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Abstract  29 

 Much ecological and evolutionary theory predicts that interspecific interactions often 30 

drive phenotypic diversification and that species phenotypes in turn influence species 31 

interactions. Several phylogenetic comparative methods have been developed to assess the 32 

importance of such processes in nature; however, the statistical properties of these methods have 33 

gone largely untested. Focusing mainly on scenarios of competition between closely-related 34 

species, we assess the performance of available comparative approaches for analyzing the 35 

interplay between interspecific interactions and species phenotypes. We find that currently used 36 

statistical methods largely fail to detect the impact of interspecific interactions on trait evolution, 37 

that sister taxa analyses often erroneously detect character displacement where it does not exist, 38 

and that recently developed process-based models have more satisfactory statistical properties. In 39 

weighing the strengths and weaknesses of different approaches, we hope to provide a clear guide 40 

for empiricists testing hypotheses about the reciprocal effect of interspecific interactions and 41 

species phenotypes and to inspire further development of process-based models. 42 

 43 
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 Interactions between species are a fundamental aspect of life on earth, and understanding 48 

the evolutionary and ecological consequences of such interactions are a central goal of many 49 

classical theoretical frameworks in ecology and evolutionary biology. Identifying both the 50 

predictors of interspecific interactions and the consequences of such interactions for 51 

diversification and coexistence is thus an important contemporary research area, with strong 52 

implications for conservation biology. 53 

Several phylogenetic comparative methods have been deployed with the goal of 54 

elucidating how interspecific interactions drive (or are driven by) character evolution, but the 55 

reliability and efficacy of these methods remain largely untested. Here we focus on methods used 56 

to study interactions between closely related species (e.g., members of the same family) that 57 

arise from similarity in morphology, signaling traits or habitat (Brown and Wilson 1956; 58 

Schluter 2000; Pfennig and Pfennig 2009), rather than on community-wide interactions and 59 

interaction networks (Webb et al. 2002; Rezende et al. 2007; Cavender-Bares et al. 2009; 60 

Cadotte et al. 2013).  61 

Classical character displacement theory (Brown and Wilson 1956; Grether et al. 2009; 62 

Pfennig and Pfennig 2009) predicts that, where heterospecifics compete, selection should favor 63 

divergence in the traits responsible for competition, until lineages in sympatry no longer compete 64 

intensely. In a seminal example, selection resulting from exploitative competition between 65 

medium and large ground finches (Geospiza fortis & G. magnirostris) has driven bill size 66 

divergence on Daphne Major in the Galápagos (Grant and Grant 2006). Investigators who 67 

conduct comparative studies of divergent character displacement often test for a relationship 68 

between biogeographic overlap and trait dissimilarity, predicting that coexisting species will be 69 

more phenotypically divergent than non-coexisting ones.  Recent studies on Bicyclus butterflies 70 
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and Euglossa bees, for example, show that male chemical cues are more distinct between 71 

sympatric species than allopatric species, suggesting that reproductive character displacement 72 

has driven signal divergence in these taxa (Bacquet et al. 2015; Weber et al. 2016).  73 

Interspecific interactions can also lead to convergent, rather than divergent, character 74 

displacement (Cody 1969, 1973; Grant 1972; Grether et al. 2013). Agonistic character 75 

displacement theory (Grether et al. 2013) predicts convergence in traits mediating interspecific 76 

aggression when species compete strongly for the same resources. In other words, between-77 

species similarity in resource use may make interspecific territoriality adaptive, resulting in 78 

subsequent convergence in signaling traits involved in mediating territorial interactions (e.g., 79 

song in ovenbirds, Tobias et al. 2014). Therefore, tests of convergent character displacement 80 

typically test the prediction that sympatric lineages are more phenotypically similar than 81 

allopatric ones.  Because sympatric similarity can also result from convergence to local 82 

conditions (e.g., habitat, climate), it is important for empiricists to account for abiotic factors in 83 

tests of character convergence. 84 

 In some instances, rather than identifying the effect of species interactions on trait 85 

evolution, empiricists aim to identify traits that mediate particular pairwise interactions, such as 86 

hybridization or interspecific aggression. In this case, investigators test for a relationship 87 

between the measured interactions and trait similarity. Recent studies on New World warblers 88 

(Parulidae), for example, show that hybridization occurs more often between species with similar 89 

songs and that interspecific territoriality occurs more often between species that share similar 90 

plumage and territorial song phenotypes (Willis et al. 2014; Losin et al. 2016). 91 

 Although the examples presented here largely represent scenarios where interactions 92 

between species are competitive, empiricists apply methods discussed here to other non-93 
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competitive interactions as well (e.g., predicting links in plant/pollinator networks, identifying 94 

Müllerian mimicry rings: Elias et al. 2008; Eklöf and Stouffer 2016). Regardless of the 95 

biological question, a particularity of comparative tests aimed at understanding the interplay 96 

between interspecific interactions and species phenotypes is that they largely involve testing 97 

correlations between pairwise data (e.g. range overlap, phenotypic similarity, frequency of 98 

hybridization). In contrast, most phylogenetic comparative methods have been developed and 99 

tested on tip data (e.g. range size, morphological trait values), and the statistical properties of 100 

methods adapted to handle pairwise data (Box 1) have gone untested (but see Harmon & Glor 101 

2010). Furthermore, species interactions are inherently affected by the biogeographic history of 102 

dispersal and speciation in an evolving clade and the resulting patterns of range overlap. Patterns 103 

of trait dissimilarity between sympatric lineages—the classic test of character displacement—104 

may actually be the null expectation if allopatric speciation is the norm, because then sympatric 105 

species pairs will tend to share more distant common ancestors than allopatric species pairs do 106 

(Weir and Price 2011; Tobias et al. 2014). 107 

 Here, we apply the main phylogenetic comparative methods that investigators use to test 108 

hypotheses about interactions between closely related lineages and phenotypes (Box 1, Fig. 1) to 109 

datasets simulated under different evolutionary histories of speciation, dispersal, species 110 

interactions, and trait evolution. We then compare the efficacy of these methods, discuss the 111 

relative merits of each, and outline directions for future research.	 112 

 113 

114 
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 115 
 116 

Figure 1.  Schematic examples of the processes examined in our simulation study. A. Phylogeny 117 

along which the trait evolves. B. A trait evolving via divergent character displacement, C. A trait 118 

evolving via convergent character displacement, and D. A species interaction that exists at 119 

present due to pairwise trait similarity. For simulation details, see the main text and 120 

Supplementary Methods. 121 
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METHODS 123 
 124 

We compared the performance of different phylogenetic comparative methods by 125 

measuring their statistical power (e.g., probability of detecting divergence when divergence is 126 

simulated) and Type I error rate (e.g., probability of detecting an effect of species interactions 127 

when such an effect is not simulated) across three scenarios.  128 

 129 

Phylogeny and Range Simulations 130 

 131 

We jointly simulated trees {# spp. = 20, 50, 100, 150, 200, 250} and biogeographies 132 

under the dispersal-extinction-cladogenesis model of biogeographical evolution (i.e., DEC+J, 133 

with the inclusion of founder event speciation) in BioGeoBEARS (Ree and Smith 2008; Matzke 134 

