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Abstract 
Plants around the globe produce a wide variety of specialized metabolites that play key roles in 
communication and defense. Recently, evidence has been accumulating that—like in 
microbes—the genes encoding the biosynthetic pathways towards these metabolites are often 
densely clustered in specific genomic loci: biosynthetic gene clusters (BGCs). This offers great 
potential for genome-based discovery of plant natural products. However, effective 
computational tools to identify and analyze plant BGCs have thus far been lacking. Here, we 
introduce plantiSMASH, a versatile online analysis platform that automates the identification of 
candidate plant BGCs, as well as their comparative genomic and transcriptomic analysis. The 
cluster detection logic, validated on a set of all plant BGCs that have been experimentally 
characterized thus far, is able to pinpoint many complex metabolic loci across the Plant 
Kingdom. Additionally, interactively visualized coexpression analysis and comparative cluster-
cluster alignment allow users to judge multiple sources of evidence for a candidate BGC to 
encode a group of enzymes that truly functions jointly in a biosynthetic pathway. Furthermore, 
plantiSMASH finds coexpression correlations between candidate BGCs and genes elsewhere in 
the genome. Altogether, this new software provides a comprehensive toolkit for plant geneticists 
to further explore the nature of gene clustering in plant metabolism. Moreover, spurred by the 
continuing decrease in costs of plant genome sequencing and assembly, it will soon allow 
natural product chemists to apply genome mining technologies to the discovery of novel 
medicinal compounds from a wide range of plant species. 
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Introduction 
Across Planet Earth, bacteria, fungi and plants produce an immense diversity of specialized 
metabolites, each with their own specific ecological roles in the manifold interorganismal 
interactions in which they engage. This diverse specialized metabolism is a rich source of 
natural products that are used widely in medicine, agriculture and manufacturing. In bacteria 
and fungi, where genes for most specialized metabolic pathways are physically clustered in so-
called biosynthetic gene clusters (BGCs), the rapid accumulation of genome sequences has 
revolutionized the process of natural product discovery: indeed, genome mining has now 
become a dominant method for the discovery of novel molecules (1–4). In the genome mining 
process, BGCs are computationally identified in genome sequences and then linked to 
compounds through functional analysis (e.g., using metabolomic data, chemical structure 
predictions, mutant libraries, and/or heterologous expression). Many sequence-based aspects 
of this genome mining procedure are facilitated by the online antiSMASH framework, which was 
launched in 2010 (5) and has seen continuous development since then (6, 7). The genome 
mining procedure has two main purposes: 1) finding biosynthetic genes for important known 
compounds to allow heterologous production through fermentation in industrial strains, and 2) 
identifying novel natural product chemistry guided by biosynthetic gene cluster diversity. 
Altogether, this development has appropriately been termed the ‘gene cluster revolution’ (4). 
In recent years, it has become clear that not only microbial, but also plant biosynthetic pathways 
are frequently chromosomally clustered: after the initial discoveries of the cyclic hydroxamic acid 
2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and avenacin gene clusters (8, 9), around thirty 
plant BGCs have been discovered (10, 11). Together, they encode the production of a wide 
range of different compounds, including cyclic hydroxamic acids, di- and triterpenes, steroidal 
and benzylisoquinoline alkaloids, cyanogenic glucosides and polyketides. In the genome of the 
model plant species Arabidopsis thaliana alone, four BGCs have been linked to specific 
metabolites, and recent analyses based on epigenomic profiling indicate the presence of 
various additional uncharacterized ones (12).  
Various technological developments in eukaryote genome sequencing (13) are finally making 
complete plant genome sequencing feasible at larger scales: high-quality plant genome 
sequences for almost 100 species are now already publicly available, and more or less 
complete genomes can be sequenced for as little as a 10-50k US dollars each. Hence, genome 
mining may become an important methodology in the study of plant natural products as well, 
and a realistic opportunity thus presents itself for the plant natural product research community 
to have a ‘gene cluster revolution’ of its own. Naturally, a key technology required to realize this 
is a computational framework specifically designed for the identification and analysis of plant 
BGCs. Importantly, tools available for bacterial and fungal genome mining do not suffice for 
plants (14), as 1) plant biosynthetic pathways involve unique enzyme families not found in 
bacteria and fungi; 2) not all plant biosynthetic pathways are clustered (e.g., anthocyanins (15)), 
so identification of a biosynthetic gene does not equal identification of a BGC; 3) intergenic 
distances in plant genomes are larger and much more variable (16–19); 4) plant genomes 
contain clustered groups of genes (e.g., tandem arrays) whose products do not constitute a 
pathway; 5) several plant pathways are split across more than one BGC (20, 21).  
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Here, we introduce antiSMASH for plants (or ‘plantiSMASH’ in short), which has been designed 
to tackle each of these challenges. Through a comprehensive library of profile Hidden Markov 
Models (pHMMs) for enzyme families known to be involved in plant biosynthetic pathways, 
combined with CD-HIT clustering of predicted protein sequences belonging to the same family, 
it allows the efficient identification of genomic loci encoding multiple different (sub)families of 
specialized metabolic enzymes. Moreover, comparative genomic analysis as well as analysis of 
gene expression patterns within these candidate BGCs allow assessment of each locus for its 
likelihood to encode genes working together in one pathway. Finally, coexpression analysis 
between candidate BGCs and with other genes across the genome allows identification of 
biosynthetic pathways that are encoded on multiple loci. To exploit this new framework, we offer 
an initial analysis of BGC diversity across the plant kingdom, which showcases the presence of 
many complex biosynthetic loci in diverse species.  
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Methods and Implementation 
 
