 matrix,	 is	 the	213	

relationship	across	𝝁	and	𝑪	is	the	prediction	error	covariance	matrix	of	𝝁.	As	only	214	

the	diagonal	elements	of	𝑪	are	needed,	 the	elements	𝑃𝐸𝑉I 𝜇I 	 can	be	obtained	215	

separately	from	each	single	locus	analysis.		216	

On	convergence,	 the	estimate	 is	 	𝛾 = 2𝜎t&.	 This	gives	 the	same	estimate	as	 the	method	217	

based	 on	 a	 Wishart	 likelihood	 function	 in	 Christensen	 (2012)	 with	 / 2s n= (results	 not	218	

shown).	219	

	220	

	221	

Estimation	in	multiple	populations.	222	
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If	𝑡	base	populations	are	considered,	the	variance	component	𝜎t&	generalizes	to	𝜮},	a	𝑡×𝑡	223	

matrix	of	variances	and	covariances	across	means	𝜇I\	for	marker	𝑖	in	population	𝑏.	Across	224	

different	populations,	𝜮} =
𝜎t�t�
& 𝜎t�t�	 …
… 𝜎t�t�

& …
… … …

	and	𝚪 = 2𝜮}.	225	

	226	

1-Assuming	no	pedigree	structure.	NAIVE	If	relationships	across	individuals	are	ignored:	227	

𝒎I = 𝑸𝝁I + 𝒆I 	228	

where	𝑸	is	a	matrix	allocating	individuals	to	populations	and	𝝁I 	is	a	vector	with	𝑡	elements	229	

including	 each	 population	 average.	 For	 each	 locus,	 𝝁I 	 can	 be	 computed	 using	 least	230	

squares	and	the	covariance	matrix	of	𝝁I 	across	loci	gives	an	estimate	of	𝜮}.		231	

	232	

2-Considering	 pedigree	 structure.	 If	 there	 are	 no	 crosses,	 the	 estimation	 of	 allelic	233	

frequencies	 can	 be	 split	 in	 separate	 analysis	 by	 population	 𝑏:	 	𝒎I
l = 𝟏𝜇I\ +𝑾\𝒖I\ + 𝒆		234	

with	 𝒖I\~	𝑁(𝟎, 𝑨\ 2𝑝I 1 − 𝑝I ,	 and	 𝑨\	 is	 the	 matrix	 of	 relationships	 concerning	235	

population	b.	Then,	𝑷}	 is	estimated	as	the	observed	matrix	of	covariances	across	loci	for	236	

estimated	𝜇I\.	If	there	are	crosses,	there	are	two	alternatives.		237	

GENERALIZED	 LEAST	 SQUARES	 (GLS).	 The	 first	 alternative,	 suggested	 by	 Forneris	 et	 al.	238	

(2015)	 is	 to	 use	 a	 genetic	 groups	 model	 [11,23],	 as	𝒎I = 𝑸𝝁I +𝑾𝒖I + 𝒆	where	𝑸m,\	239	

contains	the	fraction	of	ancestry	𝑏		in	individual	𝑘.	This	ignores	the	fact	that	the	variance	240	

of	gene	content,	 2𝑝I𝑞I 	is	different	for	each	breed	and	cross.	The	second,	and	more	exact	241	

alternative	is	to	use	the	representation	where	the	breeding	values	are	split	into	within	and	242	

across	breed	components	(Garcia-Cortes	and	Toro,	2006),	as	243	
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𝒎I = 𝑸𝝁I + 𝑾\𝒖I\
\

+ 𝑾\,\6𝒖I
\,\6

\,\],\�\]
+ 𝒆	244	

with	partial	relationship	matrices	for	vectors	𝒖\ ,		𝒖\,\6.		245	

MAXIMUM	LIKELIHOOD	(ML).	Analogously	to	the	single	population	case,	an	Expectation-246	

Maximization	 updated	 estimate	 can	 be	 obtained	 using	 multiple	 trait	 formulations	 [22]	247	

where	𝑃𝐸𝐶	is	the	prediction	error	variance-covariance,	e.g.	with	two	populations:	248	

𝜮} =
𝝁$]𝝁$] 𝝁$]𝝁&]

𝝁&]𝝁$] 𝝁&]𝝁&]
.	249	

Our	current	implementation	is	as	follows:	250	

1. For	each	marker	𝑖,		251	

a. estimate	𝝁I = 𝜮}'$ + 𝑸6𝑨&&'$𝜎uD
'&𝑸 '$𝑸6𝑨&&'$𝜎uD

'&𝒎I 	252	

b. store	𝑃𝐸𝐶I 𝝁I = 𝜮}'$ + 𝑸6𝑨&&'$𝜎uD
'&𝑸 '$

	253	

c. update	𝜎uD
& 	as	𝜎uD

& = 2𝑝I∗(1 − 𝑝I∗)	with	𝑝I∗ =
$
U\

tD
a

&\�$,U\ 	254	

2. Update	 𝜮}	 using	 crossproducts	 within	 and	 across	 populations	 as	 e.g.	 with	 two	255	

populations,		256	

𝜮} =
1
𝑛

𝝁$′𝝁$ 𝝁$′𝝁&

𝝁&′𝝁$ 𝝁&′𝝁&
+ 𝑃𝐸𝐶I

I�$,U

.	257	

There	is	an	approximation	in	(1c)	because	we	assume	that	𝜎uD
& = 2𝑝I𝑞I 	is	equal	across	all	258	

base	populations.	This	point	will	be	addressed	in	future	research.	259	

	260	

SIMULATION	261	
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To	assess	 the	quality	of	genomic	predictions	using	one	metafounder,	we	simulated	262	

data	using	QMSim	[24].	The	simulation	closely	 followed	Vitezica	et	al.	 (2011)	 to	mimic	a	263	

dairy	 cattle	 selection	 scheme	 scenario.	A	historical	 population	undergoing	mutation	and	264	

drift	was	generated,	followed	by	a	recent	population	undergoing	selection.	265	

First,	100	generations	of	the	historical	population	were	generated	with	an	effective	266	

population	 size	 of	 100	 during	 the	 first	 95	 generations,	 followed	 by	 a	 gradual	 expansion	267	

during	 the	 last	 5	 generations	 to	 an	 effective	 population	 size	 of	 3000.	 In	 total	 30	268	

chromosomes	of	100	cM	and	40,000	segregating	biallelic	markers	distributed	at	 random	269	

along	the	chromosomes	in	the	first	generation	of	the	historical	population	were	simulated.	270	

