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Abstract 21 

 22 

In the idling brain, neuronal circuits often exhibit transitions between periods of sustained firing (UP 23 

state) and quiescence (DOWN state). Although these dynamics occur across multiple areas and 24 

behavioral conditions, the underlying mechanisms remain unclear. Here we analyze spontaneous 25 

population activity from the somatosensory cortex of urethane-anesthetized rats. We find that UP and 26 

DOWN periods are variable (i.e. non-rhythmic) and that the population rate shows no significant decay 27 

during UP periods. We build a network model of excitatory (E) and inhibitory (I) neurons that exhibits a 28 

new bistability between a quiescent state and a balanced state of arbitrarily low rate. Fluctuating inputs 29 

trigger state transitions. Adaptation in E cells paradoxically causes a marginal decay of E-rate but a 30 

marked decay of I-rate, a signature of balanced bistability that we validate experimentally. Our findings 31 

provide evidence of a bistable balanced network that exhibits non-rhythmic state transitions when the 32 

brain rests. 33 

  34 
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Introduction 35 

A ubiquitous pattern of spontaneous cortical activity during synchronized brain states consists in the 36 

alternation between periods of tonic firing (UP states) and periods of quiescence (DOWN states) 37 

(Luczak et al., 2007; Steriade et al., 1993a; Timofeev et al., 2001). Cortical UP and DOWN dynamics 38 

take place during slow-wave-sleep (SWS) (Steriade et al., 1993a) and can also be induced by a 39 

number of anesthetics (Steriade et al., 1993a). More recently however, similar synchronous cortical 40 

dynamics have been observed not only in awake rodents during quiescence (Luczak et al., 2007; 41 

Petersen et al., 2003), but also in animals performing a perceptual task, both rodents 42 

(Sachidhanandam et al., 2013; Vyazovskiy et al., 2011) and monkeys (Engel et al., 2013).  43 

Spontaneous activity resembling UP and DOWN states has been found in cortical slices in vitro 44 

(Cossart et al., 2003; Fanselow and Connors, 2010; Mann et al., 2009; Sanchez-Vives and 45 

McCormick, 2000), in slabs (Timofeev et al., 2000) and in vivo under extensive thalamic lesions 46 

(Steriade et al., 1993b). This has led to suggest that the underlying mechanism had an intracortical 47 

origin. In such scenario, the standard hypothesis postulates that during UP periods a fatigue cellular 48 

mechanism – e.g. spike frequency adaptation or synaptic short-term depression – decreases network 49 

excitability until the state of tonic firing can no longer be sustained and the cortical network switches 50 

into a DOWN state (Contreras et al., 1996; Sanchez-Vives and McCormick, 2000). During DOWN 51 

periods, in the absence of firing, the fatigue variables recover until the circuit becomes self-excitable 52 

and autonomously transitions into an UP state (Cunningham et al., 2006; Le Bon-Jego and Yuste, 53 

2007; Poskanzer and Yuste, 2011; Sanchez-Vives and McCormick, 2000; Timofeev et al., 2000). This 54 

mechanism of activity dependent negative feedback causing oscillatory UP-DOWN dynamics has 55 

been implemented by several computational models (Bazhenov et al., 2002; Benita et al., 2012; Chen 56 

et al., 2012; Compte et al., 2003b; Hill and Tononi, 2005; Parga and Abbott, 2007). However, although 57 

commonly described as a slow oscillation, the rhythmicity of UP-DOWN dynamics has not been 58 

systematically quantified and seems to depend on the details of the preparation (Chauvette et al., 59 

2011; Erchova et al., 2002; Lampl et al., 1999; Ruiz-Mejias et al., 2011). 60 

Alternatively, there is strong evidence suggesting that UP-DOWN transitions in neocortical 61 

circuits are coupled with activity in other areas. Thalamocortical neurons for instance can 62 

endogenously oscillate at low frequencies (Hughes et al., 2002; McCormick and Pape, 1990), cause 63 

cortical UP states when stimulated (Rigas and Castro-Alamancos, 2007) or modulate the UP-DOWN 64 

dynamics when suppressed (David et al., 2013; Lemieux et al., 2014)  and their spontaneous activity 65 

correlates with UP state onset (Contreras and Steriade, 1995; Slézia et al., 2011; Ushimaru et al., 66 

2012). Moreover, the timing of hippocampal sharp-wave ripples (Battaglia et al., 2004), or basal 67 

ganglia activity (Ushimaru et al., 2012) also tends to precede DOWN to UP transitions. Finally, 68 

intracortical stimulation can effectively cause UP-DOWN transitions (Beltramo et al., 2013; Shu et al., 69 

2003) even when only a few dozen neurons are stimulated (Stroh et al., 2013). In total, these findings 70 

describe a system whose macroscopic UP-DOWN dynamics are sensitive to temporal fluctuations of 71 
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both external inputs and local circuit activity. Such a network would in principle generate unpredictable 72 

and therefore irregular UP-DOWN dynamics, since transitions are no longer dependent exclusively on 73 

local cortical internal dynamics.  74 

The interplay of fatigue and fluctuations causing transitions between two states has been 75 

theoretically studied in the developing spinal cord (Tabak et al., 2011, 2000), and in the context of UP-76 

DOWN dynamics mostly in excitatory networks (Holcman and Tsodyks, 2006; Lim and Rinzel, 2010; 77 

Mattia and Sanchez-Vives, 2012; Mejias et al., 2010). Models of spontaneous activity are however 78 

theoretically founded on the balance between excitatory (E) and inhibitory (I) populations (Amit and 79 

Brunel, 1997; van Vreeswijk and Sompolinsky, 1998), a dynamic state that can quantitatively mimic 80 

population spiking activity during desynchronized states (Renart et al., 2010). In spite of this, there is 81 

still no simple EI network model that, building on a balanced state, can exhibit bistability between a 82 

low-rate and a quiescent state (Latham et al., 2000). To develop such a model, we first performed 83 

population recordings of ongoing cortical activity during synchronized brain state epochs in rats under 84 

urethane anesthesia (Détári and Vanderwolf, 1987; Luczak et al., 2007; Murakami et al., 2005; 85 

Whitten et al., 2009). Analysis of multi single-unit spiking dynamics, showed irregular UP and DOWN 86 

periods and no decay of the average rate during UPs. Given these constraints, we built an EI network 87 

model that, capitalizing on the firing threshold non-linearity and the asymmetry of the E and I transfer 88 

functions, exhibited a novel type of bistability with a quiescence (DOWN) and a low-rate state (UP). 89 

External input fluctuations into the network caused the irregular UP-DOWN transitions. Adaptation in E 90 

cells in contrast, did not cause transitions and had a different effect on the E rate in each of the two 91 

states: while it exhibited recovery during DOWN periods, it showed almost no decay during UP periods 92 

due to the balanced nature of the UP dynamics. Our model provides the first EI network that exhibits 93 

stochastic transitions between a silent and a balanced attractor matching the statistics of UP and 94 

DOWN periods and population rate time-courses observed in the cortex.  95 

  96 
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Results 97 

To investigate the mechanisms underlying the generation of spontaneous cortical activity, we recorded 98 

the spiking activity from large populations of neurons (mean±SD = 64±23 cells) in deep layers of 99 

somatosensory cortex of urethane-anesthetized rats (n=7 animals) (Barthó et al., 2004; Luczak et al., 100 

2009). Because brain state under urethane can vary spontaneously (Détári and Vanderwolf, 1987; 101 

Luczak et al., 2007; Murakami et al., 2005; Whitten et al., 2009), we selected the most clearly 102 

synchronized epochs characterized by the stable presence of high-amplitude, slow fluctuations in 103 

cortical local field potential (LFP) signals (Fig. 1A; see Methods) (Harris and Thiele, 2011; Steriade et 104 

al., 2001). During these epochs, the instantaneous population rate R(t), defined from the merge of all 105 

the recorded individual spike trains, displayed alternations between periods of tonic firing and periods 106 

of silence (Luczak et al., 2007), a signature of UP and DOWN states from an extracellular standpoint 107 

(Fig. 1B-C) (Cowan and Wilson, 1994; Sanchez-Vives and McCormick, 2000; Steriade et al., 1993a). 108 

Despite the clear presence of UP and DOWN states, the population activity displayed no clear traces 109 

of rhythmicity as revealed by strongly damped oscillatory structure in both autocorrelograms of LFP 110 

and R(t) (Fig 1D and 1E, respectively). Motivated by this, we hypothesized that the cortical circuit 111 

might transition between two network states in a random manner (Deco et al., 2009; Mejias et al., 112 

2010; Mochol et al., 2015). Using a probabilistic hidden semi-Markov model (Chen et al., 2009), we  113 

inferred the instantaneous state of the circuit from the population rate R(t) by extracting the sequence 114 

of putative UP (U) and DOWN (D) periods (Fig. 1C, Methods). 115 

 116 

UP and DOWN duration statistics during synchronized states 117 

The statistics of U and D period durations showed skewed gamma-like distributions (Fig. 2A and 2B 118 

right; Supp. Fig 1). The mean duration across different experiments displayed a wide range of values 119 

(Fig. 2B left; mean±SD: <U>=0.43±0.19 s, <D>=0.46±0.1 s, n=7), whereas the coefficients of variation 120 

CV(U) and CV(D) of U and D periods, defined as the standard deviation divided by the mean of the 121 

period durations within experiments, were systematically high (Fig. 2B middle, mean±SD: 122 

CV(U)=0.69±0.09, CV(D)=0.69±0.1). The irregularity in the U and D periods did not result from slow 123 

drifts in the mean U or D durations caused by variations of brain state as confirmed by computing the 124 

CV2 (Holt et al., 1996), a local measure of irregularity that is less affected by slow variations in the 125 

statistics (mean±SD: CV2(U)=0.86±0.13, CV2(D)=0.75±0.17; see Methods). The high variability of U 126 

and D periods is consistent with the non-periodicity of the dynamics revealed in the autocorrelation 127 

function (Fig. 1D-E). 128 

We then asked whether the lengths of U and D periods were independent, as if the transitions 129 

between the two network states would reset the circuit's memory, or if in contrast they were correlated 130 

by a process impacting the variability of several consecutive periods. We computed the linear cross- 131 
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 132 
 133 