A procedure for the identification of candidate plant biosynthetic gene clusters 
 
The microbial version of antiSMASH (5) predicts BGCs by using HMMer (22) to identify specific 
(combinations of) signature protein domains that belong to scaffold-generating enzymes specific 
for a class of biosynthetic pathways. Subsequently, hit genes are used as anchors from which 
gene clusters are extended upstream and downstream by a specified extension distance. 
 
Although very effective for detecting biosynthetic clusters on bacteria and fungi, this procedure 
is unfit to detect biosynthetic gene clusters in plants, for the reasons described above. To 
address these differences, a novel detection strategy was chosen (Figure 1): instead of 
identifying BGCs through the identification of core scaffold-generating genes alone, 
plantiSMASH identifies them by looking for all genes predicted to encode different types of 
biosynthetic enzymes, including those required for tailoring of the scaffold. 
To determine what constitutes a high-potential candidate BGC, we make use of the recently 
proposed definition for plant BGCs as ‘genomic loci encoding genes for a minimum of three 
different types of biosynthetic reactions (i.e. genes encoding functionally different (sub)classes 
of enzymes).’ More specifically, with default settings plantiSMASH defines clusters as loci where 
at least three different enzyme subclasses belonging to at least two different enzyme classes 
are co-located on the same locus. Enzyme classes are identified using profile Hidden Markov 
Models (pHMMs) specific for each class; to count the number of subclasses of each enzyme 
class at a certain locus, the CD-HIT algorithm (23) is employed for sequence-based clustering 
to identify groups of sequences within an enzyme class with (by default) >50% mutual amino 
acid sequence identity. 
In order to identify all classes of biosynthetic enzymes known to be involved in plant specialized 
metabolic pathways, we performed a comprehensive literature search of previously 
characterized plant biosynthetic pathways, which resulted in a list of 62 protein domains (see SI 
Table 1). Most of these protein domains are represented by pHMMs from the Pfam database 
(24), and custom pHMMs were only generated for enzyme families not (fully) covered by Pfam 
domains. We consciously refrained from attempting to construct custom pHMMs for all enzyme 
families known to be involved in plant biosynthetic pathways, as the limited amount of training 
data available would lead to an overly strict prediction system that would no longer be able to 
detect biosynthetic novelty; instead, we assume that the broad enzyme families covered by 
Pfam domains are likely to be biosynthetically involved if multiple enzymes from these different 
families are encoded together in the same locus. As in the microbial version of antiSMASH, the 
presence of genes predicted to encode signature enzymes (defined as enzymes that determine 
the chemical class of the end compound, such as terpene synthases) in a candidate BGC are 
used to assign a cluster to a biosynthetic class (see SI Table 2 for cluster rules). However, 
compared to the microbial version, the biosynthetic classes in ‘plantiSMASH’ are more of an 
approximation, since not all signature enzyme families used can be unequivocally used to 
predict the compound type; e.g., while strictosidine synthase (25) and norcoclaurine synthase 
(26) are well-characterized members of the Bet v1 enzyme family, it is not clear what proportion 
of this family have similar Pictet-Spenglerase(-like) catalytic activities. 
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Another particular challenge for BGC detection in plant genomes is the large variation in gene 
density that occurs not only between but also within plant genomes (16–19). Replacing the 
static kilobase distance cut-off of microbial antiSMASH by a fixed cut-off based on the maximum 
number of genes that lie between each pHMM hit also does not provide a solution, as BGCs 
would then be allowed to cross large repeat regions or even centromeres. Therefore, we chose 
an alternative more dynamic cut-off that is a linear function of local gene density (defined as the 
gene density of the ten genes nearest to a pHMM hit), and applies a multiplier to calculate the 
cut-off in kb that is optimal for that specific genomic region. 
 