The	40,000	markers	were	resampled	from	a	larger	set	of	90,000	markers	in	order	to	obtain	271	

allelic	frequencies	from	a	beta(2,2)	distribution,	similar	to	dairy	cattle	marker	data,	so	that	272	

true	𝛾	had	a	value	around	0.40.	Potentially,	1500	QTL	affected	the	phenotype;	QTL	allele	273	

effects	 were	 sampled	 from	 a	 Gamma	 distribution	 with	 a	 shape	 parameter	 of	 0.4.	 The	274	

mutation	rate	of	the	markers	(recurrent	mutation	process)	and	QTL	was	assumed	to	be	2.5	275	

×	10–5	per	locus	per	generation	(Solberg	et	al.,	2008).	A	female	trait	with	a	heritability	of	276	

0.30	was	simulated.	277	

Then,	 10	 overlapping	 generations	 of	 selection	 followed,	 where	 200	 males	 were	278	

mated	with	2600	females	producing	2600	offspring	following	a	positive	assortative	mating	279	

design.	Within	the	simulation,	 individuals	were	selected	according	to	estimated	breeding	280	

value	(EBV)	based	on	pedigree	BLUP.	In	each	generation	40%	of	the	males	and	20%	of	the	281	

females	were	 replaced	 by	 younger	 and	 selected	 individuals.	 No	 restrictions	were	 set	 to	282	

avoid	 or	 minimize	 inbreeding,	 so	 highly	 inbred	 individuals	 were	 found,	 as	 a	 result	 of	283	
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extreme	 selection	 and	 matings	 among	 highly	 related	 individuals.	 There	 were	 100	284	

individuals	(mainly	found	in	the	last	generation)	with	an	inbreeding	coefficient	higher	than	285	

0.20,	with	extreme	cases	 (few	 individuals)	with	 inbreeding	coefficients	higher	 than	0.40.	286	

True	breeding	values	(TBV)	and	pedigree	information	were	available	for	all	10	generations	287	

(28,800	individuals	in	pedigree),	phenotypes	were	available	for	all	females	except	the	last	288	

generation	(14,300	records).	All	males	(840	sires	of	females	with	phenotypic	records)	were	289	

genotyped	 as	 well	 as	 2600	 individuals	 in	 generation	 9	 (with	 records)	 and	 2600	 in	290	

generation	10	(with	no	records).	All	 in	all,	20	 independent	replicates	were	made.	A	two-291	

step	 analysis	 was	 carried	 out	 using	 the	 simulated	 data.	 First,	 we	 compared	 several	292	

methods	 to	 estimate	 𝛾.	 Then,	 we	 tested	 the	 quality	 of	 genomic	 predictions	 using	 four	293	

methods,	one	of	them	including	one	metafounder.		294	

	295	

Methods	to	estimate	Gamma		296	

Parameter	 𝛾	 was	 estimated	 using	 four	 different	 estimation	 methods.	 First,	 the	 NAIVE	297	

method	 which	 does	 not	 consider	 the	 pedigree	 structure.	 Then,	 the	 genealogical	298	

information	was	included	in	the	estimation	by	three	different	methods:	GLS,	ML,	and	the	299	

Method	of	Moments	(MM)	presented	in	Legarra	et	al.	(2015).	For	a	single	population,	the	300	

last	 method	 involves	 the	 estimation	 of	 γ	 based	 on	 summary	 statistics	 of	 𝑨&&	 (regular	301	

pedigree-relationship	matrix	 for	 genotyped	 individuals)	 and	𝑮	 (the	 genomic	 relationship	302	

matrix).		303	

	304	

	305	
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Genomic	prediction	methods		306	

Genetic	 merit	 of	 the	 selection	 candidates	 in	 generation	 10	 (genotyped	 and	 with	 no	307	

phenotype	 records)	 was	 estimated	 using	 four	methods.	 The	 first	 one	was	 the	 pedigree	308	

based	BLUP	(PBLUP)	based	on	phenotype	and	pedigree	 information.	The	second	method	309	

was	Single-Step	GBLUP	(SSGBLUP)	in	which	genomic	information	is	also	taken	into	account;	310	

this	method	used	the	correction	of	[25]	and	is	the	default	method	used	in	most	practical	311	

applications	 [25,26].	 However,	 the	 implementation	 that	 we	 used	 does	 not	 include	312	

inbreeding	in	the	setup	of	𝑨'$	[27],	although	it	does	consider	it	in	𝑨&&'$	(see	below	for	use	313	

of	 these	matrices).	The	 third	method	was	Single-Step	GBLUP	 including	 inbreeding	 in	 the	314	

setup	of	𝑨'$	and	of		𝑨𝟐𝟐'𝟏	(SSGBLUP_F).	Finally,	the	fourth	method	was	SSGBLUP	including	315	

the	 metafounder	 (SSGBLUP_M),	 using	 𝛾	 estimated	 by	 GLS	 as	 it	 turned	 out	 to	 be	 an	316	

accurate	method	 to	estimate	gamma	 (see	 the	Results	 section).	 The	 three	methods	used	317	

the	 following	 inverse	 relationship	 matrices:	 PBLUP:	 𝑨'$;	 SSGBLUP:	 𝑯'𝟏 = 𝑨'$ +318	