2014). Briefly, the DEC+J model is a model of range evolution in which species ranges change 135 

along the branches of a phylogeny as a function of dispersal and local extinction and are 136 

inherited by daughter taxa at speciation according to several possible cladogenetic scenarios (see 137 

more details in Supplementary Methods). For each tree, we started with a single ancestral species 138 

occupying one of ten equidistant regions, and simulated trees with constant rates of speciation 139 

and local extinction. We considered different biogeographic scenarios by varying the rate of 140 

dispersal events between ranges (“high” and “low” dispersal; see details in Supplementary 141 

Methods) and the probability that speciation events occur in sympatry versus allopatry (“high” 142 

and “low” sympatric speciation; Supplementary Methods). Each of these simulations resulted in 143 

a phylogeny (the tree of extant species) and its associated biogeography (the set of regions in 144 

which each lineage occurred throughout the history of the clade). Lineages were identified as 145 
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sympatric if they co-occurred in at least one of the ten geographic regions, and allopatric if they 146 

did not co-occur in any.  147 

We simulated four biogeographic scenarios (combinations of low or high dispersal and 148 

low or high sympatric speciation) for each tree size. The resulting biogeographies span scenarios 149 

where sympatric speciation is common and dispersal is low (e.g., lizards on islands) to scenarios 150 

where allopatric speciation is the main mode of speciation and dispersal between regions is high 151 

(e.g., birds on continents). These parameter combinations produced a range of realistic 152 

proportions of sister taxa that are sympatric (Fig. S1A) and a range of realistic differences in age 153 

between sympatric and allopatric sister taxa (Pigot and Tobias 2014; Fig. S1B). In defining 154 

sympatry as any overlap, the mean magnitude of range overlap fell between 33-42% across all 155 

tree sizes and simulation parameters (Fig. S1C,D), which falls well within the range of overlap of 156 

sympatric taxa defined under commonly used minimum threshold values applied to continuous 157 

indices of range overlap (e.g. Pigot and Tobias 2014; Tobias et al. 2014).  158 

For each combination of tree sizes and DEC parameter combinations (n = 24), we 159 

performed 100 simulations, resulting in a bank of 2,400 trees with associated biogeographies. 160 

 161 

Character Displacement 162 

 The model.—To simulate both divergent and convergent character displacement, we 163 

simulated a continuous trait z under a model in which trait values of sympatric species in an 164 

evolving clade are repelled from (or drawn toward) one another. In divergent character 165 

displacement, trait divergence is driven by pairwise similarity in that same trait z; in convergent 166 

character displacement however, convergence in trait z (e.g. a signaling trait) is driven by 167 

pairwise similarity in another trait y (e.g. a resource use trait). To create a generic model of 168 
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character displacement, we thus modified the matching competition model (Nuismer & Harmon 169 

2015; Drury et al. 2016) by describing the mean value for trait z in lineage i after an 170 

infinitesimally small time step dt by: 171 

 172 

!" # + %# = !" # + ' ( − !" # %# + * +",-	×	0123 !" # − !-	 # ×		456 78	 9 57: 9
;<

-	="

%# + > 173 

(Eq. 1) 174 

 175 

where y = z in the case of divergent character displacement and ? ≠ ! in the case of divergent 176 

character displacement, ' ( − !" # 	describes attraction to a single stationary peak (i.e., the 177 

Ornstein-Uhlenbeck [OU] process, Felsenstein 1988; Garland et al. 1993; Hansen and Martins 178 

1996), n	is the number of species, δ is a random variable with mean 0 and variance = σ2dt (the 179 

Brownian motion [BM] rate parameter, describing the stochastic component of trait evolution), 180 

and A is a piecewise-constant matrix representing biogeographical overlap such that Ai,j equals 1 181 

if species i and j are sympatric at time t, and 0 otherwise. The “sign” portion determines the 182 

relative position of each species in trait space (i.e. it equals +1 if zi is larger than zj, and -1 183 

otherwise). The α value (α > 0) determines the effect of pairwise similarity in trait y on 184 

competition: if α is close to zero, all lineages sympatric with lineage i have the same competitive 185 

effect on i, regardless of their similarity in trait y; conversely, if α is large, sympatric lineages 186 

similar to i in terms of the y trait will have a much stronger competitive effect on i than 187 

sympatric lineages dissimilar to i in terms of the y trait. The parameter m represents the 188 

magnitude of the effect of competition when two lineages have identical y values (i.e., it provides 189 

an upper bound for the deterministic effect of competition). When m = 0, this equation reduces to 190 

an OU model, whereas positive m values result in pairwise divergence and negative values result 191 
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in pairwise convergence. When both m and ψ = 0, this model reduces to Brownian motion. For 192 

additional simulation details, see Supplementary Methods. 193 

 We use a lineage-based “phenomenological” model for our simulations rather than an 194 

individual-based model to have the computational ability to produce datasets of a size 195 

comparable to the maximum sometimes reached in empirical comparative phylogenetic studies 196 

(i.e. often reaching several hundreds of species). Models derived from microevolutionary first 197 

principles (e.g., Grether et al. 2009; Nuismer and Harmon 2015) generate similar patterns of 198 

sympatric shifts resulting from character displacement, and using such a model here would be 199 

much more computationally intensive, therefore restricting the range of parameter values that 200 

can be studied. For simplicity, this model also omits the effect of a species’ geographic structure 201 

and the effect of gene flow between distinct populations on the evolution of the mean species 202 

phenotype. This simplification is reasonable in the context of our study because there is no 203 

reason to expect that it will systematically bias the patterns generated in such a way as to yield 204 

different conclusions regarding the performance of the various analytical approaches that we use 205 

here. Finally, in all of our simulations, we considered sympatry to be a binomial variable, so Ai,j 206 

equaled either 1 (if species i and j are sympatric) or 0 (if species i and j are allopatric). This index 207 

of sympatry is similar to commonly used indices (Pigot and Tobias 2014; Tobias et al. 2014), but 208 

other formulations of sympatry, such as continuous measurements of range overlap (Bothwell et 209 

al. 2015; Martin et al. 2015)  are also possible. We did not explore continuous measurements of 210 

range overlap here, but have uploaded our simulation scripts to RPANDA (Morlon et al. 2016; 211 

https://github.com/hmorlon/PANDA), which could easily be modified to do so. 212 

 213 
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 Divergent character displacement.—We simulated datasets with divergent character 214 

displacement by setting y = z in Eq. 1 such that trait divergence is driven by pairwise similarity 215 

in that trait. Biologically, this could represent a feeding trait that co-varies with resource use 216 