 
Figure 1: General strategy followed by plantiSMASH for the identification of plant BGCs. First, a library of 62 
pHMMs is used to identify genes encoding biosynthetic enzymes across the genome. Subsequently, groups of hit 
genes that lie close to each other on the genome are combined into clusters; the maximum distance between hit 
genes is determined based as a function of the local gene density (i.e., the number of genes per kb). By default, a 
cluster should at least contain hits to two different pHMMs to proceed to the next stage (preliminary cluster 
assignment). To the evaluate these preliminary clusters on the numbers of enzyme subclasses they encode, , 
sequence-based clustering is performed on all genes in a preliminary cluster to estimate how many enzyme 
subclasses are encoded; if a cluster contains a sufficient number of CD-HIT groups (minimally three by default), it is 
defined as a candidate BGC and displayed on the plantiSMASH output page. 

 
Flexible and user-friendly input and output  
To obtain reliable BGC predictions, a high-quality annotation of gene features in a genome is 
essential. While we do make available the option to run GlimmerHMM (27) on plant genome 
sequences, performing de novo gene finding on a raw FASTA file is not desirable, given the 
relatively low accuracy of these procedures. Because, additionally, the GenBank and EMBL 
input formats previously accepted for antiSMASH are not available for many plant genomes, we 
now allow users to supply input also in FASTA+GFF3 format, currently the most widely used 
format for describing plant genome annotations. For this, we implemented a new module based 
on Biopython’s GFF parsing package (http://biopython.org/wiki/GFF_Parsing) capable of 
combining the CDS features from the sequence input sequence, if any, with those of a file 
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compliant to the Generic Feature Format Version 3 as defined by The Sequence Ontology in 
2003 (https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md). To 
properly match GFF3 CDS features to their correct sequence, the module demands record 
names (chromosome/scaffold/contigs) to be identical in both inputs; the only exception being if 
both inputs only contain one record, in which case the requirement is instead that no feature has 
coordinates outside the sequence range. This new module allows plantiSMASH to be used with 
genomes that are only annotated with GFF3 files, such as many of those present in the Joint 
Genome Institute’s Phytozome database (28). 
Based on the biosynthetic gene cluster predictions, a rich and interactive HTML output is 
generated (Figure 2), which is largely reminiscent of the output of microbial antiSMASH jobs 
(5). Additionally, genes in the visualization page for each candidate BGC are colored based on 
the class of enzymes encoded, and a legend is provided that details the color scheme. On 
mouse click, panels for each gene provide information on the pHMMs that have hits against it, 
as well as on the amino acid identity to homologous genes within the same locus as calculated 
by CD-HIT. 
 