0 0
0 𝑮@'$ − 𝑨&&'$

	 where	 𝑮@	 is	 as	 in	 [25]	 ;	 SSGBLUP_M:	 𝑯(5)'$ = 𝑨(5)'$ +319	

0 0
0 𝑮'$ − 𝑨&&

(5)'$ 	 where	 𝑮 = 𝑴− 𝑱 𝑴− 𝑱 ′/𝑠	with	 𝑠 = 𝑛/2	 (see	 the	 Methods	320	

section)	 and	 𝑨(5)	 is	 as	 in	 [1].	 More	 details	 are	 given	 in	 Supplementary	 material.	 For	321	

computation	 we	 used	 blupf90	 [28].	 In	 the	 case	 of	 SSGBLUP_M	 we	 constructed	 all	322	

relationship	matrices	with	own	software,	and	then	used	the	option	user_file	in	blupf90.	323	

	324	

Quality	of	genomic	prediction	325	
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Prediction	 quality	 was	 checked	 for	 all	 2600	 selection	 candidates.	 The	 accuracy	 of	 the	326	

methods	 was	 measured	 as	 the	 Pearson	 correlation	 between	 TBV	 and	 EBV.	 Bias	 was	327	

calculated	as	the	difference	between	the	average	TBV	and	average	EBV	with	respect	to	the	328	

base	 population.	 Thus,	 bias	 is	 related	 to	 estimated	 genetic	 progress	 in	 the	 selection	329	

candidates.	 The	 inflation	 (often	 called	bias)	 of	 the	prediction	method	was	quantified	by	330	

the	 coefficient	 of	 regression	 of	 TBV	 on	 EBV.	 These	 two	 statistics	 corresponds	 to	 the	331	

coefficients	𝑏}	 and	𝑏$	 in	 the	 Interbull	 validation	method	 [29]	which	uses	 the	 regression	332	

𝑇𝐵𝑉 = 𝑏} + 𝑏$𝐸𝐵𝑉 + 𝑒.	The	mean	square	error	(MSE)	was	calculated	as	the	mean	of	the	333	

squared	 difference	 between	 TBV	 and	 EBV.	 An	 ideal	 method	 should	 have	 maximum	334	

accuracy,	minimum	MSE,	 zero	bias	 and	a	 regression	 coefficient	of	 1.	 These	 are	not	only	335	

nice	 statistical	properties	but	also	have	 relevance	 in	 livestock	 selection	 [30–32].	Ranking	336	

changes	of	the	selection	candidates	were	also	assessed	by	calculating	the	Spearman’s	rank	337	

correlation	coefficients	between	EBVs	across	methods.		338	

	339	

In	addition,	the	quality	of	variance	component	estimation	was	also	assessed.	For	this	340	

purpose	variance	components	were	estimated	using	 the	 four	methods	 (PBLUP,	SSGBLUP,	341	

SSGBLUP_F,	SSGBLUP_M)	using	REML	with	remlf90	[28].		342	

343	
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RESULTS	344	

Estimation	of	gamma	345	

Figure	1	shows	boxplots	of	the	differences	between	the	estimates	of	𝛾	calculated	by	four	346	

different	methods	(MM,	Naive,	ML	and	GLS)	and	the	true	values	obtained	by	simulation,	347	

using	 each	of	 the	20	 replicates.	 The	 simulations	were	 tailored	 to	produce	𝛾 = 0.40.	ML	348	

and	 GLS	 estimated	 𝛾	 very	 accurately.	 The	 MM	 clearly	 underestimated	 the	 value	 of	 𝛾,	349	

whereas	 the	 Naive	 method	 overestimated	 it.	 Based	 on	 these	 results	 we	 used	 the	 𝛾	350	

estimated	by	GLS	when	using	SSGBLUP_M	for	prediction.	The	effect	of	employing	different	351	

values	of	𝛾	 in	the	genomic	prediction	was	assessed	to	quantify	its	impact	in	terms	of	the	352	

quality	of	predictions.	Using	estimates	of	𝛾	based	on	the	Method	of	Moments	only	slightly	353	

changed	the	results	(not	shown).		354	

	355	

	356	
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	357	

Figure	1	Differences	between	estimated	and	true	Gamma,	across	20	simulation	replicates.	358	

Gamma	 was	 estimated	 by	 Generalized	 Least	 Squares	 (GLS),	 Maximum	 Likelihood	 (ML),	359	

Method	of	Moments	(MM)	and	the	Naive	method.		360	

	361	

	362	

Quality	of	genomic	prediction	363	

Correlations	between	TBV	and	EBV	for	each	of	the	prediction	methods	are	shown	364	

in	 Table	1	 and	 Figure	2a.	 Compared	with	PBLUP,	 SSGBLUP_F	and	 SSGBLUP_M	 increased	365	

accuracy	 by	 approximately	 23	 absolute	 points,	 respectively.	 This	 shows	 an	 important	366	

improvement	 by	 including	 marker	 information	 in	 the	 prediction	 and	 the	 possibility	 of	367	
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generating	a	small	extra	gain	when	also	including	the	metafounder.	SSGBLUP	resulted	in	a	368	

small	loss	of	accuracy	as	compared	to	SSGBLUP_F	and	SSGBLUP_M.	369	

	370	

	371	
Table	1	Accuracy	(correlation	between	TBV	and	EBV),	inflation	(regression	coefficient	of	

TBV	 on	 EBV),	 bias	 (average	 (EBV-TBV))	 and	mean	 square	 error	 (MSE)	 for	 each	 of	 the	

prediction	methods.	Standard	deviations	in	parenthesis.	