(e.g., bill shape in Galápagos finches, Grant & Grant 2011) and which would be directly affected 217 

by interspecific competition. To assess whether each method could detect divergent character 218 

displacement when it occurred and did not erroneously detect character displacement when it 219 

was absent, we simulated datasets both with repulsion {m = 2} and without repulsion {m  = 0} 220 

(see Supplementary Methods). We also simulated datasets with {ψ = 2} and without {ψ = 0} the 221 

OU process. In all simulations, we held σ2 constant at 0.5, α constant at 1, and both the state at 222 

the root (z0) and the OU optimum (θ) constant at 0.  223 

In additional simulations run only on 100-species trees, we analyzed the effect of both the 224 

maximum strength of repulsion {m = 0, 1, 2, 10} and, to understand how the opposing forces of 225 

repulsion and attraction to an optimum influence analyses, the ratio of attraction to the maximum 226 

effect of competition {ψ:m	= 0, 0.2, 0.5, 1} on inferences. To achieve these ratios of ψ:m, we 227 

varied ψ while holding m constant (e.g., for the case where m = 2, we simulated datasets where ψ 228 

= 0, 0.4, 1, and 2, respectively). As above, these values were arbitrarily chosen based on visual 229 

inspection of realized simulations. 230 

For each parameter combination, we simulated 10 datasets for each tree, resulting in 231 

1,000 simulations for each tree size / biogeographic scenario combination.  232 

 233 

 Convergent character displacement.—We simulated datasets with convergent character 234 

displacement under Eq. 1, where the term y represents a trait determining resource use or niche 235 

occupation evolving via BM or OU. A species’ trait z in this model—a trait used as a territorial 236 
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signal—is thus attracted most strongly to the signal trait values of sympatric lineages with the 237 

most similar resource-use traits. Biologically, this represents a scenario where selection favors 238 

interspecific territoriality—mediated by similarity in territorial signals—because the benefits of 239 

excluding heterospecifics are similar to the benefits of excluding conspecifics (Grether et al. 240 

2009). As a species’ resource-use trait becomes less similar to that of sympatric species, the 241 

strength of attraction decreases to zero.  242 

We simulated resource-use traits under both BM (σ2
resource = 0.5, ψresource = 0) and OU 243 

(σ2
resource = 0.5, ψresource = 2, θresource = 0) models. For the signal trait, we simulated datasets both 244 

with convergence {m = -0.25} and without convergence {m = 0}. We did not include attraction 245 

toward a stable peak for the signal trait (i.e. ψ was held constant at 0). As above, we held σ2 = 0.5 246 

and !A = 0, though we held α constant at 10, since smaller values result in rapid, cladewise 247 

convergence in traits. To analyze the effect of the maximum strength of convergence, we ran 248 

another set of simulations on 100-species trees varying m {m = 0, -0.1, -0.25, -0.5} (see 249 

Supplementary Methods). The resource trait (y) and signal trait (z) were modeled as unlinked and 250 

genetically uncorrelated. 251 

As above, we simulated 10 datasets for each tree, resulting in 1,000 simulations for each 252 

tree size / biogeographic scenario combination.  253 

 254 

Predictors of Interspecific Interactions 255 

In some cases, investigators wish to identify which factors explain the occurrence of 256 

particular interspecific interactions. For example, investigators may want to understand which 257 

traits cause species to hybridize (e.g., Willis et al. 2014). In this scenario, species interactions 258 

vary according to phenotypic similarity between sympatric species pairs (i.e., species pairs that 259 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2017. ; https://doi.org/10.1101/083485doi: bioRxiv preprint 

https://doi.org/10.1101/083485


	 13	

could potentially interact). Additionally, and unlike character displacement analyses, predicting 260 

the occurrence of interspecific interactions requires treating trait similarity as a predictor variable 261 

rather than a response variable. Thus, we generated datasets where the presence of interactions 262 

between sympatric taxa depends on pairwise similarity in traits.  263 

Under this scenario, we first evolved a trait along the phylogeny under a BM (σ2 = 0.5, ψ 264 

= 0) or OU (σ2 = 0.5, ψ = 2, θ = 0) model. Next, we simulated a second, independently evolving 265 

trait (σ2
unmeasured = 1, ψunmeasured = 0) to represent an unmeasured trait that could cause the 266 

interaction of interest. To generate datasets where species interactions depend on similarity in 267 

trait space at the present, we created species interactions in the form of a binomial variable by 268 

sampling from a binomial distribution with the probability of interaction equal to: 269 

 270 

B =
4 CDEFDG	C;EF;

1 + 4 CDEFDG	C;EF;
 271 

(Eq. 2) 272 

 273 

(e.g., Hilbe 2009) where Dxn is the distance between species at the present (e.g., distance 274 

between tip values) in simulated trait n (simulated using fastBM in phytools, Revell 2012), and 275 

bn is the coefficient determining the magnitude of the relationship between the species 276 

interaction and similarity in trait n. Trait 1 is the measured, focal trait and trait 2 represents the 277 

independently evolving, unmeasured trait. As the effect of bn on the species interaction depends 278 

on the Dxn distribution, which in turn depends on the total height of the tree, we scaled the trees 279 

to a height of one prior to simulating datasets to facilitate comparison of results across trees and 280 

parameter space. 281 
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To determine the statistical power of each analytical method, we generated species 282 

interactions based on similarity in the measured trait (b1 = -4, b2 = 0); to assess the Type I error 283 

rate, we simulated species interactions based on similarity in the unmeasured trait (b1 = 0, b2 = -284 

4). To determine the effect of the magnitude of the coefficient determining the relationship 285 

between the measured trait and the interactions, we ran another set of simulations on 100-species 286 

trees varying b1 {b1 = 0, -2, -4, -6, -8} and holding b2 = -4. As above, we ran 1,000 simulations 287 

for each tree size / biogeographic scenario combination.  288 

 289 

Phylogenetic Tests 290 

Among our tests of character displacement (both divergent and convergent), the 291 

“correlation” tests involved assessing the significance of the relationship between phenotypic 292 

similarity and coexistence, using either the “full” dataset (all species pairs) or the “sister taxa” 293 

subset obtained by culling sister taxa from trees with ≥150 tips (Box 1, Diagram S1). To the full 294 

datasets, we applied standard non-phylogenetic regression analyses that ignore phylogenetic non-295 

independence (Box 1.1), the raw and phylogenetically permuted partial Mantel tests (Box 1.2, 296 

1.3), phylogenetic linear mixed models (PLMMs, Box 1.4), and the simulation approach (Box 297 

1.5, Supplementary Methods). To the sister-taxa datasets, we applied non-phylogenetic 298 

regression analyses (Box 1.1), PLMMs (Box 1.4), the simulation approach (Box 1.5), sister-taxa 299 

GLMs (Box 1.7), and fit process based models in EvoRAG (Box 1.8, Supplementary Methods). 300 