Coexpression analysis identifies pathways within and between gene clusters 
As plant scientists are just beginning to understand the phenomenon of metabolic gene 
clustering in plant genomes, it is currently unknown which proportion of genomic loci that 
encode multiple contiguous biosynthetic enzyme-encoding genes are bona fide BGCs in the 
sense that their constituent genes are involved in one specific pathway. One powerful strategy 
to predict whether genes are involved in the same pathway is the use of coexpression analysis, 
in which their expression patterns are compared across a wide range of samples. This strategy 
has proven very effective in the de novo identification of gene sets involved in biosynthetic 
pathways, even if they are not physically clustered on the chromosome (29). 
To allow detailed investigation of whether genes in a cluster show coexpression, we added a 
dedicated analysis module: CoExpress. This module reads transcriptomic datasets, either in 
SOFT format (from the NCBI Gene Expression Omnibus) or in comma-separated (CSV) format, 
and generates powerful visualizations of these data for each candidate BGC. Because 
combining many datasets into one coexpression analysis may blot out coexpression signals that 
are very specific to certain biological or chemical treatments (which often highly specifically 
incite expression of plant specialized metabolic pathways), we designed the module in such a 
way that it visualizes one transcriptomic dataset at a time. This has the added value that the 
user can browse through multiple datasets and can individually assess specific samples that are 
linked to a treatment of interest. 
The visualizations of within-cluster coexpression patterns are twofold: First, a hierarchically 
clustered heatmap visualization, plotted using a modified version of the InCHlib 
(http://www.openscreen.cz/software/inchlib/home) JavaScript library, offers a direct view of 
patterns in and relationships between the supplied normalized gene expression values. The 
dendrogram is generated using a coexpression distance metric with a complete-linkage 
hierarchical clustering method. In this metric, the Pearson Correlation Coefficient (PCC) is 
transformed directly into a distance value scaled from 0 to 200 (0 for PCC = 1, or positively 
correlated, and 200 for PCC = -1, or negatively correlated). In order to make correlations 
maximally visible, the color scheme is normalized per gene (row) by default; however, the user 
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can also select for the color scheme to be normalized by sample (column). Second, a gene 
cluster-specific coexpression network (30) (with a default distance based cutoff of < 50, 
dynamically adjustable) summarizes the correlations and helps to identify specific groups of 
genes in the locus that are highly coexpressed: these occur as connected components with high 
numbers of edges.  
 

 
Figure 2: Outputs generated by the plantiSMASH pipeline. The figure illustrates several visualized outputs 
generated by plantiSMASH, as they appear for various biosynthetic gene clusters of known natural products. A) 
Visual overview generated for each gene cluster; in this case, the tirucalladienol cluster from A. thaliana (31) is 
shown. Gene annotations and pHMM hit details appear on mouse click. Also, ClusterBlast output showing alignment 
of homologous genomic loci across other genomes of related species is provided. B) Example of a gene expression 
heat map, showing coexpression among the core genes of the marneral BGC from A. thaliana (32) (and not with the 
flanking genes). C) Hive plot on the overview page, which highlights pairs of candidate BGCs which show many 
coexpression correlations between their genes; in this example view, the coexpression links between the two loci 
encoding alpha-tomatine biosynthesis in Solanum lycopersicum (20) are highlighted (clusters 31 & 44). D) Example 
ego network that summarizes coexpression correlations between members of the alpha-tomatine gene (cluster 44), 
as well as with genes in other gene clusters (including the other alpha-tomatine biosynthetic locus, cluster 31), and 
with genes elsewhere on the genome. 
 
Coexpression analysis is not just useful for analysis of functional connections within a candidate 
BGC, but also allows prediction of functional links with other genomic loci. It is now well-
understood that several plant BGCs do not act alone, but rather in concert with another BGC or 
with individual enzyme-coding genes elsewhere on the genome (11). Therefore, plantiSMASH 
leverages coexpression data to offer two analyses that identify these trans-genomic 
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interactions: First, the BGC-specific coexpression network can be extended to display a first-
order ego network that incorporates genes elsewhere on the genome that either 1) are 
members of another candidate BGC and show high gene expression correlation (> 0.9 PCC) 
with at least one gene in the BGC, or 2) contain a ‘biosynthetic’ domain (defined as being one of 
the domains in SI Table 1) and show high gene expression correlation with at least two genes in 
the BGC, at least one of which being a biosynthetic gene itself. Second, interactions between 
candidate BGCs are summarized in a hive plot, in which pairs of clusters are connected by an 
edge if the genes of both clusters create at least one subnetwork that satisfies the following 
criteria: 1) All nodes belong to the same Louvain community (33), as determined by analyzing 
the full coexpression network of all candidate clusters’ genes; 2) All nodes have a transitivity 
greater than zero; 3) The subnetwork contains at least two genes from each cluster; 4) The 
subnetwork contains at least one gene per cluster that has a biosynthetic domain; and 5) The 
subnetwork contains at least three genes with a biosynthetic domain. 
All in all, the coexpression analysis of candidate BGCs allows effective prioritization for, e.g., 
heterologous expression studies. Yet, it should still be kept in mind that loci that do not show 
high coexpression might still encode genes that are jointly involved in a biosynthetic pathway, 
e.g., if the transcriptomic samples available do not include any treatments that induce the 
expression of the pathway, or if expression of the pathway is sequestered either spatially across 
tissues or in terms of timing.  
 