Prediction	method	 Accuracy	 Inflation	 Bias	 MSE	

PBLUP	 0.51	(0.05)	 0.98	(0.06)	 -0.0003	(0.03)	 0.206	(0.01)	

SSGBLUP	 0.72	(0.03)	 0.89	(0.19)	 0.2169	(0.04)	 0.159	(0.03)	
SSGBLUP_F	 0.74	(0.02)	 0.99	(0.04)	 0.1167	(0.04)	 0.141	(0.01)	
SSGBLUP_M	 0.74	(0.02)	 0.94	(0.04)	 0.0094	(0.03)	 0.125	(0.01)	

	372	

	373	

Bias	values	for	each	prediction	method	are	shown	in	Table	1	and	in	Figure	2c.	Both	PBLUP	374	

and	SSGBLUP_M	were	unbiased,	whereas	SSGBLUP	and	SSGBLUP_F	were	biased.	Bias	 in	375	

SSGBLUP_F	 is	 equivalent	 to	 roughly	 0.5	 generations	 of	 genetic	 improvement	 or	 to	 0.4	376	

standard	genetic	deviations.		377	

	378	

Table	1	and	Figure	2b	display	the	regression	coefficient	of	TBV	on	EBV.	This	value	measures	379	

the	 inflation	 degree	 of	 each	 prediction	 method	 and	 should	 be	 close	 to	 1.	 PBLUP	 and	380	

SSGBLUP_F	produced	the	values	closest	to	one.	 Including	genomic	data	 in	the	prediction	381	

using	 SSGBLUP	 resulted	 in	 regression	 coefficients	 lower	 than	 one,	 but	 including	 the	382	

metafounder	 in	 SSGBLUP_M	 gives	 values	 closer	 to	 one.	 SSGBLUP_M	 and	 SSGBLUP_F	383	
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displayed	a	lower	standard	deviation	compared	to	the	other	two	methods.	Again,	SSGBLUP	384	

showed	 the	 highest	 variability.	 SSGBLUP_M	 displayed	 the	 lowest	 MSE	 (closer	 to	 zero),	385	

followed	by	SSGBLUP_F	(Table	1).			386	

		387	

	388	

Figure	 2.	 a.	 Correlation	 of	 TBV	 on	 EVB	 for	 each	 prediction	 method	 (accuracy).	 b.	389	
Regression	slope	of	TBV	on	EBV	(overdispersion).	c.	Bias	(average	(EBV-TBV)).	390	
	391	

Variance	components	estimation	392	
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Figure	3	shows	the	estimates	of	heritability	obtained	 in	three	of	the	four	methods	assed	393	

(PBLUP,	 SSGBLUP_F	 and	 SSGBLUP_M).	 The	 estimates	 obtained	 using	 SSGBLUP	 are	 not	394	

displayed	 in	 Figure	3	because	 in	6	out	of	 the	20	 simulation	 replicates	 EM-REML	did	not	395	

converge.	 Convergence	was	 achieved	 in	 those	 cases	 by	weighting	 the	 submatrix	𝑨&&'$	 in	396	

𝑯'$	by	𝜔 = 0.7	 instead	of	1	[33]	but	poor	quality	estimates	were	obtained	and	they	are	397	

not	reported.		398	

	399	

When	comparing	with	the	simulated	true	heritability	value	(0.30)	the	scenarios	displayed	400	

in	 general	 lower	 estimates.	 The	 lowest	 estimates	 were	 obtained	 using	 SSGBLUP_F.	401	

Including	 the	 metafounder	 improved	 estimates	 compared	 to	 SSGBLUP_F	 and	 reduced	402	

variability	when	comparing	to	PBLUP.				403	

	404	
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	405	

Figure	3	Estimated	heritability	for	PBLUP,	SSGBLUP_F	and	SSGBLUP_M	considering	the	20	406	
replicates.	The	dotted	line	shows	the	simulated	heritability	of	0.30.		407	
	408	

Ranking		409	

The	methods	were	 also	 compared	 based	 on	 ranking	 correlations	 of	 EBVs	with	 TBV	 and	410	

across	methods.	 A	 rank	 correlation	 of	 1	 implies	 that	 the	 same	 candidates	 are	 selected.	411	

Results	 are	 in	 Table	 2.	 Rank	 correlations	 with	 TBV	 are	 similar	 to	 accuracies	 in	 Table	 1.	412	

Selection	decisions	are	only	slightly	different	using	SSGBLUP,	SSGBLUP_F	or	SSGBLUP_M.	413	

Note	however,	 that	 this	 table	does	not	address	 the	 comparison	across	generations	 (e.g.	414	

old	vs.	young	animals),	which	is	sensitive	to	biases	reflected	in	Table	1	[32].	415	
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Table	2	Spearman	correlation	among	TBV	and	 the	 four	EBV	 for	each	of	 the	prediction	

methods.	Standard	deviations	in	parenthesis.	

	 EBV	PBLUP	 EBV	SSGBLUP	 EBV	SSGBLUP_F	 EBV	SSGBLUP_M	

TBV	 0.49(0.06)	 0.71(0.02)	 0.72(0.03)	 0.73(0.02)	
EBV	PBLUP	 	 0.56(0.05)	 0.62(0.04)	 0.64(0.04)	

EBV	SSGBLUP	 	 	 0.99(0.01)	 0.98(0.01)	
EBV	SSGBLUP_F	 	 	 	 0.99(0.002)	

	416	

	417	

DISCUSSION	418	

	419	

In	this	work,	we	have	addressed	the	complex	issue	of	conciliation	of	marker	and	pedigree	420	

information.	Powell	et	al.	[34]	argued	that	both	IBS	(at	the	markers)	and	IBD	are	measures	421	

of	identity	at	causal	genes	and	they	are	compatible	notions.	However,	the	incompatibility	422	

issue	appears	when	mixing	both	kind	of	relationships	[5,25,35,36].	Legarra	[7]	established	423	

how	to	solve	the	issue	of	comparing	genetic	variance	across	IBD,	IBS	or	other	measures	of	424	

relationships.	In	this	work,	we	have	used,	similar	(but	not	identical)	to	Powell	et	al.		[34],	a	425	

fixed	reference	(𝑮	constructed	as	a	crossproduct	of	 −1,0,1 	genotypic	codes)	and	tailored	426	