Figure 1. Synchronized brain activity under urethane anesthesia in the rat somatosensory cortex and the detection of 134 

putative UP and DOWN periods. (A). Local field potential during 5 s of synchronized state displaying high-amplitude slow 135 

fluctuations. (B) Population raster of 92 simultaneously recorded single units exhibiting the alternation between periods of 136 

tonic spiking activity and periods of neural quiescence (cells sorted based on mean firing rate). (C) Instantaneous population 137 

rate R(t) (grey) is used to identify putative U (orange) and D (purple) periods. The detection algorithm is  based on fitting a 138 

Hidden Markov Model (HMM) and computing the posterior probability of the hidden state being in an UP state (green) (see 139 

methods). (D) Average autocorrelogram of LFP (20-s windows) for one example experiment. (E) Average autocorrelogram of 140 

R(t) for different (n=7) experiments (example experiment in black). 141 

 142 

 143 

correlation 𝐶𝑜𝑟𝑟(𝑈𝑖 , 𝐷𝑖+𝑘) (Fig. 2C left, for k=0) between pairs of periods separated in the D-U 144 

sequence by a lag k (Fig. 2C, right). The cross-correlation 𝐶𝑜𝑟𝑟(𝑈𝑖 , 𝐷𝑖+𝑘) displayed consistently non-145 

zero values for k=0 and k=1 (mean±SD: 0.21±0.09, 0.17±0.09, respectively; significant cross-146 

correlation in 6/7 animals, P<0.05 permutation test), whereas remained close to zero for the rest of 147 

lags, showing that period duration relationship is limited to adjacent periods (Fig 2C-D). The positive 148 

correlation between adjacent periods was not due to slow changes in their duration, as we corrected 149 

by the correlation obtained from surrogate D-U sequences obtained from shuffling the original 150 

sequence within 30 second windows (see Methods). Positive correlations between consecutive 151 

periods of activity and silence can be generated when fluctuation driven transitions are combined with 152 
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an adaptive process such as activity-dependent adaptation currents (Lim and Rinzel, 2010; Tabak et 153 

al., 2000): if a fluctuation terminates a U period prematurely without much build-up in adaptation, the 154 

consecutive D period also tends to be shorter as there is little adaptation to recover from. However, a 155 

major role of adaptation currents in dictating UP-DOWN dynamics (Compte et al., 2003b) seems at 156 

odds with the lack of rhythmicity and the highly variable U and D durations, indicative of a stochastic 157 

mechanism causing the transitions between network states. 158 

 159 

 160 

 161 

 162 

Figure 2. Statistics of U and D periods during synchronized brain activity. (A) Distribution of U and D durations for one 163 

example experiment (same as Fig 1). Inset shows the mean and coefficient of variation (CV) of U and D durations. (B) 164 

Summary of period duration mean (left) and CV (right) across experiments (n=7 rats). While average durations are quite 165 

heterogeneous across experiments, the period duration variability is consistently large. (C) Left: D duration (Di) vs the 166 

consecutive U duration (Ui) exhibit weak but significant serial correlation (circle marks showing values away than 3 standard 167 

deviations of the mean, were discarded for correlation analysis; red line showing linear regression). Right: Cross-correlogram 168 

between the Di and Ui sequences for different lags (k) in a single experiment. Magenta dashed line represent the mean cross-169 

correlogram from a local shuffled (see Methods). Light (dark) grey dashed line showing 95% C.I. point-wise (global) error 170 

bands. (D) Summary of cross-correlation analysis for the different experiments, displaying consistent positive correlations 171 

across experiments for lags k=0 and k=1. 172 

 173 

Spiking activity during UP and DOWN states 174 

We next searched for more direct evidence of an adaptive process by examining the time course of 175 

the population firing rate R(t) during U and D periods (see Fig. 1C; see Methods). The mean firing rate 176 

in U periods was low (mean±SD: 3.72±0.9 spikes/s, n=7). Moreover, D periods displayed occasional 177 

spiking (mean±SD rate 0.018±0.007 spikes/s; see e.g. Fig. 3A-B and Supp. Fig. S2), in contrast with 178 

the idea that DOWN periods do not display spiking activity (Chauvette et al., 2010), but see (Compte 179 
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et al., 2003b). Thus, our hypothesis was that adaptation currents, if present, would induce a decay in 180 

R(t) during Us and an increase during Ds, and this impact on R(t) dynamics should be more evident 181 

during longer periods due to a larger accumulation (during Us) or recovery (during Ds) of the 182 

adaptation. For each experiment, we aligned the rate R(t) at the DOWN-to-UP (DU) and UP-to-DOWN 183 

(UD) transition times (Fig. 3A). We then computed the average rates 𝑅𝐷𝑈(𝜏) and 𝑅𝑈𝐷(𝜏) across all DU 184 

and UD transitions, respectively, with 𝜏 = 0 representing the transition time (Fig. 3B; mean across 185 

experiments = 598 transitions; range 472-768). Because Us and Ds had different durations, we 186 

selected long periods (U, D > 0.5 s) and compared 𝑅𝐷𝑈(𝜏) and 𝑅𝑈𝐷(𝜏) at the beginning and end of 187 

each period (mean number of Us 181, range 61-307; Ds 202, range 55-331). To specifically assess a 188 

change in rate during the U period, we compared the average 𝑅𝐷𝑈(𝜏) in the time window τ = (50, 200) 189 

ms (beginning of U) with the average 𝑅𝑈𝐷(𝜏) in the window τ = (-200, -50) ms (end of U), which we  190 

 191 

 192 

 193 

 194 

 195 

 196 

Figure 3. Population spiking statistics during U and D periods. (A) Example of instantaneous population rate R(t) with U and 197 

D detected periods (as in Fig.1). (B-C) Each U period is aligned at the DU (B, left) and UD (B, right) transition times in order 198 

to compute the instantaneous population rate averaged across transitions 𝑅𝐷𝑈(𝜏) (C, dark grey) and 𝑅𝑈𝐷(𝜏) (C, light grey), 199 

respectively. Only periods longer than 0.5 s (asterisks in B) were included in the average. (D) Comparison of population rate 200 

at the onset and offset of Us and Ds done by overlaying 𝑅𝐷𝑈(𝜏) and a time-reversed 𝑅𝑈𝐷(𝜏). Onset and offset windows 201 

defined during D and U periods (shaded) were used to test significance of changes in the rate. (E)  Normalized firing rates 202 

from all individual neurons (448 cells from n=7 animals) during onset and offset windows. Left: D periods. Right: U periods. 203 

Average across cells is shown in red. Gray bands show 95% C.I. of the histograms obtained from onset-offset shuffled data 204 

(see Methods). 205 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2016. ; https://doi.org/10.1101/083626doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=138932
https://doi.org/10.1101/083626


referred to as U-onset and U-offset windows, respectively. The windows were chosen 50 ms away  206 

from τ = 0 to avoid the transient change due to the state transitions (Fig. 3C-D). We found no 207 

significant mean difference between population average rate at U-onset and U-offset windows across 208 

our experiments (mean±SD onset minus offset population rate 0.04 ± 0.40 spikes/s, P=1, Wilcoxon 209 

signed rank, n=7 animals). The equivalent analysis performed on D periods yielded a small but 210 

significant mean increase in the population rate between the D-onset and D-offset windows (mean±SD 211 

-0.014 ± 0.013 spikes/s, P=0.047, Wilcoxon signed rank test). To examine in more detail the lack of 212 

population rate change during Us, we looked at the modulation of individual neuron rates normalized 213 

by the overall temporal average of each unit (Fig. 3E). We found that the change between U-onset and 214 

U-offset averaged across all our neurons (n=448 cells) was not significantly different from zero (Fig. 215 

3E right, mean±SD of the onset vs offset difference of normalized rates 0.057 ± 1.163, P=0.12, 216 

Wilcoxon signed rank test) but that the recovery during D periods was significant (Fig. 3E left; 217 

mean±SD -0.015 ± 0.087, P=0.0002, Wilcoxon signed rank test). Some individual neurons however 218 

did show a significant modulation between U-onset and U-offset, but the decrease found in a fraction 219 

of the neurons was compensated with a comparable increase in another fraction of neurons (Fig. 3E 220 

right). Thus, at the population level, spiking activity during U periods displayed a sustained time course 221 

with no significant traces of rate adaptation. 222 

 223 

Rate model for UP and DOWN dynamics 224 

To understand the network and cellular mechanisms underlying the generation of stochastic U-D 225 

dynamics, showing U-D serial correlations and sustained rates during U periods, we analyzed a 226 

computational rate model composed of an excitatory (E) population recurrently coupled with an 227 

inhibitory (I) population (Latham et al., 2000; Ozeki et al., 2009; Tsodyks et al., 1997; Wilson and 228 

Cowan, 1972). The excitatory-inhibitory (EI) network model described the dynamics of the mean 229 

instantaneous rates rE and rI of each population in the presence of fluctuating external inputs. In 230 

addition, the E population included an adaptation mechanism, an additive hyperpolarizing current a 231 

that grew linearly with the rate rE (Fig. 4A; see Methods). We did not consider adaptation in the 232 

inhibitory population for simplicity, and because inhibitory neurons show little or no spike-frequency 233 

adaptation when depolarized with injected current (McCormick et al., 1985). Our aim was to search for 234 

a regime in which, in the absence of adaptation and external input fluctuations, the network exhibited 235 

bistability between a quiescent (D) and a low-rate state (U) fixed point. Although bistability in low-236 

dimensional EI networks has been described since the seminal work of Wilson & Cowan (1972), 237 

previous models primarily sought to explain bistability between a low-rate and a high-rate state, and 238 

exploited the combination of expansive and contractive non-linearities produced by the transfer 239 

function (Amit and Brunel, 1997; Renart et al., 2007; Wilson and Cowan, 1972), short-term synaptic 240 

plasticity (Hansel and Mato, 2013; Mongillo et al., 2008) or the divisive effect inhibitory conductances 241 
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(Latham et al., 2000) (see Discussion). We found that bistability between D and U states can be 242 

robustly obtained solely using the expansive nonlinearity of the transfer function caused by the spiking 243 

threshold.  Given this, we choose the simplest possible transfer function with a threshold: a threshold-244 

linear function (Fig.4B, see Methods).  Our choice to only use an expansive threshold non-linearity 245 

constrained strongly the way in which the network could exhibit bistability as can be deduced by 246 

plotting the nullclines of the rates rE and rI (Fig. 4C): only when the I nullcline was shifted to the right  247 