Comparative genomic analysis shows conservation and diversification 
Comparing a candidate BGC with homologous genomic loci in other plant genomes can give 
important information on its evolutionary conservation or diversification. Whereas strong 
conservation of clusteredness across larger periods of evolutionary time may point to a selective 
advantage of clustering for these genes, diversification of BGCs by co-option of other enzyme-
coding genes may give clues to finding novel variants of natural products that have been 
generated through directional pathway evolution. In order to facilitate such comparative analysis 
on a case-by-case basis, we constructed a plant-specific version of the antiSMASH ClusterBlast 
module. To do so, we ran plantiSMASH on a collection of all publicly available plant genomes, 
obtained from NCBI’s GenBank, JGI’s Phytozome and Kazusa. In order to avoid cases where 
loci homologous to detected candidate BGCs would not be included in the database by not 
satisfying the identification criteria, the thresholds for this search were lowered to find all 
genomic loci with two or more different enzymes, where the CD-HIT cut-off was also set to a 
generously inclusive level of 0.9. A total of 7,978 genomic loci were thus included in the plant 
ClusterBlast database. As in the microbial version of antiSMASH, the translated protein 
sequence of each predicted gene in a candidate BGC is searched against this database using 
the DIAMOND algorithm (34), and genomic loci are sorted based on the number of hits, 
conserved synteny and cumulative bit score. To also facilitate direct comparison with known 
plant BGCs, all plant BGCs with known products for which the sequence was available were 
added to the MIBiG repository (35), which allows users to find similarities between newly 
identified and known clusters with the KnownClusterBlast module of antiSMASH. 
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Precomputed results allow fast access to comprehensive plantiSMASH results 
In order to allow users to directly access plantiSMASH results for publicly available plant 
genomes, runs for 48 high-quality plant genomes were precomputed and made available online 
at http://plantismash.secondarymetabolites.org. Importantly, publicly available gene expression 
datasets with sufficient numbers of samples to be suitable for coexpression analysis were 
loaded into these results. In total, 73 transcriptomic datasets were included for five species: 
Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa, Zea mays and Glycine max (SI 
Tables 3-5). Sequences that are not publicly available (as well as available sequences with 
custom transcriptomic datasets) can be analyzed directly using the plantiSMASH web server at 
http://plantismash.secondarymetabolites.org. In this way, plantiSMASH results for all kinds of 
genomes and transcriptomes are optimally available to users.  
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Results and Discussion 
 

 
Figure 3: Numbers of candidate BGCs identified across the Plant Kingdom. A) PlantiSMASH BGC predictions 
plotted onto a phylogenetic tree of plant species for which chromosome-level genome assemblies are available. The 
blue bars indicate the number of candidate BGCs per genome, the red bars indicate the most complex candidate 
BGC identified in each species (in terms of the number of unique enzymes encoded, as defined by CD-HIT groups). 
B) Number of candidate BGCs plotted versus the total number of genes; as expected, more BGCs are found in larger 
genomes. Outliers represent genomes that have recently undergone whole-genome duplication, and the moss 
Physcomitrella patens, in the genome of which only a very low number of candidate BGCs is found. C) Number of 
candidate BGCs plotted versus the number of genes with pHMM hits to biosynthetic domains. D) Number of genes 
with biosynthetic domains plotted against the total number of genes; a linear correspondence is largely observed. 
 