𝑨	 (IBD,	 pedigree)	 to	 fit	 𝑮	 (IBS,	 markers).	 Using	 a	 fixed	 reference	 has	 the	 advantage,	427	

compared	 to	 previous	 approaches,	 that	 genomic	 relationships	 are	 immutable	 (adding	428	

more	genotypes	to	the	database	does	not	change	the	existing	relationships)	and	they	are	429	

unconditional	 on	 pedigree	 depth,	 that	 by	 construction	 is	 always	 limited	 and,	 in	 animal	430	

breeding,	 often	 heterogeneous.	 	 Our	 approach	 is	 in	 fact	 very	 similar	 to	 considering,	 as	431	

measures	 of	 identity,	 plain	 IBS.	We	 use	 a	matrix	𝑮 = 2 𝑴− 𝑱 𝑴− 𝑱 6/𝑛	 ,	 whereas	 a	432	
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matrix	 of	 	 IBS,	 or	 molecular,	 relationships	 is	 𝑮VWX = 𝑮/2 + 𝟏𝟏′		 (see	 proof	 at	 the	433	

supplementary	 material).	 In	 a	 GBLUP	 context	 when	 all	 animals	 are	 genotyped,	 using	 a	434	

model	with	 IBS	coefficients	yields	 identical	 results	as	 the	 term	½	gets	absorbed	 into	 the	435	

variance	component		and	the	constant	𝟏𝟏′	gets	absorbed	into	the	fixed	part	of	the	linear	436	

mixed	model	[7,37].	However,	the	matrix	that	must	be	used	 in	SSGBLUP_M	is	𝑮	and	not	437	

𝑮VWX,	because	𝑮VWX	is	not	compatible	with	pedigree	relationships.	438	

	439	

Easy	estimation	of	ancestral	relationships	440	

The	derivations	in	the	THEORY	section	show	that	estimation	of	ancestral	relationships	in	𝛾	441	

(one	base	population)	and	𝜞	 (several	base	populations)	may	be	framed	within	the	 linear	442	

model	approach	that	 is	classical	 in	quantitative	genetics	[13],	and	recently	used	for	gene	443	

content	[12,20,21].	These	methods	are	easy	to	understand	and	to	compute.	Also,	𝜞	can	be	444	

understood,	 just	 like	heritability,	as	an	unobserved	base	population	parameter	 that	does	445	

not	 change	 with	 additional	 data	 (although	 its	 estimate	 may	 change).	 Therefore,	 an	446	

accurate	 estimate	of	𝜞	 can	be	used	 repeatedly	without	 the	need	of	 re-estimation,	 as	 is	447	

customary	 in	 livestock	 genetic	 evaluations.	 This	 contrasts	 with	 “centering”	 of	 marker	448	

covariates,	which	changes	with	every	new	genotype.			449	

	450	

In	 the	 current	 research,	 the	 simplest	methods	 (Naive	 and	Method	of	Moments)	 yielded	451	

biased	(upwards	and	downwards	respectively)	estimates	of	𝛾;	for	the	first	method	because	452	

it	 ignores	 that	 allele	 frequencies	 drift	 to	 the	 extremes	 as	 generations	 go,	 and	 for	 the	453	
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second	 because	 it	 implicitly	 assumes	 that	 individuals	 genotyped	 are	 a	 random	 sample	454	

from	a	particular	generation	when	in	fact	they	are	not.	455	

	456	

In	 addition,	 the	 equivalence	 of	 ancestral	 relationships	 with	 second	 moments	 of	 allele	457	

frequencies	 shows	 a	 strong	 relation	 with	 populations	 genetics	 theory,	 which	 will	 be	458	

detailed	in	the	next	paragraph.	459	

	460	

Relationship	between	metafounders	𝜸	and	𝑭𝒔𝒕	fixation	index	461	

The	fixation	index	𝐹��	[38]	is	a	measure	of	diversity	of	a	set	of	populations	with	respect	to	462	

a	reference	population,	usually	the	pool	of	all	populations.	In	this	view,	each	population	is	463	

a	 random	 sample	 from	all	 possible	 populations	 that	 could	 be	 sampled	 according	 to	 the	464	

evolutionary	process	described	by	𝐹��.	Conceptually,	𝐹��	 is	a	parameter	 to	be	estimated	465	

[13,39],	 and	 it	 is	 not	 a	 statistic	 computed	 from	 the	data.	A	 usual	 definition	of	𝐹��	 for	 a	466	

particular	biallelic	locus	is		467	

𝐹�� =
𝜎C&

𝑝 1 − 𝑝 	468	

where	 𝜎C&	 is	 the	 variance	 of	 allelic	 frequencies	 across	 populations	 and	 𝑝	 is	 the	 allelic	469	

frequency	 of	 the	 conceptual	 combined	 population.	 If	 we	 consider	 that	 the	 variance	 of	470	

allelic	frequencies	applies	across	 loci	and	not	across	populations,	it	follows	naturally	that	471	

𝑝 = 0.5	.	In	this	case,			472	

𝐹�� =
𝜎C&

𝑝 1 − 𝑝 =
𝜎C&

0.5& = 4𝜎C& =
𝛾
2.	473	
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Our	 interpretation	is	as	follows.	Jacquard	(1974)	called	5
&
	 the	“inbreeding	coefficient	of	a	474	

population”.	 Cockerham	 (1969)	modelled	 5
&
= 𝜃� = 𝐹��	 as	 an	 intraclass	 correlation,	 “the	475	

coancestry	of	the	line	with	itself”,	in	other	words,	the	probability	that	two	gametes	taken	476	

at	 random	from	the	 line	are	 identical.	Thus,	 it	makes	perfect	 sense	 to	consider	 that	 the	477	

additive	 relationship	 (which	 is	 twice	 the	 coancestry	 value)	 of	 a	 group	with	 itself	 is	𝛾 =478	