We did not perform Mantel tests on the sister-taxa data because such tests require complete 301 

matrices and distance matrices with data for only sister taxa would mostly contain empty cells 302 

(i.e. all those cells that correspond to non sister taxa species pairs). We compared the fit of 303 

process-based phenotypic models with and without species interactions (Brownian motion, 304 
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Ornstein-Uhlenbeck, diversity dependent, and matching competition models; see Box 1.6 and 305 

Supplementary Methods) to the full datasets from divergence scenarios using the R packages 306 

geiger (Pennell et al. 2014) and RPANDA (Morlon et al. 2016). We acknowledge that diversity-307 

dependent models were not designed to analyze character displacement per se, but because they 308 

incorporate interspecific interactions, we hypothesized that (and wanted to test if) they could be 309 

useful in doing so. We did not apply process-based models to convergence scenarios because the 310 

necessary model fitting tools have yet to be developed (see Discussion).  311 

Our tests of predictors of species interactions involved assessing the significance of the 312 

relationship between phenotypic similarity and species interactions (i.e., whether the species 313 

interact where they occur in sympatry). Since the response variable is binary, we fit non-314 

phylogenetic logistic regressions, logistic PLMMs, and employed the simulation approach (see 315 

Supplementary Methods). We did not perform Mantel tests or sister-taxa analyses because the 316 

species pair matrix was incomplete (species that do not coexist cannot interact) and typically too 317 

few sister taxa occurred in sympatry for regression analysis.   318 

  319 

RESULTS 320 

 321 

Divergent Character Displacement 322 

 When all possible pairwise comparisons are included in analyses, the ability of most 323 

methods to detect divergent character displacement depends on the presence of the OU process. 324 

As expected, non-phylogenetic regression analyses have a high Type I error rate in either 325 

scenario (Figs. 2Ai,iv, S2Ai,iv [NB: throughout, results for low sympatric speciation 326 

biogeographies are plotted in the main text and high sympatric speciation biogeographies in the 327 
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supplement]). When the OU process is present (ψ = 2), all methods generally have low Type I 328 

error rates and high power (Figs. 2Aiv-vi, S2iv-vi, Supplementary Tables). However, when there 329 

is no pull toward a peak (ψ = 0), the Type I error rate is higher for Mantel tests (Figs. 2Ai-ii, S2i-330 

ii), and the power is much lower for all methods, though the pppMantel and raw Mantel perform 331 

better than the simulation and PLMM methods (Figs. 2Aiii, Fig. S2iii). Repulsion is easier to 332 

detect against an OU background of traits converging toward a common optimum than against a 333 

background of traits diverging under BM, likely because the repulsion process is more active 334 

when species occupy similar trait space (Figs. S3, S4). High rates of sympatric speciation and 335 

dispersal tend to slightly decrease the power of all methods (Fig. S2ii,iv, Supplementary Tables). 336 

 The ability to detect divergence was relatively similar for m = 1 and m = 2, but declined 337 

for m = 10 (Fig. S5). This is due to a positive relationship between the ability to detect character 338 

displacement and the ratio of ψ:m (Fig. S6), resulting from a higher absolute magnitude of 339 

repulsion when both processes are present (Figs. S4, S6), indicating that this ratio impacts the 340 

ability to detect divergence more than the raw value of m. 341 

For sister-taxa analyses, there is a high probability of falsely concluding that character 342 

displacement occurred in datasets simulated under BM and, to a lesser extent, OU, whether 343 

analyzed with simple linear regressions, sister-taxa GLMs, or PLMMs (Figs. 2Bi,iii, S2Bi,iii). 344 

As with the whole-tree approach, the power tends to increase and Type I error rate tends to 345 

decrease in datasets with attraction toward a single-stationary peak (Figs. 2Biv-vi, S2Biv-vi). 346 

However, the overall power to infer the presence of divergence was low with sister-taxa analyses 347 

(Figs. 2Biii,vi, S2Biii,vi). Inferences were generally better when dispersal was high, which may 348 

reflect the elevated observed divergence in high dispersal scenarios (Fig. S3). Allopatric 349 

speciation scenarios increased the probability of Type I error (Fig. 2Bi-ii).  350 
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For the phylogenetic trait model-fitting analyses, BM and OU were generally correctly 351 

chosen when they were the generating models (i.e., when m = 0 and when ψ = 0 or 2, 352 

respectively, Figs. 3, S8). When ψ = 0 and m > 0, the matching competition (MC) model with 353 

biogeography is consistently the best-fit model (Figs. 3A, S8A). When m > 0 and ψ =2, the 354 

diversity dependent exponential (DDexp) model with biogeography was favored over other 355 

models in most scenarios (Figs. 3B, S8B), with positive rate parameters estimated in the 356 

maximum likelihood solution (Fig. S9). The biogeographic scenario did not greatly affect the 357 

outcome of model fitting, though correct models were slightly more supported when dispersal 358 

was high (Fig. S10), again in agreement with the observed magnitude of repulsion (Fig. S3). 359 

Although the models are less identifiable when m = 10 and ψ = 2 (Figs. 3, S8), this results from 360 

variation in the ψ:m ratio— there is a ratio of ψ:m around which these models cannot be 361 

distinguished (Fig. S11). 362 

Process-based models fit to sister-taxa datasets in EvoRAG did not mistakenly identify an 363 

effect of species interactions when they were absent (Fig. S4A, C, Table 2), but they were unable 364 

to identify the effect of competition when ψ = 0 (Fig. S4B, Table 2). However, as with process-365 

based models fit to the whole phylogeny, when data were simulated with both repulsion and a 366 

pull toward a stable peak, a model where evolutionary rates vary linearly with the number of 367 

sympatric taxa is often the best-fit model, though generally with only a marginally lower AICc 368 

value (i.e., DAICc < 2) than BM (Fig. S4, Table 2).  369 

 370 

371 
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 372 

Figure 2.  Proportion of statistically significant analyses in datasets simulated under divergent 373 

character displacement in biogeographic scenarios with low sympatric speciation rates. A. 374 

Results from approaches using data from all pairwise comparisons in a clade, plotted as a 375 

function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψ = 0 (i. all analyses and ii. 376 
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only analyses returning divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 and ψ = 2 (iv. 377 

all analyses and v. only analyses returning divergence in sympatry), and vi. m = 2 and ψ = 2. B. 378 

Results from analyses of sister-taxa culled from complete phylogenies binned by the number of 379 

resulting species pairs, plotted as a function of the number of sister taxa comparisons and 380 

dispersal rate when i-ii. m = 0 and ψ = 0 (i. all analyses and ii. only analyses returning 381 

divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 and ψ = 2 (iv. all analyses and v. only 382 

analyses returning divergence in sympatry), and vi. m = 2 and ψ = 2. For scenarios where m = 2, 383 

only the proportion of significant results showing divergence are plotted. Dashed horizontal lines 384 

represent a Type I error rate of 5%. 385 

 386 
387 
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 388 
Figure 3. Boxplots of Akaike weights for each trait model fit to simulated datasets in 389 

biogeographic scenarios with low sympatric speciation rates as a function of m in trees with 100 390 

species. A. When OU is absent, BM is the best-fit model when m = 0, and the matching 391 

competition model with biogeography is the best model when competitive divergence is present. 392 