 248 

 249 

 250 
 251 

Figure 4. Rate model for fluctuations and adaptation induced UP and DOWN dynamics. (A) Network composed of recurrently 252 

connected inhibitory (I, blue) and excitatory (E, red) populations, with E exhibiting rate adaptation a(t) and both populations 253 

receiving independent fluctuating external inputs. (B) Transfer functions for the E and I populations are threshold-linear with 254 

unequal thresholds θE < θI and unequal gains gE < gI. This marked asymmetry is at the origin of the bistability obtained in the 255 

network. (C) In the absence of adaptation, the phase plane of rates rE vs. rI shows  the E and I nullclines (red and blue, 256 

respectively) whose intersections determine two stable (U and D) and one unstable (un) fixed points. The separatrix (dashed 257 

line) divides the phase plane into the basins of attraction of the D and U stable points. (D, E) Schematics of fluctuations-258 

induced DU and UD transitions in the absence of adaptation (β=0) and adaptation-induced transitions in the absence of 259 

fluctuations (σ=0), respectively. Traces of rE(t), rI(t) and adaptation a(t) illustrate steady fluctuating rates during U periods 260 

when there is no adaptation (D), and a periodic alternation between U and D characterized by a strongly decaying I rate 261 

during Us when there is no fluctuations (E). Top insets show the network trajectories in the phase-plane taken at different 262 

time points (vertical dotted lines). Notice the downward (upward) displacement of the E-nullcline during U (D) periods (red 263 

arrows in E). Connectivity parameters: JEE = 5, JEI = 1, JIE = 10, JII = 0.5 s; Transfer function parameters: gE = 1, gI = 4 Hz, θE 264 

= 0, θI = 25 a.u.. 265 
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and had a larger slope than the E nullcline, the system exhibited two stable attractors (Eq. 20 in 266 

Methods). This configuration of the nullclines was readily obtained by setting the threshold and the  267 

gain of the I transfer function larger than those of the E transfer function (Fig. 4B), a distinctive feature 268 

previously reported when intracellularly characterizing the f - I curve of pyramidal and fast spiking 269 

interneurons in the absence of background synaptic activity (Cruikshank et al., 2007; Schiff and 270 

Reyes, 2012). This novel bistable regime yielded a quiescent D state, and arbitrarily low firing rates for 271 

both E and I populations during U states, depending on the values of the thresholds and the synaptic 272 

weights (Fig. 4C). This is remarkable as in most bistable network models the rate of the sustained 273 

activity state is constrained to be above certain lower bound (see Discussion). Moreover, in this 274 

bistable regime, the U state is an inhibition-stabilized state, a network dynamical condition in which the 275 

excitatory feedback is so strong that would alone be unstable, but is balanced with fast and strong 276 

inhibitory feedback to maintain the rates stable (Ozeki et al., 2009; Tsodyks et al., 1997) (see 277 

Methods). 278 

There are two ways in which transitions between U and D states can occur. On the one hand, 279 

transitions could be driven by external input fluctuations, which were modeled as a stochastic process 280 

with zero mean and short time constant (Fig. 4D). This fluctuating input reflected either afferents 281 

coming from other brain areas whose neuronal activity was stochastic and uncorrelated with the 282 

cortical circuit internal dynamics or the stochasticity of the spiking happening during U periods which 283 

was not captured by the dynamics of the rates (Holcman and Tsodyks, 2006; Lim and Rinzel, 2010). 284 

On the other hand, in the absence of fluctuations, state transitions could also occur solely driven by 285 

adaptation currents (Fig. 4E). Because the adaptation time constant was much longer than the time 286 

constants of the E and I rates, the dynamics of the rates rE(t) and rI(t) relaxing rapidly to their steady-287 

state can be decoupled from the slow changes in  a(t) (Latham et al., 2000; Rinzel and Lee, 1987). 288 

The network dynamics can be described in the phase plane (rE(t), rI(t)) with variations in a(t) causing a 289 

displacement of the E-nullcline. In particular, during U periods the build-up in adaptation produced a 290 

downward displacement of the E-nullcline (Fig. 4E). If adaptation strength β was sufficiently large the 291 

displacement increased until the U state was no longer a fixed point and the network transitioned to 292 

the only stable fixed point D. Recovery of adaptation during D periods shifted the E-nullcline upwards 293 

until the D state disappeared and there was a transition to the U state (Fig 4E). In this limit cycle 294 

regime the network exhibited an oscillatory behavior with a frequency close to the inverse of the 295 

adaptation recovery time constant. When the two types of transitions are combined, two types of 296 

stability in U and D states can be distinguished: (1) metastable, referred to a state that was stable to 297 

the dynamics of both the rates and the adaptation but could transition away due to input fluctuations; 298 

(2) quasi-stable, referred to a state that was stable for the fast rate dynamics but unstable for the slow 299 

adaptation dynamics, plus it was also susceptible to fluctuation-driven transitions. 300 

 301 
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UP and DOWN state statistics in the model 302 

To quantify the relative impact of activity fluctuations and adaptation in causing U-D transitions in the 303 

data, we compared the dynamics of the model for different adaptation strengths β and different values 304 

of the E effective threshold θE. The (θE, β) plane was divided into four regions with UD alternations, 305 

corresponding to the four combinations of metastability and quasi-stability (Fig. 5A). Since only 306 

metastable states tend to give exponentially distributed durations with CV~1, the large variability found 307 

in both U and D durations (Fig. 2B) constrained the model to the subregion where both states were 308 

metastable and UD and DU transitions were driven by fluctuations (red area in Fig. 5A). The existence 309 

of serial correlations between consecutive U and D in the data (Fig. 2C-D) discarded an adaptation-310 

free regime (β = 0), in which transitions were solely driven by fluctuations and the duration of each 311 

period was independent of previous durations (Fig. 5B right). Thus, we explored a regime with β > 0 312 

but still in the region where both states were metastable (Fig. 5B, green square) producing alternation 313 

dynamics (Fig. 5C top) with broad U and D duration distributions and relatively high CVs (Fig. 5D top). 314 

Moreover, the rates showed an autocorrelation function qualitatively similar to the data, with negative 315 

side-lobes but no clear traces of rhythmicity (Fig. 5E). Adaptation introduced correlations across 316 

consecutive periods (Fig. 5D bottom) because at the transition times the system kept a memory of the 317 

previous period in the adaptation value a(t). For adaptation to introduce substantial correlations, a(t) 318 

had to be variable at the transition times (Lim and Rinzel, 2010), a condition that required adaptation 319 

to be fast, to vary within one period, but not too fast to prevent reaching the equilibrium (Fig. 5C 320 

bottom trace). Thus, when a strong fluctuation caused a premature UD transition, i.e. a short 𝑈𝑘, 321 

adaptation had no time to build up and tended to be small, increasing the probability of a premature 322 

DU transition in the following D period, i.e. a short 𝐷𝑘+1. Conversely, a long 𝑈𝑘 recruited strong 323 

adaptation that required a long 𝐷𝑘+1 to recover (see highlighted examples in Fig. 5C). In this regime, 324 

changes in a(t) alone did not cause transitions but did modulate the probability that an external 325 

fluctuation would cause a transition (Moreno-Bote et al., 2007). Altogether, this analysis suggests that 326 

the observed U-D dynamics occurred in a regime with strong random fluctuations, that these 327 

fluctuations were necessary to cause the transitions, and that adaptation modulated the timing of the 328 

transitions and consequently introduced correlations between the duration of consecutive periods. 329 

 330 

Dynamics of E and I populations during UP and DOWN states: model and data 331 

According to the model, adaptation currents in the E population can parsimoniously account for the U-332 

D serial correlations but this is in apparent contradiction with the fact that the population rate R(t) in the 333 

data did not decrease significantly during U periods (Fig. 3C-E). To reconcile these two seemingly 334 

contradictory observations we used the model with the parameters that matched the data’s U and D 335 

statistics (Fig. 5C-E) to characterize the time course of the rates rE(t) and rI(t) averaged across DU and  336 

 337 
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 338 

 339 

 340 
 341 

Figure 5. Fluctuations and weak adaptation are required in the model to explain the U-D statistics of the data. (A) Different 342 

dynamical regimes of the model as a function of the adaptation strength β and the effective threshold θE. Each U and D state 343 

is either meta-stable or quasi-stable depending on whether the transitions to the opposite state can be caused by fluctuations 344 

or adaptation+fluctuations, respectively (see arrow code in top inset). There are five region types: regions with a single stable 345 

state and no transitions (dark violet and dark orange), a region with both U and D meta-stable (light red), one with both U and 346 

D quasi-stable (white) and mixed regions with a meta-stable and a quasi-stable state (light orange and light violet). (B) 347 

Statistics of U (top) and D (bottom) periods obtained from numerical simulations: mean durations (left), duration CV (center) 348 

and of cross-correlation CC of consecutive periods (right) as a function of β and θE. The region analyzed is marked in A (gray 349 

rectangle). Fluctuations were σ = 3.5. White areas indicate very low transition rate. (C-E) Model example quantitatively 350 

reproducing some U-D statistics of the data. The β and θE used are marked in B (green square; θE = 4.8 a.u., β = 0.7 Hz
-1

). 351 

Example traces of rE(t), rI(t), and a(t) show U-D transitions with irregular durations (C). Black and gray filled dots indicate the 352 

adaptation values at the UD and DU transition times, respectively. The corresponding histograms illustrate the variability of 353 

these values (C bottom right). (D) Top: Distributions of U and D period durations. Bottom: Cross-correlograms of D and U 354 

periods for different lag values (compare with Fig. 2C). Grey dashed lines show global error bands and magenta dashed line 355 

shows mean CC of shuffles. (E) Autocorrelogram of rE (t) shows no traces of rhythmicity.  356 
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UD transitions. Interestingly, the average rE(t) at the beginning and at the end of U periods did not 357 

show much difference whereas the average rI(t) showed a larger decrease over the U period (Fig. 6A). 358 