2𝜃� = 8𝜎C&.	This	is	the	interpretation	of	the	
5
&
	coefficient	in	Legarra	et	al.	[1].	Note	that	the	479	

assumption	 𝑝 = 0.5	 is	 automatically	 fulfilled	 if	 reference	 alleles	 are	 labelled	 randomly	480	

across	loci	(i.e.,	they	are	neither	the	most	frequent	nor	the	least	observed).	481	

	482	

Alternatively,	Legarra	et	al.	(2015)	showed	that	for	a	population	with	self-relationship	of	𝛾,	483	

the	average	heterozygosity	was	1 − 5
&
= 1 − 𝜃,		i.e.	the	variance	is	reduced	by	an	amount	484	

of		𝜃	from	the	conceptual	population	with	heterozygosity	1.	Thus	5
&
	can	be	interpreted	as	485	

𝐹��	if	the	latter	is	taken	as	a	measure	of	homozygosity.	486	

	487	

Consequences	of	using	metafounders	in	genomic	evaluation	488	

Genomic	 estimates	 of	 breeding	 values	 are	 invariant	 to	 allele	 coding	 [37]	 when	 all	489	

individuals	 are	 genotyped.	 However,	 this	 is	 not	 the	 case	 when	 pedigree	 and	 marker	490	

information	 are	 combined	 as	 in	 SSGBLUP.	 In	 this	 work	 we	 have	 shown	 that,	 even	 in	491	

presence	 of	 complete	 pedigree	 and	 a	 single	 base	 population,	 use	 of	 metafounders	 in	492	

SSGBLUP_M	 leads	 to	 slightly	 more	 inflated,	 less	 biased	 EBVs,	 lower	 MSE	 and	 nearly	493	

unbiased	estimates	of	heritability	compared	to	SSGBLUP_F.	Bias,	defined	as	E(EBV-TBV)),	is	494	

typically	overlooked	in	genomic	predictions,	but	in	an	example	of	biased	evaluation	“sires	495	
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of	 later	 generations	 appeared	 to	 be	 under-evaluated	 relative	 to	 older	 sires”	 [40].	496	

Overdispersion,	also	called	bias	in	recent	literature	(e.g.	Mantyssari	et	al.,	2010),	may	have	497	

dramatical	impact	as	well	[30–32].	The	trade-off	between	bias	and	variance	needs	further	498	

studies.	 For	 instance,	 [5]	 found	 that	 SSGBLUP_F	 was	 unbiased	 but	 had	 some	499	

overdispersion;	this	is	likely	dependent	on	the	data	structure,	including	the	genotyping.		500	

	501	

	502	

In	addition,	use	of	metafounders	allows	a	clear	definition	of	genomic	relationships.	With	503	

this	definition,	relationships	are	not	dependent	on	pedigree	depth	or	completeness,	and	504	

are	 not	 dependent	 on	 allelic	 frequencies	 subject	 to	 change	 with	 arrival	 of	 new	 data.	505	

Additionally,	a	high	dimensional	parameter	 (-base-	allele	 frequencies)	 is	 substituted	by	a	506	

low-dimensional	one	(matrix	𝜞).		507	

	508	

The	 poor	 performance	 of	 SSGBLUP	 as	 compared	 to	 SSGBLUP_F	 (the	 former	 ignoring	509	

inbreeding	in	the	set	up	of	𝐀'$)	is	likely	due	to	the	presence	of	highly	inbred	individuals.		510	

This	relates	to	the	interpretation	of	an	𝜔	parameter	used	in	early	studies	of	SSGBLUP.	An	511	

application	of	SSGBLUP	for	type	traits	in	Holstein	[33]	experienced	convergence	problems.	512	

The	authors	found	that	by	multiplying	𝐀&&'$	by	a	𝜔 = 0.7	eliminated	convergence	problems	513	

and	 increased	 accuracy.	 However,	 the	 nature	 of	 that	 parameter	 was	 not	 known,	 e.g.	514	

Misztal	et	al.	[41].	In	those	studies,	the	inverse	of	the	numerator	relationship	matrix		𝑨'$		515	

was	 constructed	 using	 Henderson’s	 rules	 while	 ignoring	 inbreeding	 [27],	 while	 the	516	

submatrix	𝑨&&'$	 included	 inbreeding.	 Subsequently,	 the	 elements	 in	 the	 latter	 were	 too	517	
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large.	 In	 addition,	 genotyped	 animals	 were	 on	 average	 unrelated	 in	𝑮	 but	 not	 in	𝑨&&,	518	

which	is	corrected	by	scaling	𝑮	as	in	Vitezica	et	al.	(2011).	But	then,	in	𝑨&&'$	the	elements	519	

were	 too	 large	 for	 younger	 animals	 relative	 to	 𝑮.	 Both	 problems	 are	 partially	520	

circumvented	 but	 putting	 a	 weight	 𝜔 < 	1	 on	 𝑨&&'$.	 When	 𝑨'$	 was	 constructed	521	

considering	 inbreeding,	 the	 optimal	𝜔	 coefficient	 in	 an	 analysis	 of	 Holstein	 dairy	 cattle	522	

increased	 from	 0.7	 to	 0.9	 (Masuda,	 personal	 communication,	 2016).	 However,	 the	523	

metafounder	 approach	 provides	 a	 clean	 solution	 to	 this	 problem.	 Also,	 following	 these	524	

experiences,	 𝑨'$	 should	 always	 be	 constructed	 considering	 inbreeding	 to	 avoid	525	

pathological	problems.		526	

	527	

CONCLUSION	528	

Metafounders	are	 similar	 to	Fst	 fixation	 indices	and	proportional	 to	covariances	of	allelic	529	

frequencies	in	base	populations.	Use	of	metafounders	is	simplified	by	new	methods	(GLS	530	

and	 maximum	 likelihood)	 to	 estimate	 the	 covariance	 of	 base	 allele	 frequencies.	 We	531	

verified	by	simulation	of	a	selected	population	that,	 in	a	single	population,	both	GLS	and	532	