B. When OU is present, OU is the best-fit model when m = 0, and the diversity-dependent 393 

exponential model with biogeography is the best model when competitive divergence is present 394 

and ψ:m is relatively high. 395 
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Convergent Character Displacement 397 
As with divergent character displacement, with all pairwise species combinations, the 398 

ability of most methods to detect convergent character displacement depends on the presence of 399 

the OU process on the resource-use trait: datasets simulated under an OU model were more 400 

likely to be statistically significant (Figs. 4A.iv-vi, S12A.iv-vi) across all methods than those 401 

with BM simulated resource-use traits (Figs. 4A.i-iii, S12A.i-iii). Again, this is likely because 402 

the presence of the OU process in the resource-use trait amplifies the magnitude of convergence 403 

(Fig. S13, S14). Overall, however, only the simulation approach had substantial power (> 0.80) 404 

to detect convergent character displacement (Table 1), and only in trees with 100 or more tips 405 

and datasets with the OU process in the simulated resource-use trait. Indeed, the non-406 

phylogenetic regressions often (spuriously) detected divergence rather than the simulated 407 

convergence, especially in smaller trees (Supplementary Tables). Both types of Mantel tests were 408 

unable to detect convergence, in fact having a higher Type I error rate (detecting divergence in 409 

BM simulated datasets, Supplementary Tables) than power. As with divergent character 410 

displacement, there was a tendency for higher power in lower dispersal scenarios. 411 

The power to detect convergence generally increased with increasingly negative values of 412 

m, the maximum strength of attraction in the signal trait when species are identical in the 413 

resource-use trait (Fig. S15), though as m gets large, the probability that all species converge on 414 

the same trait value increases, especially when ψresource = 2 (data not shown). 415 

Regardless of whether resource-use traits are simulated under OU or BM, when there is 416 

no convergence, most methods used for sister-taxa analyses tend to have high Type I error rates, 417 

though these analyses return an erroneous inference of divergence, rather than convergence, 418 

between sister taxa (Figs. 4B.i,ii,iv,v, S12B.i,ii,iv,v, Supplementary Tables). Sister-taxa analyses 419 

had overall low power to detect convergence when it did exist, and non-phylogenetic regressions 420 
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often detected divergence, rather than convergence (Supplementary Tables). When convergence 421 

was detected, it tended to be in biogeographic scenarios with high dispersal, likely reflecting the 422 

overall magnitude of convergence achieved (Fig. S13). As with divergent character displacement 423 

simulations, the allopatric speciation biogeographic scenarios were more likely to lead to higher 424 

Type I error rates (Figs. 4B.i,iv). Process-based models fit to sister-taxa datasets in EvoRAG did 425 

not erroneously detect divergence or convergence (i.e., BM was the best-fit model when m = 0, 426 

Fig. S14 A, C, Table 2), but they could not detect an effect of species interactions when 427 

convergence was present, at least for the number of sister taxa in this study, as OU was the best-428 

fit model when m = -0.25 (Fig. S14 B, C, Table 2). 429 

  430 

431 
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 432 
Figure 4. Proportion of statistically significant analyses in datasets simulated under convergent 433 

character displacement in biogeographic scenarios with low sympatric speciation rates. A. 434 

Results from approaches using data from all pairwise comparisons in a clade, plotted as a 435 

function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. all analyses 436 
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and ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource  = 0, iv-v. m 437 

= 0 and ψresource  = 2 (iv. all analyses and v. only analyses returning convergence in sympatry), 438 

and vi. m = -0.25 and ψresource = 2. B. Results from analyses of sister-taxa culled from complete 439 

phylogenies binned by the number of resulting species pairs, plotted as a function of the number 440 

of sister taxa comparisons and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. all analyses and 441 

ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource = 0, iv-v. m = 0 442 

and ψresource = 2 (iv. all analyses and v. only analyses returning convergence in sympatry), and vi. 443 

m = -0.25 and ψresource = 2. For scenarios where m = -0.25, only the proportion of significant 444 

results showing convergence are plotted. Dashed horizontal lines represent a Type I error rate of 445 

5%. 446 

447 
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Predicting Interspecific Interactions 448 
 449 
 Although all three methods used to identify traits that are causally related to interspecific 450 

interactions had high power (>>0.8, Table 1, Supplementary Tables) to do so in the parameter 451 

space explored here (Figs. 5ii,iv, S16ii,iv), only the simulation approach had both high power 452 

and a low Type I error rate (Table 1), whereas non-phylogenetic regressions and PLMMs had 453 

fairly high Type I error rates (Table 1) when interactions were simulated based on similarity in a 454 

trait other than the measured one (Fig. 5i,iii, S16i,iii). The power to detect an interaction was not 455 

greatly affected by the coefficients used to simulate datasets (Fig. S17). Biogeography did not 456 

have a large impact on analyses, though there were slightly higher Type I error in low-dispersal 457 

scenarios (Fig. 5i,iii). 458 

 459 

460 
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 461 
Figure 5. Proportion of statistically significant analyses in datasets with interactions simulated 462 

under a simple phenotype matching process in biogeographic scenarios with low sympatric 463 

speciation rates. Results from analyses where the measured trait was simulated under BM (i, ii) 464 

or OU (iii, iv), plotted as a function of the phylogeny size and dispersal rate when i. b1 (the 465 

simulation coefficient determining the relationship between the interaction and the measured 466 

trait) = 0, b2 (the simulation coefficient for an unmeasured trait) = -4, and ψ = 2, ii. b1 = -4, b2 = 467 

0, and ψ = 2, iii. b1 = 0, b2 = -4, and ψ = 0, and iv. b1 = -4, b2 = 0, and ψ = 0. 468 
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DISCUSSION 470 

As open-access databases with species range, trait, and phylogenetic data rapidly expand, 471 

investigators are able to test hypotheses about the relationships between interspecific interactions 472 

and phenotypic evolution at an unprecedented scale. Understanding the relative strengths and 473 

weaknesses of phylogenetic comparative methods available for testing such hypotheses is thus 474 

paramount. We found that currently used methods for detecting causal relationships between 475 

interspecific interactions and species phenotypes suffer from severe limitations (Tables 1,2).  476 

Overall, standard methods are better at detecting divergent character displacement when 477 

divergence does not drive unbounded trait evolution (i.e., when selection acts against extreme 478 

phenotypes, as can be modeled by the OU process). Consistent with previous reports (Harmon 479 

and Glor 2010; Guillot and Rousset 2013), Mantel tests had high Type I error rates and both 480 

standard and pppMantel tests have low power (Table 1, Figs. 2Ai, S2Ai). Alarmingly, we found 481 

that commonly used sister taxa approaches have high Type I error rates (Table 2, Figs. 2Bi,iv, 482 