Thus, although only the E and not the I population included intrinsic adaptation mechanisms, it was 359 

rI(t) the one that exhibited the most pronounced decay during U periods. This was a direct 360 

consequence of the specific conditions that gave rise to bistability in our model: the difference in 361 

thresholds, i.e. θI > θE, and the fact that the I-nullcline has a higher slope than the E-nullcline  (Eq. 21 362 

in Methods). These features imposed that as adaptation built up during U periods, the downward 363 

displacement of the E-nullcline caused a greater decrease in rI(t) than in rE(t) (compare “decay” colored 364 

bands in Fig. 6B). With this arrangement the drop in rE(t) could be made arbitrarily small by increasing 365 

the slope of the I-nullcline (Fig. 6B). During D periods the average rE(t) did show a substantial increase 366 

due to the recovery of adaptation, whereas the rI(t) did not. This was because in the D state, the 367 

quiescent network behaved as isolated neurons reflecting the dynamics of intrinsic adaptation which 368 

was only present on E cells. In sum, if the majority of the neurons that we recorded experimentally 369 

were excitatory, the model could explain why adaptation currents did not cause a significant decrease 370 

in the average rate during U periods (Fig. 3C-D). The model in addition predicts that the rate of 371 

inhibitory neurons should exhibit a noticeable decrease during U periods. 372 

Motivated by this prediction, we investigated the dynamics of the rates of excitatory and 373 

inhibitory neurons during U and D periods in the experimental data. Based on spike waveforms, 374 

isolated units from n=5 experiments were classified into putative interneurons (I) and putative 375 

excitatory neurons (E), following previously described procedures (Barthó et al., 2004). The average 376 

rate for E and I populations (RE(t) and RI(t), respectively) displayed similar profiles across UD 377 

alternations, although higher values were observed for I cells during Us (see example experiment in 378 

Fig. 6C). To assess the modulation of the rates during U periods, we looked at the normalized 379 

individual rates of all the E and I neurons (n=330 and 21, respectively).  As predicted by the model 380 

(Fig. 6B), I cells displayed a significant rate decay during U periods that was not observed in E cells 381 

(Fig. 6E; mixed-effects ANOVA with factors neuron type (E/I), onset/offset and neuron identity and 382 

experiment as random factors: interaction neuron type x onset/offset F(1,349)=6.3, p=0.013). During D 383 

periods, E cells also showed a significant increase in rate (Wilcoxon signed rank test P=0.0092), just 384 

like that observed in the whole cell population, whereas no rate change was found in I cells (not 385 

shown). Although these changes observed during D periods were also predicted by the model, 386 

properly testing the significance of this interaction would require a larger data set with more I cells. The 387 

validation of the prediction on the counter-intuitive emergent dynamics of E and I rates during U 388 

periods strongly suggests that the mechanism dissected by the model drives the spontaneous 389 

dynamics of the cortical circuitry under urethane anesthesia.     390 

 391 
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 393 

Figure 6. Excitatory and inhibitory populations during UP and DOWN alternation dynamics. (A) Model average population 394 

rates rE and rI and adaptation a as a function of time, aligned at DU and UD transitions (same simulation parameters as in Fig 395 

5C). (B) Model predicts a pronounced decay for rI  (cyan bar) with minimal decay of rE (pink bar) throughout UP periods, 396 

despite adaptation is exclusively included in E cells (Fig 4A). (C) Example experiment averaged putative excitatory and 397 

inhibitory population rates (R
E
(τ) and R

I
(τ), respectively) aligned at DU and UD transitions. (D) Normalized firing rates from 398 

individual neurons (see methods) pooled from different experiments (n=5; 330 putative E cells and 21 putative I cells active 399 

during U) comparing the activity from putative E and I cells during U onset and offset periods (gray shaded areas from panel 400 

C), reveals a significant decrease of I cells during U periods. 401 

  402 
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Discussion 403 

 404 

Using cortical population recordings we have shown that UP and DOWN period durations are 405 

irregular, show positive serial correlation, but there is no significant decrease of population rate during 406 

UP periods. These findings seem inconsistent with each other, as some support and others challenge 407 

the idea that UP-DOWN dynamics are caused by cell or synaptic adaptive mechanisms. Using a 408 

standard EI rate model network, we have proposed a novel bistable regime based only on the 409 

expansive threshold non-linearity of the transfer function and on a reported asymmetry between E and 410 

I spiking thresholds. While fluctuations produce transitions between the quiescent state (D) and the 411 

inhibition-stabilized state of arbitrarily low rate (U), adaptation acting on the E population only 412 

facilitates the effect of fluctuations causing the transitions. Paradoxically, because of the asymmetry 413 

between E and I thresholds, adaptation causes a marginal decay of E rates but a significant decay of I 414 

rates during UP periods. This counterintuitive prediction, specific of our model,  was validated in the 415 

experimental data.  416 

Adaptive processes constitute the mechanistic hallmark for cortical UP and DOWN dynamics 417 

generation (Contreras et al., 1996; Sanchez-Vives and McCormick, 2000; Timofeev et al., 2000). This 418 

principle has been used in several computational models, by implementing synaptic short-term 419 

depression (Bazhenov et al., 2002; Benita et al., 2012; Hill and Tononi, 2005; Holcman and Tsodyks, 420 

2006; Mejias et al., 2010), or activity-dependent adaptation currents (Compte et al., 2003b; Destexhe, 421 

2009; Latham et al., 2000; Mattia and Sanchez-Vives, 2012).  422 

Consistent with an adaptive process generating the dynamics, UP and DOWN states observed in vitro 423 

display clear rhythmicity with Gaussian shaped UP and DOWN duration distributions (Mattia and 424 

Sanchez-Vives, 2012). An in vivo study using ketamine anesthesia in mice reported a reduced UP and 425 

DOWN duration variability across multiple cortical areas with CVs around 0.2-0.4 (Ruiz-Mejias et al., 426 

2011). Moreover, a comparison of the UP and DOWN dynamics in the cat observed under ketamine 427 

anesthesia and those found in slow wave sleep (SWS) showed that the alternations were more 428 

rhythmic under ketamine (Chauvette et al., 2011). In contrast, our data displayed large variability 429 

(mean CV(U)~CV(D)≃0.7) and skewed distributions of UP and DOWN period durations (Fig. 2B), in 430 

agreement with previous studies using urethane anesthesia  (Dao Duc et al., 2015; Stern et al., 1997). 431 

Although a direct comparison between the UP-DOWN dynamics under urethane anesthesia and 432 

during natural sleep has not been made, urethane seems to mimic sleep in several aspects. First, it 433 

induces spontaneous alternations between synchronized and desynchronized states (Curto et al., 434 

2009; Steriade et al., 1994), resembling the alternations between SWS and REM sleep (Clement et 435 

al., 2008; Whitten et al., 2009). Second, the irregular UP-DOWN transitions observed under urethane 436 

anesthesia resemble the variability observed in SWS (Ji and Wilson, 2007; Johnson et al., 2010). 437 

Preliminary analysis of rat and mouse prefrontal cortex during SWS with the same population-based 438 

U-D detection methods used here (Methods) showed that U periods had comparable mean length but 439 
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were more irregular (CV~1) than under urethane anesthesia (Fig. 1B) whereas D periods were shorter 440 

(mean ~150 ms) and slightly more regular (CV~0.5) (unpublished observations). Such an asymmetry 441 

in the duration and irregularity of U-D periods can be easily reproduced in our model by choosing 442 

parameters in the mixed region where U is meta-stable and D is quasi-stable (Fig. 5A light orange).  443 

In addition, we found non-zero correlations between consecutive D-U and U-D period durations, a 444 

feature that was not observed previously in similar experimental conditions (Stern et al., 1997). 445 

Reduced statistical power (~30 U-D/D-U pairs were considered by (Stern et al., 1997) versus a range 446 

of 462-758 pairs in our n=7 experiments) and different U-D detection methods (intracellular membrane 447 

potential thresholding) could be the reasons for this discrepancy. 448 

Bistability in cortical networks at low firing rates 449 

Bistability in a dynamical system refers to the coexistence of two possible steady states between 450 

which the system can alternate (Angeli et al., 2004). This principle has been used to interpret UP and 451 

DOWN states as two attractors of cortical circuits (Cossart et al., 2003; Shu et al., 2003) and it seems 452 

to underlie higher cognitive functions (Compte, 2006; Durstewitz, 2009). In particular, multi-stability in 453 

recurrent cortical networks has been postulated to underlie the persistent activity observed during the 454 

delay period in working memory tasks. Extensive theoretical work has shown that based on the 455 

change in curvature of the neuronal f - I curve, i.e. from expansive to contractive, recurrent network 456 

models generate two types of co-existing attractors: a spontaneous state with arbitrarily low rates 457 

(falling in the expansive part of the f - I curve) and a sustained activity attractor where the reverberant 458 

activity of a subpopulation of neurons could be maintained at a rate on the contractive part of the f - I 459 

curve (Amit and Brunel, 1997; Brunel, 2000a; Wang, 2001). Thus, unless additional mechanisms are 460 

included, e.g. synaptic short-term depression and facilitation (Barbieri and Brunel, 2007; Hansel and 461 

Mato, 2013; Mongillo et al., 2012) or fined-tuned EI balance (Renart et al., 2007), the rate of persistent 462 

states is lower-bounded by the rate where the f - I curve changes from convex to concave (~10-20 463 

spikes/s). Moreover, because of this the sustained attractor operates in an unbalanced supra-464 

threshold regime where spike trains tend to be more regular (i.e. lower inter-spike-interval CV, 465 

(Barbieri and Brunel, 2007; Hansel and Mato, 2013; Renart et al., 2007)) than those observed in the 466 

data (Compte et al., 2003b).   467 

UP and DOWN states represent in contrast transitions between very different levels of activity: 468 

a quiescent state and a very low rate state. Given that we recorded neurons extracellularly, our 469 

estimate of the mean firing rate during UP periods (3.7 spikes/s) is most likely an overestimation. 470 

Whole cell intracellular recordings have reported rates in the range 1-2 spikes/s (Constantinople and 471 

Bruno, 2011), 0.4 spikes/s in Pyramidal L2/3 of the somatosensory cortex of awake mice (Gentet et 472 

al., 2012), 0.1 spikes/s Pyramidal L2/3 cells in somatosensory cortex during UP periods in 473 

anesthetized rats (Waters and Helmchen, 2006), or 0.1-0.3 spikes/s in V1 of awake mice (Haider et 474 

al., 2013). Juxtacellular recordings have found values near 4-5 spikes/s (Massi et al., 2012; Sakata 475 
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and Harris, 2009) whereas Calcium imaging experiments report spontaneous rates <0.1 spikes/s (Kerr 476 

et al 2005). Despite UP rates being so low, rate models have commonly used the change in curvature 477 

of the transfer function to generate UP and DOWN dynamics (Curto et al., 2009; Lim and Rinzel, 2010; 478 