PlantiSMASH successfully detects all experimentally characterized plant biosynthetic 
gene clusters 
Even though only a relatively small set of plant BGCs have been characterized, these ~30 
BGCs still present the best objective test case for the BGC detection algorithm. Importantly, 
they range from complex BGCs with many different enzyme-coding genes, such as the 
noscapine and cucurbitacin BGCs (21, 36), to relatively simple ones that only encode a couple 
of enzymes, such as the dhurrin and linamarin/lotaustralin BGCs (37). When plantiSMASH was 
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run on a multi-GenBank file containing accurately annotated versions of all 19 known BGCs for 
which sequence information is available, all gene clusters were successfully detected with 
default settings. When ran on different genome annotation versions available from GenBank or 
Phytozome, BGCs of low complexity (i.e., with a small number of enzyme-coding genes) were 
occasionally missed when key genes were missing from the structural annotations, or when 
many false positive gene assignments were present in the region of interest (affecting the 
dynamic gene density-based cut-off of plantiSMASH): for example, the linamarin BGC from 
Lotus japonicus was not detected in assembly/annotation version 3.0, while it was detected in 
the older version 2.5. This highlights the importance of using high-quality genome annotations 
supported by transcriptomic data when using plantiSMASH to search for BGCs of interest. 
Alternatively, the stand-alone version of plantiSMASH provides additional cut-off methods (e.g., 
raw distance-based or gene-count-based) that can be attempted as well to mitigate such issues. 
 

 
Figure 4: Example candidate BGCs identified by plantiSMASH. Five example candidate BGCs are shown, which 
cover a diverse range of enzymatic classes. Dozens of candidate BGCs of comparable complexity can be found 
across the precomputed plantiSMASH results that are available online. 
 
Plant genomes contain large numbers of complex biosynthetic gene clusters 
When run on the 43 plant genomes for which chromosome-level assemblies are currently 
available on either NCBI or Phytozome, plantiSMASH found a wide variety of candidate BGC 
numbers across plant taxonomy (Figure 3). In general, the numbers of candidate BGCs were 
relatively even between monocots and dicots (while very low in the only moss genome 
included), while the largest numbers of BGCs were found in dicot genomes. These outliers all 
corresponded to recent (partial) genome amplification events, such as in the case of Camelina 
sativa (88 candidate BGCs, see Ref. 31), Brassica napus (68 candidate BGCs, see Ref. 32), 
and Glycine max (76 candidate BGCs, see Ref. 33). Many of the BGCs in duplicated regions 
show hallmarks of divergence between the copies. 
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In many plant genomes, candidate BGCs of high complexity were identified, with as many as 
seven or eight different enzymatic classes encoded in the same tight genomic region. These 
constitutions are clearly non-random and make it promising to study candidate BGCs even in 
the absence of coexpression data. Dozens of such complex BGCs were found, which cover all 
known as well as putative pathway classes; examples are provided in Figure 4.  
 