S2Bi,iv, 4Bi,iv, S12Bi,iv, Supplementary Tables), which would lead investigators to conclude 483 

that divergent character displacement had occurred when, in fact, it had not, and none have a 484 

reasonable combination of Type I error and power. Thus, we discourage empiricists from using 485 

sister-taxa approaches to study character displacement. If no other data are available for testing 486 

for character displacement on the whole tree, then we recommend phylogenetic simulations, as 487 

they are the only method with reasonably low type I error rates, even though they suffer from 488 

low power (Tables 1, 2).  489 

Fitting process-based phylogenetic trait models to datasets simulated with divergent 490 

character displacement yielded more consistent patterns (Fig. 3). Without attraction toward a 491 

single stationary peak to bound trait evolution, the matching competition (MC) model with 492 
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biogeography was predominantly the best-fit model. For datasets simulated with the OU process, 493 

the diversity-dependent exponential (DDexp, see Box 1) model with biogeography was the best-fit 494 

model, and similarly a model with a linear relationship between evolutionary rates and the 495 

number of sympatric taxa often fit sister-taxa datasets, though with much lower power overall  496 
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Table 1. Summary of the statistical properties of the analytical approaches tested under scenarios using data from all tips (i.e., with 497 

sister-taxa analyses excluded). Values refer to the range of type I error rates and power levels for each tree size ≥50, averaged across 498 

biogeographic scenarios and scenarios where ψ or ψnf  = 0 or 2. Power refers to only those statistically significant tests in the 499 

appropriate tail (i.e., in the lower tail for divergent character displacement and upper tail for convergent character displacement). For 500 

each analytical scenario, the cell with the method with the best trade-off between Type I error and power is highlighted. 501 

	502 

Analysis non-phylogenetic 

regression 

Mantel test pppMantel test PLMM simulation test process-based models 

type I power type I power type I power type I power type I power type I* power† 

divergent char. displacement 0.37-0.61 0.51-1 0.05-0.10 0.29-1 0.04-0.06 0.19-1 0.05-0.06 0.12-1 0.05-0.07 0.08-1 0.04-0.05 0.91-0.94 

convergent char. displacement 0.40-0.60 0.31-0.99 0.08-0.09 0-0.02 0.05-0.06 0-0.01 0.05-0.07 0.07-0.26 0.04-0.05 0.12-0.91 -- -- 

predicting spp. interactions 0.08-0.3 1 -- -- -- -- 0.07-18 1 0.03-0.04 1 -- -- 

*Type I error rate calculated as the proportion of datasets simulated without divergence for which a model that includes species interaction— DDexp, DDlin, or MC—was chosen by 503 

model selection (i.e., for which ΔAICc = 0 and ΔAICc for all other models > 2). 504 
† Power calculated as the proportion of datasets simulated with divergence for which either DDexp, DDlin, or MC was chosen by model selection. 505 

 506 

  507 
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Table 2. Summary of the statistical properties of the analytical approaches tested under scenarios using sister-taxa analyses. Values 508 

refer to the range of type I error rates and power levels, averaged across biogeographic scenarios and scenarios where ψ or ψnf  = 0 or 509 

2. Power refers to only those statistically significant tests in the appropriate tail (i.e., in the upper tail for divergent character 510 

displacement and lower tail for convergent character displacement). We caution against using sister-taxa approaches to test for 511 

character displacement. 512 

	513 

Analysis non-phylogenetic 

regression 

sister-taxa GLM PLMM simulation test process-based models in 

EvoRAG 

type I power type I power type I power type I power type I* power† 

divergent char. displacement 0.07-0.42 0.68-0.75 0.05-0.07 0.05-0.07  0.20-0.34 0.08-0.50 0.70-0.78 0.01-0.02 0.18-0.31 0.04-0.07 0.03-0.36 

convergent char. displacement 0.33-0.43 0.01-0.2 0.07 0.04-0.06 0.41-0.5 0.02-0.21 0.03 0.01-0.2 0.04 0.09-0.55 

*Type I error rate calculated as the proportion of datasets simulated without divergence for which a model that includes a linear dependency on the number of sympatric lineages— 514 

BMlinear or OUlinear_beta—was chosen by model selection (i.e., for which ΔAICc = 0 and ΔAICc for all other models > 2). 515 
† Power calculated as the proportion of datasets simulated with divergence for which either BMlinear or OUlinear_beta was chosen by model selection. 516 

	517 
  518 
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 (Fig S4, Table 2). In the DDexp model, rates of trait evolution vary exponentially with the 519 

number of sympatric lineages through time, so incorporating the effect of interspecific 520 

interactions on the rate of trait of evolution but not explicitly modeling the process of character 521 

displacement acting on the mean trait values. It may nonetheless provide a useful proxy for 522 

detecting patterns that are similar to those left by character displacement, in the absence of a 523 

process-based model that incorporates both attraction toward an optimum trait value and 524 

divergent character displacement. We emphasize, however, that statistical support for the DDexp 525 

model does not in itself constitute decisive evidence that character displacement has occurred, as 526 

other processes may generate increasing evolutionary rates with increasing lineage diversity. 527 

Given that the DDexp model is the best-fit model in parameter space where other methods also 528 

perform well, combined evidence from model-fitting and other, non-process based methods 529 

would constitute a strong case for the presence of character displacement. In the absence of tip 530 

data (e.g., due to incomplete sampling or traits that are inherently measured as pairwise 531 

properties), process-based models are unsuitable and we recommend using data from as many 532 

species pairs as possible—not just sister taxa—and using simulation approaches or PLMMs. In 533 

other words, to detect divergent character displacement, we recommend that empiricists fit the 534 

MC model to their dataset when possible. High support for the MC model would constitute 535 

evidence that character displacement has acted on a trait. If the MC model does not provide a 536 

good fit for the data, this could be because character displacement proceeds in the presence of 537 

bounded trait evolution, in which case a signature of the DDexp model with a positive rate 538 

parameter and/or a signature of sympatric divergence in phylogenetic simulations or PLMMs 539 

would constitute evidence consistent with divergent character displacement. 540 
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Interestingly, even though most previous investigators have used the DDexp model to 541 

represent a decline in ecological opportunity with increasing species richness (Mahler et al. 542 