Mattia and Sanchez-Vives, 2012; Mochol et al., 2015). It is also for this reason that most spiking 479 

network models generating UP and DOWN transitions exhibit unrealistically high rates during U 480 

periods (in the range 10-40 spikes/s) with relatively regular firing (Bazhenov et al., 2002; Compte et 481 

al., 2003b; Destexhe, 2009; Hill and Tononi, 2005). 482 

An alternative mechanism to generate bistability between UP and DOWN states has been the 483 

shunting or divisive effect of inhibitory synaptic conductances, a mechanism that can produce non-484 

monotonic transfer functions and yield bistability between a zero rate state and a state of very low rate 485 

(Kumar et al., 2008; Latham et al., 2000; Vogels and Abbott, 2005).  Latham and colleagues (Latham 486 

et al., 2000) addressed the question of how to obtain a state of low firing rates (i.e. <1 spikes/s) in a 487 

recurrent EI network and concluded that there were two alternative mechanisms: the most robust was 488 

to have a single attractor that relied on the excitatory drive from endogenously active neurons in the 489 

network or from external inputs. In fact, excitatory external inputs have been widely used to model low 490 

rate tonic spontaneous activity (i.e. no DOWN states) in EI networks of current-based spiking units 491 

(Amit and Brunel, 1997; Brunel, 2000b; Vogels and Abbott, 2005). Alternatively, in the absence of 492 

endogenous or external drive, a silent attractor appears and a second attractor can emerge at a low 493 

rate over a limited range of parameters if inhibition exerts a strong divisive influence on the excitatory 494 

transfer function (Latham et al., 2000). Based on this, a spiking network of conductance-based point 495 

neurons with no external/endogeneous activity could alternate between UP (0.2 spikes/s) and DOWN 496 

(0 spikes/s) periods via spike frequency adaptation currents. 497 

Our model proposes a more parsimonious mechanism underlying UP-DOWN bistability: the 498 

ubiquitous expansive threshold non-linearity of the transfer function plus the asymmetry in threshold 499 

(θI > θE) and gain (larger for I than E cells). We used a threshold-linear function for simplicity but other 500 

more realistic choices (e.g. threshold-quadratic) produced the same qualitative results. The threshold 501 

asymmetry is supported by in vitro patch clamp experiments revealing that firing threshold of inhibitory 502 

fast-spiking neurons, measured as the lowest injected current causing spike firing, is higher than that 503 

of excitatory regular-spiking neurons (Cruikshank et al., 2007; Schiff and Reyes, 2012). Thus, 504 

inhibition in this model becomes active when external inputs onto E cells during the DOWN state are 505 

strong enough to push the system above the separatrix and ignite the UP state. Once recruited, 506 

inhibition is necessary to stabilize the activity because, in its absence, the positive feedback would 507 

make the UP state unstable. These are the conditions that define an Inhibitory Stabilized Network 508 

(Ozeki et al., 2009), which in large networks is referred to as the balance state (Amit and Brunel, 1997; 509 

Renart et al., 2010; van Vreeswijk and Sompolinsky, 1998). Thus, according to our model, cortical 510 

circuits alternate between a quiescent state with no activity and a state of balanced irregular and 511 

asynchronous low rate activity (Renart et al., 2010). It is for this reason that in the rodent, mean pair-512 
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wise spiking correlations during UP periods are negligible (Renart et al., 2010; Stern et al., 1998) and 513 

that the rate of coordinated transitions to the DOWN state predicts the magnitude of correlations 514 

across different brain states (Mochol et al., 2015).  515 

A direct implication of the bistability obtained in our model was that intrinsic adaptation of excitatory 516 

neurons (McCormick et al., 1985) did not cause a noticeable decrease in rE during the UP periods but 517 

instead produced a significant decay in the inhibitory rate rI. We confirmed this prediction in our data 518 

(Fig. 6C-D). Interestingly, the same effect was also observed in ketamine anesthetized animals from 519 

both extracellular (Luczak and Barthó, 2012) and intracellular recordings resolving synaptic 520 

conductances (Haider et al., 2006). During DOWN periods in contrast, the network is not in a balanced 521 

state and recovery from adaptation caused a significant increase in the rate of putative excitatory 522 

neurons, as predicted by the model. In sum, our results present the first EI network model with linearly 523 

summed inputs exhibiting bistability between a quiescent state and a balanced state with arbitrary low 524 

rate. 525 

 526 

The role and origin of fluctuations in UP-DOWN switching 527 

Our findings stress the role of input fluctuations inducing transitions between the UP and DOWN 528 

network attractors because noise-induced alternations generate periods with large variability as found 529 

in the data (Fig. 2A-B). Adaptation was also necessary to introduce positive serial correlations and to 530 

reproduce the observed gamma-like UP-DOWN distributions (compare Fig. 2A-B and Supp. Fig 1 with 531 

Fig. 5D) because it caused a soft refractory period after each transition decreasing the duration CVs 532 

below one (Fig. 2B). In our network model fluctuations were simply introduced by a time-varying 533 

Gaussian input so that in both DU and UD transitions the noise had the same external origin. In 534 

cortical circuits however these two transitions are very different: while in UP-DOWN transitions the 535 

fluctuations can originate in the stochasticity of the spiking activity during the UP period, DU transitions 536 

depend on either local circuit mechanisms that do not need spiking activity or on external inputs to 537 

escape from a quiescent state. Previous bistable spiking network models have used the stochasticity 538 

of the recurrent spiking activity to cause transitions from a balanced regime into a quiescent state (i.e. 539 

UP-to-DOWN) (Kumar et al., 2008; Latham et al., 2000). Other models have proposed that synaptic 540 

noise (e.g. spontaneous miniatures) could cause the transitions from the quiescent state (i.e. DOWN 541 

to UP) (Bazhenov et al., 2002; Holcman and Tsodyks, 2006; Mejias et al., 2010). Preliminary analysis 542 

using a spiking EI network to produce UP-DOWN alternations shows that to cause noise-driven 543 

transitions from a quiescent state synaptic inputs into each neuron need to be correlated and non-544 

Gaussian (not shown). Gaussian uncorrelated inputs must generate an unrealistically high DOWN 545 

firing rate in order to yield a measurable escape probability to the UP state (because escape requires 546 

the synchronous occurrence of multiple independent neuronal discharges). That is why synaptic noise, 547 

which is in principle independent across synapses, could not account for DOWN-to-UP transitions 548 
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having variable DOWN duration and near zero firing, e.g. CV(D)~0.7 (Fig. 2B) and rD ~ 0.018 spikes/s 549 

(Supp. Fig. 2B). This reasoning favors instead synchronous external input kicks as the inducers of 550 

DOWN-to-UP transitions. Evidence for such temporally sparse synchronous inputs comes from 551 

intracellular membrane potential recordings under some types of anesthesia (penthobarbital or 552 

halothane) showing «presynaptic inputs [...] organized into quiescent periods punctuated by brief 553 

highly synchronous volleys, or “bumps”» (DeWeese and Zador, 2006). We postulate that these 554 

spontaneous bumps (DeWeese and Zador, 2006; Tan et al., 2013; Taub et al., 2013) (1) are caused 555 

by synchronous external inputs impinging on the neocortex, possibly from thalamocortical neurons 556 

(Crunelli and Hughes, 2010), since spontaneous bumps resemble sensory evoked responses 557 

(DeWeese and Zador, 2006) or from hippocampal Sharp Wave Ripples (Battaglia et al., 2004); (2) 558 

their timing resembles a Poisson stochastic process rather than a rhythmic input (Tan et al., 2013); (3) 559 

they lie at the origin of the DOWN-to-UP transitions that we observe.  Despite the fact that UP-DOWN-560 

like activity can emerge in cortical slices in vitro (Cossart et al., 2003; Fanselow and Connors, 2010; 561 

Mann et al., 2009; Sanchez-Vives and McCormick, 2000) the intact brain can generate more complex 562 

UP-DOWN patterns than the isolated cortex, with subcortical activity in many areas correlating with 563 

transition times (Battaglia et al., 2004; Crunelli et al., 2015; Crunelli and Hughes, 2010; David et al., 564 

2013; Lewis et al., 2015; Slézia et al., 2011; Ushimaru et al., 2012). Further analysis using detailed 565 

spiking models will be necessary to characterize the detailed conditions under which external inputs 566 

can trigger an UP state, such as the number of cortical spikes that must be evoked and their degree of 567 

synchrony, the role of inhomogeneities in the connectivity generating trigger “hot spots” (Tsodyks et 568 

al., 2000) and stereotyped onset patterns (Luczak et al., 2009; Roxin et al., 2008).  569 

These arguments bring forward the idea that DOWN to UP transitions are, at least in part, 570 

caused by punctuated external synchronous inputs (Battaglia et al., 2004; Johnson et al., 2010), with 571 

slow intrinsic adaptation mechanisms contributing to modulate the probability that these events trigger 572 

a transition (Moreno-Bote et al., 2007). This complements the idea that UP-DOWN dynamics reflect an 573 

endogenous oscillation of the neocortex and connects to the role of UP-DOWN states in memory 574 

consolidation: because in the active attractor (UP) the stationary activity is irregular and asynchronous 575 

(Renart et al 2010), the existence of a silent attractor enables synchronous transient dynamics in the 576 

form of DOWN to UP transitions. These transients generate precise temporal relations among neurons 577 

in a cortical circuit (Luczak et al 2007), which can cause synaptic plasticity underlying learning and 578 

memory (Peyrache et al 2009). We speculate that, while the transient dynamics are triggered by 579 

external inputs, adaptation, by introducing refractoriness in this process, parses transition events 580 

preventing the temporal overlap of information packets (Luczak et al., 2015). 581 

  582 
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Supplementary figures 583 

 584 

 585 

 586 

 587 

 588 

 589 
 590 
Supplementary Figure 1. Distributions of U (top row) and D (bottom row) period durations for the seven experiments 591 

(columns). Gamma fit for each distribution is shown in black. The shape a and scale b parameters of the Gamma fit are 592 

displayed at the bottom of each panel. 95% CI of the fit displayed in dashed line. 593 