Coexpression patterns can guide BGC prioritization 
To illustrate how coexpression data within plantiSMASH should be interpreted, we subjected the 
candidate BGCs identified in the genome of A. thaliana to a more detailed analysis using an 
example transcriptomic dataset. For this, we compiled two sets of gene expression datasets, 
one containing transcriptomic experiments of biological treatments (defense; SI Table 3) and 
one containing experiments of hormone treatments and non-biological stress inductions (SI 
Table 4+5). Together, these datasets comprise transcriptomic measurements of 1047 samples. 
While, intriguingly, in those datasets, we did not observe a statistically significant distinction 
between the complement of coexpression Pearson correlation values within all candidate BGCs 
and those on randomly chosen genomic loci of the same size (the biological induction dataset 
performed ‘best’ in the Wilcoxon rank-sum test with P=0.08), individual BGCs did show 
unusually strong coexpression in these data: Of the four BGCs known to encode entire 
biosynthetic pathways (for marneral, thalianol, tirucalla and arabidiol/baruol), only one (the 
thalianol cluster) showed a clearly significant coexpression pattern compared to randomly 
chosen contiguous groups of genes of the same size elsewhere in the genome (P=3.35e-5, 
Wilcoxon rank-sum test). Besides this cluster, two other BGCs also showed similarly striking 
coexpression patterns: the cluster ranging from AT3G57000 to AT3G57060 (P=6.06e-6) and the 
cluster that ranges from AT4G14050 to AT4G14096 (P=3.34e-3). 
There are several explanations for the fact that strong coexpression is observed for some 
known as well as candidate BGCs but not others. A first explanation is that their coordinated 
expression is induced by conditions not included in these transcriptomic experiments. After all, 
previous studies have shown clear coexpression of, e.g., the tirucallol cluster (31). In other 
words, absence of evidence is not evidence of absence: when genes are not coexpressed in 
certain data, this should not be interpreted as definitive counterevidence to them working 
together in a pathway. A second explanation is that some BGCs are expressed at very low 
levels under standard growth conditions (e.g., the marneral cluster (32)), leading to an 
unfavorable signal-to-noise ratio. A third explanation is that a number of candidate BGCs 
probably do not encode entire consistently coexpressed biosynthetic pathways by themselves; 
evidence for this comes from an analysis of characterized enzyme-coding genes inside these 
candidate BGCs (SI Table 6); e.g., AT1G24100 and AT5G57220, which occur in two different 
candidate BGCs, are known to be involved in two different branches of glucosinolate 
biosynthesis (41, 42), a complex multifurcated pathway that shows only partial and fragmented 
genomic clustering. 
Contrary to what might be expected, however, there was no strong correlation (R=0.11, and 
P=0.44 when fitting linear regression) of coexpression with cluster size (SI Figure 1), which 
suggests that the default plantiSMASH BGC prediction cut-offs are not set too inclusively. 
Indeed, the highly coexpressed thalianol gene cluster, for example, only comprises a small set 
of enzyme-coding genes. 
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All in all, through its flexibility, the CoExpress module in plantiSMASH allows judging each 
candidate BGC through the lens of multiple transcriptomic datasets (while reducing noise 
levels); the more datasets are available, the larger the chance is that one of them allows the 
identification of strong coexpression. Choosing specific datasets (or combinations of datasets) 
for which, e.g., metabolomic evidence is available, can help users to identify the likelihood that 
this BGC encodes a specific pathway. In the end, however, coexpression alone often does not 
provide the final answer on whether a candidate BGC is ‘real’; the further development of 
integrative approaches that combine multiple data types (14) is clearly needed for this in the 
future. 
 
Identification of plant BGCs paves the way towards genome-based natural product 
discovery in plants 
The highly automated discovery of candidate BGCs by plantiSMASH and the powerful 
visualizations of coexpression data that allow their prioritization present a key technological step 
in the route towards high-throughput genome mining of plant natural products. As plant genome 
sequencing and assembly technologies continue to improve at a rapid pace, it is likely that high-
quality plant genomes for thousands of species will soon be available; hence, ‘clustered’ 
biosynthetic pathways present low-hanging fruits for the discovery of novel molecules. 
Empowered by synthetic biology tools and powerful heterologous expression systems in yeast 
and tobacco (43–47), this will likely make it possible to scale up plant natural product discovery 
tremendously. 
Continued development of the antiSMASH/plantiSMASH framework in the future is needed to 
further accelerate this process: e.g., the development of (machine-learning) algorithms that 
predict substrate specificities of key enzymes like terpene synthases, and the systematic 
construction of pHMMs for automated subclassification of complex enzyme families such as 
cytochrome P450s and glycosyltransferases, will allow more powerful predictions of the natural 
product structural diversity encoded in diverse BGCs. Additionally, detailed evolutionary 
genomic analysis of the phenomenon of gene clustering, including BGC birth, death and change 
processes, will further our understanding of how BGCs facilitate natural product diversification 
during evolution. As more plant BGCs are experimentally characterized, the algorithms will co-
evolve with the knowledge gained, and more detailed class-specific cluster detection rules could 
be designed; moreover, it will become clearer what does and what does not constitute a bona 
fide BGC. Finally, when scientists further unravel the complexities of tissue-specific and 
differentially timed gene expression of plant biosynthetic pathways, we will learn more on how 
best to leverage coexpression data for biosynthetic pathway prediction. 
Thus, a more comprehensive understanding of the remarkable successes of evolution to 
generate an immense diversity of powerful bioactive molecules will hopefully make it possible 
for biological engineers to mimick nature’s strategies and deliver many useful new molecules for 
use in agricultural, cosmetic, dietary and clinical applications. 
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SI Figure 1: Lack of correlation between candidate BGC size and coexpression correlation. The cluster size 
(measured by the number of genes in a BGC) is plotted against the 75th percentile of the Pearson correlation 
coefficients (PCCs) between genes in a cluster. No strong positive correlation is observed. The same is true when 
cluster size is plotted against median or average PCCs (data not shown). 
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