2010; Weir and Mursleen 2013), the maximum likelihood estimates of the rate parameters for 543 

this model were positive, rather than negative, when both divergence and the OU process were 544 

present (Fig. S9). This is consistent with our finding of increasing evolutionary rates with 545 

increasing species richness (Figs. S3, S4, S7) in this scenario. An increase in the rate of 546 

evolutionary changes in trait values toward the present likely results from selection not only 547 

restricting species to certain trait space but also partitioning that space. The resulting adaptive 548 

landscape is therefore rapidly changing, causing accelerating evolutionary rates as lineages fill 549 

this increasingly constrained space.  550 

The MC model (Box 1) is similar to the model used to simulate data (Eq. 1), with the 551 

assumption that ! is very small (<< 1) and consequently, competitive interactions are affected by 552 

the mean trait values of all sympatric species, rather than by pairwise similarity (Nuismer and 553 

Harmon 2015; Drury et al. 2016). Biologists, however, generally assume that competition is 554 

stronger between phenotypically similar species (Brown and Wilson 1956). Our results show that 555 

the assumption of a small ! does not render the MC model useless for studying character 556 

displacement, as the MC model is the best-fit model for many datasets simulated under the 557 

character displacement model used here. Nevertheless, the finding that the DDexp model is the 558 

best-fit model in datasets simulated under character displacement including OU indicates that the 559 

MC model is not a perfect model of character displacement. Recently, approximate Bayesian 560 

computational (ABC) tools have been published to fit a model of character displacement in 561 

which, like in our simulation model, the strength of competition depends on similarity in trait 562 

space (Clarke et al. 2017). This model provides an alternative tool for detecting character 563 
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displacement in comparative datasets, and we hope that further development of methods such as 564 

this ABC method will help ameliorate the statistical issues shown here. 565 

For datasets simulated including the OU process, the ratio of the pull-parameter in the 566 

OU portion of the model to the maximum amount of repulsion (ψ:m) had a consistent impact 567 

across all methods, which results from the overall larger magnitude of evolutionary changes in 568 

traits in scenarios with a high ψ:m ratio (Figs. S3, S4, S7). As ψ:m approached 1, all methods 569 

were better at detecting character displacement. Currently, there are no analytical approaches that 570 

can disentangle the simultaneous impact of attraction toward a peak and divergence due to 571 

competition, though we hope our results will inspire development of such tools.  572 

 Unlike for divergent character displacement, available statistical methods for detecting 573 

convergence in comparative datasets generally do a poor job of detecting convergence, with the 574 

simulation method outperforming others (Table 1). With whole-dataset approaches, Type I error 575 

rates are acceptable for phylogenetic analyses (~5%), however, so although detecting 576 

convergence is difficult, the risk of mistakenly detecting convergence is low. In sister-taxa 577 

analyses, although Type I error rates are high for PLMMs (Table 2), these largely return 578 

erroneous divergence results, rather than erroneous convergence (Figs. 4Bii,v, S12Bii,v). In 579 

short, if an empiricist detects convergence in their dataset, they can be fairly confident in the 580 

result. Yet if empiricists do not detect convergence, this could simply be a result of lower power 581 

of the available analytical tools. Currently, there are no tools to fit phylogenetic trait models of 582 

convergence between species (e.g., Nuismer & Harmon 2015); such tools might more 583 

successfully identify convergent character displacement in comparative datasets than the 584 

available statistical methods. 585 
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 For both divergent and convergent character displacement scenarios, we found that sister-586 

taxa GLMs and the simulation approach had a mean Type I error rate near 5% (Table 2). 587 

However, in some scenarios, the Type I error for sister taxa GLMs was much higher than for the 588 

simulation approach (Figs. 2Bi, 4Bi, Supplementary Tables), which suggests that including a 589 

model-based estimate of the rate of trait evolution more properly accounts for the effect of 590 

divergence than simply including the branch lengths separating sister taxa as a covariate in 591 

analyses to control for variation in the amount of time sister taxa have had to diverge from one 592 

another. The high overall Type I error rate for sister-taxa analyses may also result from the 593 

unrealistic assumption that transitions between allopatry and sympatry are uncommon along 594 

branches connecting sister taxa (Weir and Price 2011; Tobias et al. 2014). Supporting this 595 

explanation, we found that biogeographic scenarios with high levels of sympatric speciation and 596 

low dispersal tended to have overall lower Type I error rates (cf. Figs. 2,S2; Figs. 4,S12). 597 

 The outlook for identifying which traits drive species interaction is brighter. The 598 

statistical methods available to test for causal relationships between phenotypic similarity and 599 

interactions between species have very high power. The simulation approach has a low Type I 600 

error rate when causal relationships are simulated based on an unmeasured trait, although non-601 

phylogenetic regressions and PLMMs suffer from relatively high Type I error rates (Table 1). 602 

Thus, we recommend that empiricists interested in predicting pairwise species interactions based 603 

on trait data use phylogenetic simulations. While we did not simulate interactions between 604 

clades, our results are likely applicable to other empirical questions, such as identifying traits that 605 

predict links in ecological networks (Rafferty and Ives 2013; Hadfield et al. 2014; Eklöf and 606 

Stouffer 2016).  607 
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 By simulating datasets with various types of interactions between species across different 608 

modes of speciation and dispersal rates, we have shown that many of the methods that 609 

investigators use to analyze empirical datasets have low power to detect such patterns (Table 1). 610 

Worse still, widely-used sister taxa approaches, including standard regressions and sister-taxa 611 

GLMs, often detected character displacement in datasets that were simulated under a simple BM 612 

model (Figs. 2Bi-ii, 4Bi-ii). We therefore urge investigators to use caution when interpreting the 613 

results of such analyses, even in cases when sympatry is delineated using other criteria than the 614 

one considered here. When process-based models could be fit to these datasets, they tended to 615 

consistently identify patterns of divergence (i.e., either the matching competition model or a 616 

diversity-dependent model is the best fit model >91% of the time). Thus, when possible, 617 

empiricists should employ such methods. Statistical tools to fit process-based models of 618 

phenotypic evolution including species interactions are in their infancy (Drury et al. 2016; 619 

Manceau et al. 2017) and many possible models are not yet available (e.g., convergent character 620 

displacement, character divergence in the presence of an adaptive pull towards a peak). We hope 621 

that our results encourage the continued development of such tools.  622 

 In closing, we note that divergent character displacement is erroneously detected with 623 

many statistical approaches, indicating that there may be an overrepresentation of empirical 624 

studies that imply that divergence has occurred. In particular, studies that have used sister-taxa 625 

methods to document character displacement may have falsely interpreted a null expectation—626 

larger trait differences between sympatric lineages owing to allopatric speciation—as evidence 627 

for divergent character displacement. Conversely, convergent character displacement is often 628 

hard to detect with existing methods, suggesting that convergence in signal traits (e.g., Cody 629 
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1969, 1973; Tobias et al. 2014; Losin et al. 2016) might be more prevalent than previously 630 

thought. 631 
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Box 1. Methods for assessing the interplay between interspecific interactions and species 774 

phenotypes 775 

 776 

 Comparative analyses of the interplay between interspecific interactions and species 777 

phenotypes can either be conducted on entire clades, or, commonly, on sister taxa—species pairs 778 