 594 
 595 
 596 
 597 
 598 
 599 
 600 

 601 
 602 
Supplementary Figure 2. Spiking statistics of individual units during U and D periods. (A) Scatter plot of average firing rate 603 

during U periods versus firing rate during D periods (RU vs RD), from all the isolated cells from the different experiments (n=7 604 

animals; 448 cells). Marginal distribution of firing rates for RU in orange and RD in violet. (B) Statistics of mean single cell 605 

firing rates during D (left boxplot) and U (right boxplot) periods for different experiments. (C) Statistics of mean correlation 606 

between firing rate during D and U periods for different experiments. 607 

 608 
  609 
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Materials and methods 610 

Experimental procedures.  611 

Adult, male Sprague-Dawley rats (250-400g) were anesthetized with urethane (1.5 g/kg) and 612 

supplemental doses of 0.15 g/kg were given when necessary after several hours since the initial dose. 613 

We also used an initial dose of Ketamine (15-25 mg/kg) before the surgery to induce the anesthetized 614 

state quickly. We then performed a craniotomy over the somatosensory cortex, whose position was 615 

determined using stereotaxic coordinates. Next 32 or 64 channels silicon microelectrodes 616 

(Neuronexus technologies, Ann Arbor MI) were slowly inserted into in deep layers of the cortex (depth 617 

600-1200 μm; lowering speed ~ 1mm/hour). Probes had either eight shanks each with eight staggered 618 

recording sites per shank (model Buzsaki64-A64), or four shanks with two tetrode configurations in 619 

each (model A4x2-tet-5mm-150-200-312-A32). Neuronal signals were high-pass filtered (1Hz) and 620 

amplified (1,000X) using a 64-channel amplifier (Sensorium Inc., Charlotte, VT), recorded at 20kHz 621 

sampling rate with 16-bit resolution using a PC-based data acquisition system (United Electronic 622 

Industries, Canton, MA) and custom written software (Matlab Data Acquisition Toolbox, MathWorks) 623 

and stored on disk for further analysis. 624 

 625 

Data Analysis.  626 

Spike sorting was performed using previously described methods (Harris et al., 2000). Briefly, units 627 

were isolated by a semiautomatic algorithm (http://klustakwik.sourceforge.net) followed by manual 628 

clustering procedures (http://klusters.sourceforge.net). We defined the Population activity as the 629 

merge of the spike trains from all the well isolated units. 630 

 631 

Putative E/I neuronal classification. Isolated units were classified into narrow-spiking (I) and broad-632 

spiking (E) cells based on three features extracted from their mean spike waveforms: spike width, 633 

asymmetry and through-to-peak distance. The two classes were grouped in the space of features by 634 

k-means clustering (Barthó et al., 2004; Csicsvari et al., 1998; Sirota et al., 2008). 635 

 636 

Synchronized state assessment. We classified the brain state based on the silence density defined 637 

as the fraction of 20 ms bins with zero spikes in the Population activity in 10 s windows (Mochol et al., 638 

2015; Renart et al., 2010). Epochs with consecutive windows of silence density above 0.4, standard 639 

deviation below 0.1 and longer than 5 min, were considered as sustained synchronized brain state and 640 

were used for further analysis (synchronized states durations mean±SD: 494±58 s, n=7 epochs). 641 

 642 

UP & DOWN transitions detection. UP-DOWN phases have been commonly defined from 643 

intracellular recordings by detecting the crossing times of a heuristic threshold set on the membrane 644 
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potential of individual neurons (Mukovski et al., 2007; Stern et al., 1997), or from local field potential 645 

signals (Compte et al., 2008; Mukovski et al., 2007) or combined together with the information 646 

provided by multi-unit activity (Haider et al., 2006; Hasenstaub et al., 2007). Defining UP-DOWN 647 

phases from single-unit recordings is more challenging because individual neurons fire at low rates 648 

discharging very few action potentials on each UP phase (Constantinople and Bruno, 2011; Gentet et 649 

al., 2012; Waters and Helmchen, 2006). However, pooling the spiking activity of many neurons into a 650 

population spike train reveals the presence of co-fluctuations in the firing activity of the individual 651 

neurons and allows accurate detection of UP-DOWN phases (Luczak et al., 2007; Saleem et al., 652 

2010). We used a discrete-time hidden semi-Markov probabilistic model (HMM) to infer the discrete 653 

two-state process that most likely generated the population activity (Chen et al., 2009). Thus, the 654 

population activity spike count was considered as a single stochastic point processes whose rate was 655 

modulated by the discrete hidden state and the firing history of the ensemble of neurons recorded. In 656 

order to estimate the hidden state at each time, the method used the expectation maximization (EM) 657 

algorithm for the estimation of the parameters from the statistical model (Chen et al., 2009). Although 658 

the discrete-time HMM provides a reasonable state estimate with a rather fast computing speed, the 659 

method is restricted to locate the UP and DOWN transition with a time resolution given by the bin size 660 

(T ) for the population activity spike count (10 ms in our case). The initial parameters used for the 661 

detection were: Bin-size T = 10 ms, number of history bins J=2 (sets the length of the memory, i.e. J=0 662 

is a pure Markov process); history-dependence weight β = 0.01 (i.e. β=0 for a pure Markov process); 663 

transition matrix PDU=PUD=0.9, PDD=PUU=0.1; rate during UP periods α = 3, and rate difference during 664 

DOWN and UP periods μ = -2 (Chen et al., 2009). The algorithm gives an estimate of the state of the 665 

network on each bin T. Adjacent bins in the same state are then merged to obtain the series of 666 

putative UP (U) and DOWN (D) periods. The series is defined by the onset {𝑡𝑖
𝑜𝑛}𝑖=1

𝑀  and offset 667 

{𝑡𝑖
 𝑜𝑓𝑓

}𝑖=1
𝑀 times of the Us, where M is the total number of Us, that determine the i-th UP and DOWN 668 

period durations as (see Fig. 1C): 669 

𝑈𝑖 = 𝑡𝑖
 𝑜𝑓𝑓

− 𝑡𝑖
 𝑜𝑛     (1) 670 

𝐷𝑖 = 𝑡𝑖
 𝑜𝑛 − 𝑡𝑖−1

 𝑜𝑓𝑓
   671 

   672 

Statistics of UP & DOWN durations. The mean and the coefficient of variation of Ui were defined as 673 

< 𝑈𝑖 >=
1

𝑀
 ∑  𝑀

𝑖=1 𝑈𝑖  ,   𝐶𝑉(𝑈𝑖) =
√𝑉𝑎𝑟(𝑈𝑖)

<𝑈𝑖>
   (2) 674 

where: 675 

𝑉𝑎𝑟(𝑈𝑖) = (
1

𝑀
∑  𝑀

𝑖=1 𝑈𝑖
 2) − < 𝑈𝑖 >2    (3) 676 

and equivalently for < 𝐷𝑖 > and 𝐶𝑉(𝐷𝑖). We controlled whether variability in Ui was produced by slow 677 

drifts by computing CV2 a measure of variability not contaminated by non-stationarities of the data 678 

(Compte et al., 2003a; Holt et al., 1996). 679 
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The serial correlation between 𝑈𝑖 and 𝐷𝑖+𝑘, with k setting the lag in the U-D series, e.g. k =0 (k = 1) 680 

refers to the immediately previous (consecutive) DOWN period, was quantified with the Pearson 681 

correlation coefficient defined as: 682 

𝐶𝑜𝑟𝑟(𝑈𝑖 , 𝐷𝑖+𝑘) =
𝐶𝑜𝑣(𝑈𝑖,𝐷𝑖+𝑘)

√𝑉𝑎𝑟(𝑈𝑖) 𝑉𝑎𝑟(𝐷𝑖)
    (4) 683 

where the covariance was defined as: 684 

 𝐶𝑜𝑣(𝑈𝑖 , 𝐷𝑖+𝑘) =
1

𝑀−|𝑘|
∑  𝑀−𝑘

𝑖=1 (𝑈𝑖−< 𝑈𝑖 >)(𝐷𝑖+𝑘−< 𝐷𝑖 >)  (5) 685 

 686 

Values of 𝑈𝑖 and 𝐷𝑖differing more than 3 standard deviations from the mean were discarded from the 687 

correlation analysis (circles in Fig 2C). To remove correlations between 𝑈𝑖 and 𝐷𝑖produced by slow 688 

drifts in the durations we used resampling methods developed to remove slow correlations among 689 

spike trains (Amarasingham et al., 2012). We generated the 𝑙-𝑡ℎ shuffled series of U periods {𝑢𝑖
 𝑙̂}𝑖=1

𝑀  690 

by randomly shuffling the order of the Us in the original series {𝑈𝑖}𝑖=1
𝑀  within intervals of 30 s. The 691 

same was done to define the shuffled series of D periods {𝑑𝑖
 𝑙̂}𝑖=1

𝑀 . The two shuffled series lack any 692 

correlation except that introduced by co-variations in the statistics with a time-scale slower than 30 s. 693 

We generated L=1000 independent shuffled series{𝑢𝑖
 𝑙̂}𝑖=1

𝑀 and{𝑑𝑖
 𝑙̂}𝑖=1

𝑀  with 𝑙=1,2,...L, computed the 694 

covariance 𝐶𝑜𝑣(𝑢𝑖
 𝑙 , 𝑑𝑖+𝑘

 𝑙 ) for each and the averaged over the ensemble 695 

𝐶𝑜𝑣(𝑢𝑖, 𝑑𝑖+𝑘) =< 𝐶𝑜𝑣(𝑢𝑖
 𝑙 , 𝑑𝑖+𝑘

 𝑙 ) >𝑙. Finally, the correlation due to co-fluctuations of Us and Ds faster 696 

than 30 s was computed by subtracting 𝐶𝑜𝑣(𝑢𝑖, 𝑑𝑖+𝑘) from𝐶𝑜𝑣(𝑈𝑖 , 𝐷𝑖+𝑘) in Eq. 5. Significance of the 697 

correlation function 𝐶𝑜𝑟𝑟(𝑈𝑖 , 𝐷𝑖+𝑘) was assessed by computing a point-wise confidence interval from a 698 

distribution of L correlograms 𝐶𝑜𝑟𝑟(𝑢𝑖
 𝑙 , 𝑑𝑖+𝑘

 𝑙 ), for l=1...L (L=10000), computed from each shuffled 699 

series the same way as for the original series (gray dashed bands in Fig 2C). To take into account 700 

multiple comparisons introduced by the range in lag k, we obtained global confidence intervals (black 701 

dashed bands in Fig 2C) by finding the P of the pointwise intervals for which only a fraction 0.05 of the 702 

correlograms 𝐶𝑜𝑟𝑟(𝑢𝑖
 𝑙 , 𝑑𝑖+𝑘

 𝑙 ) crosses the interval bands at any lag k= -7...7 (see (Fujisawa et al., 2008) 703 

for details). 704 

 705 

Spike count statistics. We divided the time in bins of dt=1 ms and defined the spike train of the j-th 706 

neuron as:   707 

𝑠𝑗(𝑡) = {
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑠𝑝𝑖𝑘𝑒 𝑖𝑛 (𝑡, 𝑡 + 𝑑𝑡)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (6) 708 