ML	 are	 unbiased	 and	 computationally	 efficient.	 In	 the	 same	 simulation,	 use	 of	533	

metafounders	 in	 Single	 Step	GBLUP	 leads	 to	more	 accurate	 and	 less	 biased	evaluations,	534	

and	also	to	more	accurate	estimates	of	genetic	parameters.	535	

	536	

We	 propose	 a	 genomic	 relationship	 matrix	 that	 refers	 to	 a	 population	 with	 ideal	537	

frequencies	 0.5.	 This	matrix	 is	 similar	 to	 an	 IBS	 relationship	matrix	 (up	 to	 scale	 factors),	538	
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does	not	change	with	new	data	and	is	compatible	with	pedigree	data	if	metafounders	are	539	

used.	540	

		541	

In	this	simulated	data,	pedigrees	are	perfectly	known.	Future	work	with	real	data	sets	 in	542	

more	 complex	 settings	 -	 purebreds	 and	 their	 crosses	 [42,43],	 and	 selected	 populations	543	

with	unknown	parent	groups	[11]	will	investigate	the	feasibility	and	accuracy	in	practice	of	544	

using	metafounders	on	Single	Step	GBLUP.	545	

	546	

APPENDIX	547	

This	Appendix	contains	several	algebraic	developments	not	detailed	in	the	main	text.	548	

Analytical	derivation	of	𝜸	and	𝒔	549	

For	a	particular	population,	the	genetic	variance-covariance	structure	is	a	function	of	two	550	

parameters	𝜂$	and	𝜂&	:	𝛾 =
>��

&��F��
	and	𝑠 = 𝑛 2𝜂$ + 𝜂& 	(𝑛	being	the	number	of	markers)	551	

which	depend	on	the	allelic	frequencies	(Christensen	2012),	Appendix	A.	With	𝑝l 	being	the	552	

allelic	frequencies	across	the	𝑗 = 1. . 𝑛	loci,	these	parameters	do	not	depend	on	𝑗	and	are	553	

equal	to	554	

𝜂$ = 𝑉𝑎𝑟(𝑝l)	555	

𝜂& = 𝐸 2𝑝l𝑞l 	556	

with	𝑞 = 1 − 𝑝.		557	

Now	use	is	made	of	the	following	developments.	558	

	 	 𝐸 𝑝𝑞 = 𝐸(𝑝 1 − 𝑝 ) = 𝐸 𝑝 − 𝐸(𝑝&).	 	 	 (A1)	559	
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Since	we	have	that	𝑉𝑎𝑟 𝑝 = 𝐸 𝑝& − 𝐸 𝑝 &	we	obtain	𝐸 𝑝& = 𝑉𝑎𝑟 𝑝 + 𝐸 𝑝 &.	We	560	

also	have	𝐸 𝑞 = 1 − 𝐸 𝑝 .	Substituting	𝐸 𝑝 &	in	(A1)	gives		561	

𝐸 𝑝𝑞 = 𝐸 𝑝 − 𝑉𝑎𝑟 𝑝 − 𝐸 𝑝 & = 𝐸 𝑝 1 − 𝐸 𝑝 − 𝑉𝑎𝑟(𝑝) = 𝐸 𝑝 𝐸 𝑞 − 𝑉𝑎𝑟 𝑝 .	562	

If	markers	are	biallelic	and	labelled	at	random	𝐸 𝑝 = 𝐸(𝑞) = 0.5.	So	the	equation	above	563	

gives	𝐸 𝑝𝑞 = 0.25 − 𝑉𝑎𝑟(𝑝).	From	this	we	obtain	564	

2𝜂$ + 𝜂& = 2𝑉𝑎𝑟 𝑝l + 0.5 − 2𝑉𝑎𝑟 𝑝l = 0.5,	565	

and	therefore		566	

	 	 	 	 𝑠 = 𝑛	 2𝜂$ + 𝜂& = U
&
,	 	 	 	 (1)	567	

or,	in	other	words,	𝑠	is	half	the	number	of	markers.	Further,			568	

	 	 𝛾 = >��
&��F��

= >��
}.�

= 8	𝑉𝑎𝑟 𝑝l = 8𝜎C&,	 	 	 	 (2)	569	

so	that	𝛾	for	a	single	population	is	eight	times	the	variance	of	allelic	frequencies	at	the	570	

base	population.		571	

Equivalences	of	genomic	relationship	matrices.	572	

The	matrix	G	described	in	Christensen	(2012)	and	in	this	paper	can	be	written	as	𝑮 =573	

&
U
𝑴 − 𝑱 𝑴− 𝑱 6,	where	M	contains	genotypes	coded	as	{0,1,2}	and	𝑱	is	a	matrix	of	1’s.	574	

The	purpose	of	this	paragraph	is	to	show	the	linear	relationship	of	this	matrix	with	a	575	

matrix	describing	identity	by	state	coefficients	(IBS),	in	fact	𝑮VWX =
$
&
𝑮 + 𝟏𝟏6.	The	terms	in	576	

𝑮VWX	are	usually	described	in	terms	of	identities	or	countings	(i.e.	Ritland,	1996;	Toro	et	577	

al.,	2011;	Nejati-Javaremi	et	al.,	1997):	578	

𝐺VWXD� =
1
𝑛 2	

𝐼m�&
��$

&
m�$

4

U

u�$

		579	
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where	𝐼m� 	measures	the	identity	(with	value	1	or	0)	of	allele	𝑘	in	individual	𝑖	with	allele	𝑙	in	580	

individual	𝑗,	and	single-locus	identity	measures	are	averaged	across	𝑛	loci.	581	

There	is	an	algebraic	expression	for	this	“counting”.	Toro	et	al.	(2011)	expression	(1),	show	582	

that	for	biallelic	markers,	for	a	locus	k	(omitted	in	the	notation	for	clarity):	583	