    709 

The spike count of the j-th neuron over the time window (t-T/2, t+T/2) was obtained from 710 

𝑛𝑗(𝑡; 𝑇) = (𝐾 ∗ 𝑠𝑗)(𝑡)     (7) 711 

where ∗ refers to a discrete convolution and 𝐾(𝑡) is a square kernel which equals one in (-T/2,T/2) and 712 

zero otherwise. 713 

 714 
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The instantaneous rate of the j-th neuron was defined as: 715 

𝑟𝑖(𝑡) =
𝑛𝑖(𝑡;𝑇)

𝑇
      (8) 716 

and therefore the instantaneous population rate was defined as: 717 

𝑅(𝑡) =
∑  𝑁

𝑗=1 𝑛𝑗(𝑡;𝑇)

𝑇 𝑁
     (9) 718 

where N is the total number of well isolated and simultaneously recorded neurons. We have dropped 719 

the dependence on 𝑇 from 𝑟𝑖(𝑡) and 𝑅(𝑡) to ease the notation. We also defined the instantaneous E-720 

population and I-populations rates, 𝑅𝐸(𝑡) and 𝑅𝐼(𝑡) respectively, as those computed using cells in the 721 

E and I subpopulations separately. 722 

 723 

Population firing statistics during Us and Ds. The instantaneous population rate averaged across 724 

Us and Ds and aligned at the D to U transition (DU) was defined as: 725 

𝑅𝐷𝑈(𝜏) =
1

𝑚(𝑡)
∑ 𝑅(𝑡𝑖

 𝑜𝑛 + 𝜏)𝑖𝜖{𝜏<𝑈𝑖}       , for 𝜏 > 0   (10) 726 

where 𝜏 is the time to the DU transition. Because Us had different durations, for each 𝜏 > 0, the sum 727 

only included the onset time 𝑡𝑖
 𝑜𝑛 if the subsequent period was longer than 𝜏 < 𝑈𝑖. By doing this we 728 

remove the trivial decay we would observe in 𝑅𝐷𝑈(𝜏) as 𝜏increases due to the increasing probability to 729 

transition into a consecutive period 𝐷𝑖+1. For 𝜏 < 0, 𝑅𝐷𝑈(𝜏) reflecting the population averaged rate 730 

during the Ds, is obtained as in Eq. 10 but including the times 𝑡𝑖
 𝑜𝑛 in the sum if the previous D was 731 

longer than |𝜏| < 𝐷𝑖−1. Similarly, the average population rate aligned at the offset 𝑅𝑈𝐷(𝜏) was defined 732 

equivalently by replacing {𝑡𝑖
 𝑜𝑛}𝑖=1

𝑀  by the series of offset times {𝑡𝑖
 𝑜𝑓𝑓

}𝑖=1
𝑀 . We also defined the onset 733 

and offset-aligned averaged population rate for excitatory (E) and inhibitory (I) populations, termed 734 

𝑅𝐷𝑈
𝐸 (𝜏) and 𝑅𝑈𝐷

𝐸 (𝜏) for the E case and similarly for the I case. Moreover, the  onset and offset-735 

aligned averaged rate of the i-th neuron 𝑟𝐷𝑈
 𝑖 (𝜏)and 𝑟𝑈𝐷

 𝑖 (𝜏)were defined similarly using the individual 736 

rate defined in Eq. 8.  737 

 738 

The autocorrelogram of the instantaneous population rate was defined as: 739 

𝐴𝐶(𝜏) =
∑  𝐿−𝜏

𝑡=1 𝑅(𝑡)𝑅(𝑡+𝜏) − < 𝑅(𝑡) >𝑡
 2

(𝐿−|𝜏|) 𝑉𝑎𝑟(𝑅(𝑡))
  , for 𝜏 > 0  (11) 740 

with the sum in t running over the L time bins in a window of size W. The average < 𝑅(𝑡) >𝑡 and 741 

variance were performed across time in the same window. To avoid averaging out a rhythmic structure 742 

in the instantaneous population rate due to slow drift in the oscillation frequency, we computed 𝐴𝐶(𝜏) 743 

in small windows W=20 s thus having a more instantaneous estimate of the temporal structure. With 744 

the normalization used, the autocorrelograms give 𝐴𝐶(𝜏 = 0) = 1 and the values with 𝜏 > 0 can be 745 

interpreted as the Pearson correlation between the population rate at time t and the population rate at 746 

time 𝑡 + 𝜏 (Fig. 1D). 747 

 748 
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Instantaneous rates at onset and offset intervals. To compare the population rates at the U-onset 749 

and U-offset (Fig 3 and 6), we computed for each neuron the mean of 𝑟𝐷𝑈
𝑖 (𝜏) over the window 750 

𝜏 = (50,200) 𝑠 (U-onset) and the mean of 𝑟𝑈𝐷
𝑖 (𝜏) over the window 𝜏 = (−200, −50) 𝑠 (U-offset). We 751 

positioned the windows 50 ms away of the DU and UD transitions in order to preclude the possibility of 752 

contamination in the mean rate estimations due to possible misalignments from the U and D period 753 

detections. In the averaging we used U and D periods longer than 0.5 s, so that onset and offset 754 

windows were always non-overlapping. Equivalent D-onset and D-offset windows were defined in 755 

order to compare individual rates during D periods. To make the distribution of mean rates across the 756 

cell population Gaussian, we normalized each the rates 𝑟𝐷𝑈
𝑖 (𝜏)  and 𝑟𝑈𝐷

𝑖 (𝜏) by the overall time-757 

averaged rate of the neuron 𝑟𝑖 =< 𝑟𝑖(𝑡) >𝑡 finally obtaining onset and offset-aligned normalized 758 

averaged rates (e.g. 𝑟𝐷𝑈
𝑖 (𝜏)/𝑟𝑖). Despite this normalization, the distribution of the normalized rates in 759 

the D-onset and D-offset was non-Gaussian (most neurons fired no spikes). Thus we used the non-760 

parametric two-sided Wilcoxon signed rank test to compare onset and offset rates (Fig. 3E). To test 761 

the rates changes during U periods in E and I neurons we used a four-way mixed-effects ANOVA with 762 

fixed factors onset/offset, E/I and random factors neuron index and animal. We compared the 763 

distribution of normalized averaged rate difference at the U-onset minus the U -offset (Fig. 3E right, 764 

dark gray histogram) with a distribution obtained from the same neurons but randomly shuffling the 765 

onset  and offset labels of the spike counts but preserving trial and neuron indices (Fig. 3E right,  light 766 

gray bands show 95% C.I. of the mean histograms across 1000 shuffles). This surrogate data set 767 

represents the hypothesis in which none of the neurons shows any onset vs offset modulation. The 768 

comparison shows that there are significant fractions of neurons showing a rate decrease and 769 

increase that compensate to yield no significant difference on the population averaged rate. The same 770 

procedure was followed with the normalized rates in the D-onset and D-offset but the limited number 771 

of non-zero spike counts limited the  analysis yielding inconclusive results (Fig. 3E left). 772 

Computational Rate Model.  773 

We built a model describing the rate dynamics of an excitatory (𝑟𝐸) and inhibitory population (𝑟𝐼) 774 

recurrently connected that received external inputs (Wilson and Cowan, 1972). In addition, the 775 

excitatory population had an additive negative feedback term, 𝑎(𝑡), representing the firing adaptation 776 

experienced by excitatory cells (McCormick et al., 1985). The model dynamics were given by: 777 

𝜏𝐸  
𝑑𝑟𝐸

𝑑𝑡
= −𝑟𝐸(𝑡) + 𝜑𝐸(𝐽𝐸𝐸 𝑟𝐸(𝑡) − 𝐽𝐸𝐼 𝑟𝐼(𝑡) − 𝑎(𝑡) + 𝜎 𝜉𝐸(𝑡))  (12) 778 

𝜏𝐼  
𝑑𝑟𝐼

𝑑𝑡
= −𝑟𝐼(𝑡) + 𝜑𝐼(𝐽𝐼𝐸 𝑟𝐸(𝑡) − 𝐽𝐼𝐼 𝑟𝐼(𝑡) + 𝜎 𝜉𝐼(𝑡))    (13) 779 

𝜏𝑎  
𝑑𝑎

𝑑𝑡
= −𝑎(𝑡) + 𝛽 𝑟𝐸(𝑡)      (14) 780 

 781 

The time constants of the rates were 𝜏𝐸= 10 ms and 𝜏𝐼= 2 ms, while the adaptation time constant was 782 

𝜏𝑎= 500 ms. The synaptic couplings JXY > 0 (with X,Y = E, I), describing the strength of the connections 783 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2016. ; https://doi.org/10.1101/083626doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=223410
http://f1000.com/work/citation?ids=138965
https://doi.org/10.1101/083626


from Y to X, were 𝐽𝐸𝐸= 5, 𝐽𝐸𝐼= 1, 𝐽𝐼𝐸= 10, 𝐽𝐼𝐼= 0.5 s. Because we are modeling low rates, the adaptation 784 

grows linearly with 𝑟𝐸 with strength 𝛽= 0.5 s. The fluctuating part of the external inputs 𝜎 𝜉𝑋(𝑡) was 785 

modeled as two independent Ornstein–Uhlenbeck processes with zero mean, standard deviation 𝜎= 786 

3.5 and time constant 1 ms for both E and I populations. Because population averaged firing rates 787 

during spontaneous activity fell in the range 0-10 spikes/s, we modeled the transfer functions φX as 788 

threshold-linear functions: 789 

𝜑𝑋(𝑥)  = 𝑔𝑋 [𝑥 − 𝜃𝑋]+     , 𝑋 = {𝐸, 𝐼}    (15)  790 

where the square brackets denote [𝑧]+ = 𝑧 if 𝑧 > 0and zero otherwise, the gains were 𝑔𝐸= 1 Hz and 791 