	 	 𝑓�D� =
uD
&
u�

&
		+ 1 − uD

&
1 − u�

&
	 	 (3)	584	

for	coancestry	(half	relationship)		𝑓�D� 	of	individuals	i	and	j,	where	𝑚/2	is	the	“gene	585	

frequency”	of	the	individual	(half	𝑚	the	gene	content,	i.e.	{0,1/2,1}	for		the	three	586	

genotypes).		587	

	In	order	to	prove	𝑮VWX =
$
&
𝑮 + 𝟏𝟏6,	first	we	translate	the	Toro	et	al.	(2011)	equation	to	588	

the	more	familiar	scale	of	relationships	𝑔VWXIl = 2𝑓�D� 	and	gene	contents	𝑚.	Thus	589	

𝑔VWXIl = 2𝑓�D� = 2
𝑚I

2
𝑚l

2 		+
2
2 −

𝑚I

2
2
2 −

𝑚l

2 		590	

𝑔VWXIl = 𝑚I𝑚l − 𝑚I − 𝑚l + 2	591	

This	expression	can	be	easily	verified	in	a	table	with	the	nine	possible	genotypes:	592	

	 AA	 Aa	 aa	

AA	 2	 1	 0	

Aa	 1	 1	 1	

aa	 0	 1	 2	

	593	

Also,	594	

𝑔VWXIl = 𝑚I𝑚l − 𝑚I − 𝑚l + 2 = 𝑚I − 1 𝑚l − 1 + 1	595	

which	extends	to	all	individuals	and	averaged	across	loci	can	be	written	as	596	
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𝑮VWX =
1
𝑛 𝑴− 𝑱 𝑴− 𝑱 6 + 𝟏𝟏′	597	

Thus,	matrix	𝑮VWX =
$
U
𝑴 − 𝑱 𝑴− 𝑱 6 + 𝟏𝟏′	and	because		𝑮 = &

U
𝑴 − 𝑱 𝑴− 𝑱 6	it	598	

follows	that	𝑮VWX =
$
&
𝑮 + 𝟏𝟏6.	The	equivalence	can	also	be	verified	by	noting	that,	for	all	599	

nine	genotypes,	the	cross-product	(𝑚I − 1)(𝑚l − 1)	in	the	following	table	is	identical	to	600	

𝑔VWXIl − 1	in	the	previous	table.	601	

	 AA	 Aa	 aa	

AA	 1	 0	 -1	

Aa	 0	 0	 0	

Aa	 -1	 0	 1	

		602	

	603	

Computation	of	the	different	H	matrices	604	

For	SSGBLUP	and	SSGBLUP_F,	matrix	𝑯'$	is	constructed	as	follows:	605	

𝑯'$ = 𝑨'$ + 𝟎 𝟎
𝟎 𝑮@∗ − 𝑨&&

	606	

with	𝑮@∗ = 0.95𝑮@ + 0.05𝑨&& = 0.95 𝑎 + 𝑏𝑮 + 0.05𝑨&&	,	and	𝑮 =
𝑴'𝑷 𝑴'𝑷
&∑CDHD

		as	in	607	

VanRaden	(2008),	M	contains	genotypes	coded	as	{0,1,2}	and	P	contains	twice	allelic	608	

frequencies	𝑝I.	These	are	computed	from	the	observed	genotypes	so	that	2𝑝I 	is	equal	to	609	

the	the	mean	of	the	𝑖-th	column	of	M.		Constants	𝑎	and	𝑏	are	such	that	the	full-matrix	and	610	

diagonal	averages	of	𝑮@	and	𝑨&&	are	the	same	(Christensen	et	al.,	2012)	in	order	to	make	611	

the	two	matrices	compatible.	The	use	of	the	weights	0.95	and	0.05	is	in	order	to	make		𝑮@	612	
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invertible.	Matrix	𝑨'$	should	be	constructed	using	contributions	with	values	described	in	613	

the	Table	below	(i.e.	Meuwissen	and	Luo,	1992):	614	

No	parent	known	 1	

One	parent	known	
0.75 −

𝐹mU¡¢U
4

'$

	

Two	parents	known	
0.5 −

𝐹�IA£
4 −

𝐹¤@u
4

'$

	

Or,	in	a	more	compact	way		 0.5 − ¥¦D§¨
>
− ¥©ª«

>

'$
	with	𝐹¬UmU¡¢U = −1.		615	

SSGBLUP	uses	the	defaults	in	blupf90	suite	of	programs	(random_type	add_animal).	616	

SSGBLUP	uses	the	simple	method	to	create	𝑨'$	,	method	which	pretends	that	in	all	cases	617	

inbreeding	in	expressions	above	is	𝐹 = 0.	618	

SSGBLUP_F	uses	𝑯'$	as	above	but	constructs	𝑨'$	correctly	(blupf90	random_type	619	

add_an_upginb),	using	the	rules	above.		620	

SSGBLUP_M	uses	the	blupf90	random_type	user_file	to	consider	the	following	621	

relationship	matrix:		622	

𝑯(­)'$ = 𝑨(­)'$ +
𝟎 𝟎
𝟎 𝑮∗ − 𝑨&&

­ '$ 	623	

with	𝑮∗ = 0.95𝑮 + 0.05𝑨&&
(­)	(basically	to	make	𝑮	invertible),	𝑮 = $

�
𝑴 − 𝑱 𝑴− 𝑱 6	and	624	

𝑠 = 𝑛/2		,	M	contains	genotypes	coded	as	{0,1,2},	𝑛	is	the	number	of	markers,	𝑨(­)'$	and	625	

𝑨&&
­ '$	are	constructed	with	own	programs	as	in	Legarra	et	al.	(2015	)using	the	estimated	626	

value	of	𝜞.	Inbreeding	is	fully	considered	in	both	matrices.	627	

	628	

	629	
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