𝑔𝐼= 4 Hz and the effective thresholds 𝜃𝐸 and 𝜃𝐼 represented the difference between the activation 792 

threshold minus the mean external current into each population. We took 𝜃𝐼= 25 a.u. and explored 793 

varying 𝜃𝐸 over a range of positive and negative values (Fig. 5A-B). The choice of thresholds 𝜃𝐸< 794 

𝜃𝐼and gains𝑔𝐸 < 𝑔𝐼 reflecting the asymmetry in the f-I curve of regular spiking neurons (E) and fast 795 

spiking interneurons (I) (Cruikshank et al., 2007; Nowak et al., 2003; Schiff and Reyes, 2012), 796 

facilitated that the model operated in a bistable regime (see below). 797 

Input-output transfer functions are typically described as sigmoidal-shaped functions (Haider and 798 

McCormick, 2009), capturing the nonlinearities due to spike threshold and firing saturation effects. 799 

Since we are interested in modeling spontaneous activity where average population rates are low, we 800 

constrained the transfer functions to exhibit only an expanding non-linearity reflecting the threshold 801 

and thus avoid other effects that can only occur at higher rates (the contracting non-linearity tends to 802 

occur for rates > 30 spikes/s (Anderson et al., 2000; Houweling et al., 2010; Nowak et al., 2003; Priebe 803 

and Ferster, 2008). In particular, we modeled φX as piecewise linear (Schiff and Reyes, 2012; 804 

Stafstrom et al., 1984) but the same qualitative bistable regime can be obtained by choosing for 805 

instance a threshold-quadratic function. The model equations (Eqs. 12-14) were numerically integrated 806 

using a fourth-order Runge-Kutta method with integration time step dt = 0.2 ms. U and D periods in the 807 

model were detected by threshold-based method, finding the crossing of the variable rE with the 808 

boundary 1 Hz, where periods shorter than minimum period duration of 50 ms were merged with 809 

neighboring periods (small changes in threshold and period durations did not affect qualitatively the 810 

results). 811 

 812 

Fixed points and stability. We start by characterizing the dynamics of the system in the absence of 813 

noise. Assuming that the rates evolve much faster than the adaptation, i.e. 𝜏𝐸 , 𝜏𝐼 ≪ 𝜏𝑎 ,  one can 814 

partition the dynamics of the full system into (1) the dynamics of the rates assuming adaptation is 815 

constant, (2) the slow evolution of adaptation assuming the rates are constantly at equilibrium.  Thus, 816 

the equations of the nullclines of the 2D rate dynamics at fixed a, can be obtained from the 2D system 817 

given by Eqs. 12-13. The nullclines of this reduced 2D system are obtained by setting its left hand side 818 

to zero: 819 

𝑟𝐸 = 𝑔𝐸[ 𝐽𝐸𝐸  𝑟𝐸 − 𝐽𝐸𝐼𝑟𝐼 − 𝑎 −  𝜃𝐸]+   (16) 820 
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𝑟𝐼 = 𝑔𝐼[ 𝐽𝐼𝐸  𝑟𝐸 − 𝐽𝐼𝐼 𝑟𝐼  −  𝜃𝐼]+    (17) 821 

 822 

The intersection of the nullclines define the fixed points (r*
E (𝑎), r*

I (𝑎)) of the 2D system to which the 823 

rates evolve. Once there adaptation varies slowly assuming that the rates are maintained at (r*
E (𝑎), r*

I 824 

(𝑎)) until it reaches the equilibrium at 𝑎 = 𝛽𝑟𝐸
∗

 
(𝑎).   825 

The network has a fixed point in (rE, rI, 𝑎)=(0,0,0) if and only if θE ≥ 0 and θI ≥ 0, i.e. when the mean 826 

external inputs are lower than the activation thresholds. The stability of this point, corresponding to the 827 

DOWN state, further requires θE>0, thus preventing the activation of the network due to small 828 

(infinitesimal) fluctuations in rE. To find an UP state fixed point with non-zero rates we substitute in 829 

Eqs. 16-17 the value of adaptation at equilibrium 𝑎 = 𝛽𝑟𝐸, assume the arguments of [ ]+ are larger 830 

than zero and solve for (rE,rI), obtaining:  831 

𝑟𝐸 =
1

|𝑀 |
 ( 𝐽𝐸𝐼 𝜃𝐼 − 𝐽𝐼𝐼′ 𝜃𝐸)    (18) 832 

𝑟𝐼 =
1

|𝑀 |
 ((𝐽𝐸𝐸′ − 𝛽) 𝜃𝐼 − 𝐽𝐼𝐸  𝜃𝐸)   (19)  833 

 834 

where |𝑀| = 𝐽𝐸𝐼 𝐽𝐼𝐸  − (𝐽𝐸𝐸 ′ − 𝛽)(𝐽𝐼𝐼′),    𝐽𝐸𝐸′ = 𝐽𝐸𝐸 −
1

𝑔𝐸
   and  𝐽𝐼𝐼′ = 𝐽𝐼𝐼 +

1

𝑔𝐼
. 835 

The conditions for this UP state solution to exist are derived from imposing that the right hand side of 836 

Eqs. 18-19 is positive. The stability of this solution (Eq. 21 below) implies that the determinant |𝑀| is 837 

positive and that if 𝑟𝐼 is positive, then 𝑟𝐸 is also positive. Thus, provided the stability (Eqs. 21-22), the 838 

only condition for the solution to exist is that the right hand side of Eq. 19 is positive: 839 

   𝜃𝐸 <
(𝐽𝐸𝐸′−𝛽)

𝐽𝐼𝐸
 𝜃𝐼       (20) 840 

Given the separation of time scales described above, this fixed point is stable if the eigenvalues of the 841 

matrix of coefficients of Eqs. 16 and 17 without the term a (that we assume is constant) have all 842 

negative real part. Because the coefficients matrix is 2 x 2, this is equivalent to impose that the 843 

determinant of the matrix has a positive determinant and a negative trace. These conditions yield the 844 

following inequalities, respectively:  845 

     𝐽𝐼𝐼′ 𝐽𝐸𝐸′ <  𝐽𝐸𝐼 𝐽𝐼𝐸     (21) 846 

𝜏𝐼(𝑔𝐸𝐽𝐸𝐸 + 1) < 𝜏𝐸(𝑔𝐼𝐽𝐼𝐼 + 1)     (22) 847 

Equation 21 is equivalent to the condition that the I-nullclines of the 2D reduced system has a larger 848 

slope than the E-nullcline. From the U existence condition in Eq. 20 and D stability condition, it can 849 

also be derived that  𝐽𝐸𝐸
 ′ > 0, implying that at fixed inhibition, the E-subnetwork would be unstable (i.e. 850 

slope of the E-nullcline is positive). In sum, the conditions for the existence of two stable U and D 851 

states imply that the U state would be unstable in the absence of feedback inhibition but the strength 852 

of feedback inhibition is sufficient to stabilize it. These are precisely the conditions that define an 853 

Inhibitory Stabilized Network state (Ozeki et al., 2009). 854 

 855 
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Phase plane analysis. In this section we determine the different operational regimes of the network in 856 

the (𝜃𝐸, β )-plane  (Fig. 5A). In the absence of noise, given that  θI ≥ 0, a stable D state exists in the 857 

semi-plane (Fig. 5A, violet and red regions): 858 

𝜃𝐸 > 0      (23) 859 

Provided that our choice of synaptic couplings 𝐽𝑋𝑌 and time constants hold the stability conditions 860 

(Eqs. 21-22), the U state is stable in the semi-plane given by Eq. 20 (Fig. 5A, orange and red regions): 861 

  𝛽 < −
𝐽𝐼𝐸

𝜃𝐼
 𝜃𝐸 + 𝐽𝐸𝐸′     (24) 862 

In the intersection of these two semi-planes both D and U are stable (bistable region, Fig. 5A red). In 863 

contrast, in the complementary region to the two semi-planes, neither U nor D are stable (Fig. 5A 864 

white region). There, a rhythmic concatenation of relatively long U and D periods is observed where 865 

the network stays transiently in each state until adaptation triggers a transition (see e.g. Fig. 4E). 866 

Because of the separation of time-scales, we refer to this stability to the rate dynamics but not to the 867 

adaptation dynamics as quasi-stable states. 868 

The addition of noise makes that some of the stable solutions now become meta-stable, meaning that 869 

the network can switch to a different state by the action of the noise (i.e. the external fluctuations in our 870 

model). This is the case of the bistable region (Fig. 5A red) where fluctuations generate stochastic 871 

transitions between the two metastable U and D states (Fig. 4D). In the region of D stability 𝜃𝐸 > 0, we 872 

find a new subregion with noise-driven transitions from a metastable D state to a quasi-stable U state, 873 

and back to D by the action of adaptation (Fig. 5A light violet). This subregion is delimited by the 874 

condition that U is not stable (i.e. Eq. 24 does not hold) but just because of the existence of 875 

adaptation. This can be written by saying that Eq. 24 holds if β=0:  876 

  𝜃𝐸 <
  𝐽𝐸𝐸′ 

𝐽𝐼𝐸
𝜃𝐼     (25)  877 

 878 

Equivalently, within the region of U stability, noise creates a new subregion with noise-driven 879 

transitions from a metastable U state to a quasi-stable D state, and back to U by the recovery from 880 

adaptation (Fig. 5A light orange).  This subregion is given by the condition that there is a negative 881 

effective threshold 𝜃𝐸 < 0 (i.e. caused by a supra-threshold mean external drive) but the adaptation 882 

𝑎𝑈recruited in the U state is sufficient to counterbalance it: 𝑎𝑈 + 𝜃𝐸 > 0. This makes the D transiently 883 

stable until adaptation decays back to zero. Substituting 𝑎𝑈 = 𝛽 𝑟𝐸
𝑈 (Eq. 14) and 𝑟𝐸

𝑈 by the equilibrium 884 

rate at the U state given by Eq. 18, the limit of this subregion can be expressed as (Fig. 5A, light 885 

orange region): 886 

𝛽 >
(𝐽𝐸𝐸′ 𝐽𝐼𝐼′ − 𝐽𝐼𝐸 𝐽𝐸𝐼)

𝐽𝐸𝐼 𝜃𝐼
 𝜃𝐸   (26) 887 

  888 
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