that share a most recent common ancestor—that are culled from larger phylogenies. Such 779 

analyses generally consist of testing the statistical significance of correlations between either 780 

phenotypic similarity and geographic overlap (to test for divergent or convergent character 781 

displacement) or species interactions and phenotypic similarity (to find predictors of species 782 

interactions). As we are looking for correlations between pairwise comparisons (e.g., trait 783 

similarity, biogeographical overlap, hybridization, magnitude of pre-zygotic isolation), rather 784 

than “tip values” belonging to a single species, phylogenetically independent contrasts and 785 

extensions of PGLS analyses (Felsenstein 1985; Rezende and Diniz-Filho 2012) cannot be used, 786 

and alternative tests have been developed. 787 

 788 

1. Non-phylogenetic regressions 789 

 “Non-phylogenetic regressions” refers to Generalized Linear Models (GLMs) that ignore 790 

phylogenetic structure. Though less commonly applied to whole-clade analyses, investigators 791 

sometimes use non-phylogenetic regressions for sister-taxa analyses, on the basis that branches 792 

connecting sister taxa represent independent evolutionary histories (Felsenstein 1985).  793 

 794 

2. Mantel tests 795 
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 Several previous investigators have implemented Mantel tests (Mantel 1967) in analyses 796 

of species-pair comparisons (e.g., Roncal et al. 2012). These tests are designed to assess 797 

correlations between matrices, which here comprise interspecific trait distances or differences. 798 

Existing accounts of Mantel tests describe procedures only for complete matrices, so they cannot 799 

be used in many cases, including sister-taxa analyses (for which most off-diagonal elements of 800 

distances matrices are by definition excluded) and in identifying predictors of species 801 

interactions (e.g., hybridization), as only sympatric lineages can interact and setting values for 802 

allopatric comparisons to zero would not make biological sense. 803 

 804 

3. Phylogenetically permuted partial Mantel tests  805 

 Phylogenetically permuted partial Mantel (pppMantel) tests (Lapointe and Garland 2001) 806 

account for phylogenetic non-independence by permuting null datasets that are structured 807 

phylogenetically, and are popular among investigators studying species interactions (e.g., Allen 808 

et al. 2014; Willis et al. 2014; Medina-García et al. 2015). Like Mantel tests, pppMantel tests 809 

also require complete interaction matrices. 810 

 811 

4. Phylogenetic linear mixed models 812 

In recent years, researchers have adapted animal models from quantitative genetics to 813 

incorporate phylogenies as random effects in mixed-effect regressions on comparative datasets 814 

(Hadfield & Nakagawa 2010). Such phylogenetic linear mixed models (PLMMs) have been 815 

modified to accommodate pairwise species data (Tobias et al. 2014), wherein the identity of the 816 

species being compared and the node connecting them in the phylogeny are included as random 817 
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effects. PLMMs are promising new tools, as they are not limited to sister-taxa data and model 818 

predictions can be generated and plotted.  819 

 820 

5. Phylogenetic simulations 821 

 Simulation approaches are widely used to control for phylogenetic non-independence in 822 

tip data (Martins & Garland Jr 1991; Garland et al. 1993), and have been applied to pairwise 823 

species comparisons (Elias et al. 2008; Drury et al. 2015; Losin et al. 2016). In these approaches, 824 

trait evolution is simulated along phylogenies, often scaled such that the simulated tip data 825 

resemble real data. Pairwise comparisons are then calculated on many simulated datasets and 826 

used to generate a phylogenetically informed null distribution of test statistics against which to 827 

compare test statistics calculated from the real data.  828 

 829 

6. Process-based models of phenotypic evolution 830 

 In the statistical approaches outlined thus far, the data analyzed are measurements of 831 

pairwise differences between species, and the statistical tests for the effect of species interactions 832 

on trait evolution consist of testing for significant correlations between either phenotypic 833 

similarity and geographic overlap or species interactions and trait similarity. However, it is also 834 

possible to detect a signature of interspecific competition in the distributions of continuous trait 835 

values across the tips of a phylogeny by fitting process-based models of phenotypic evolution to 836 

the data. These models allow testing hypotheses about which processes are most likely to have 837 

generated the observed distribution of traits in a clade (Hansen & Martins 1996).  838 

 Interspecific interactions have recently been incorporated into such models in two ways. 839 

First, in diversity-dependent (DD) models, evolutionary rates change as a function (either linear 840 
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[DDlin] or exponential [DDexp]) of the number of extant lineages through time (e.g., Weir & 841 

Mursleen 2013). Secondly, in the ‘matching competition’ (MC) model, trait evolution in an 842 

evolving lineage varies as a function of the values of traits in other evolving lineages (Nuismer & 843 

Harmon 2015, Drury et al. 2016). Comparing the fit of these models to other models that exclude 844 

interspecific interactions (e.g., Brownian motion and Ornstein-Uhlenbeck models) tests whether 845 

there is evidence that interspecific interactions have influenced the trajectory of trait evolution in 846 

a clade.  847 

 848 

7. Sister-taxa GLMs 849 

 If allopatric speciation is common, then sympatry occurs after a period of initial isolation, 850 

resulting in a pattern where sympatric sister taxa are older than allopatric sister taxa. Thus, even 851 

random genetic drift can generate a pattern in which sympatric lineages have more divergent 852 

traits compared to allopatric lineages, simply because divergence has had more time to evolve 853 

(Weir and Price 2011; Tobias et al. 2014). To control for variation in the evolutionary distance 854 

between sister taxa, “sister taxa GLMs” include patristic distance as a predictor in non-855 

phylogenetic regressions (e.g., Davies et al. 2007; Martin et al. 2010).  856 

 857 

8. Sister-taxa model fitting 858 

 Recently, tools have been described for fitting process-based models to sister taxa 859 

datasets using maximum likelihood (Weir and Wheatcroft 2011; Weir and Lawson 2015). With 860 

these tools, it is possible to test whether models that allow evolutionary rates to vary as a linear 861 

function of a gradient (e.g., whether male plumage coloration varies as a function of the strength 862 

of sexual selection, Seddon et al. 2013) better fit sister-taxa datasets than constant rates models. 863 
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When the gradient is the number of sympatric lineages, these models are conceptually similar to 864 

the linear diversity dependent models described above. 865 
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interplay between interspecific interactions and phenotypic evolution” 
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SUPPLEMENTARY METHODS 
 
Simulating Phylogenies Under Varying Biogeographic Scenarios 
 

Joint simulation of trees and biogeographies requires parameterizing (1) the 
diversification process (the rules defining how new species appear), (2) rates of anagenetic range 
gains/losses (the rules defining how lineages’ ranges change), and (3) cladogenetic range 
inheritance (the rules defining how two sister lineages divide their ancestral range upon 
speciation). In each scenario, we evolved species ranges under the DEC+J model (Matzke 2014) 
across a grid of ten possible regions with equal probability of transitions between regions and 
only one region occupied at the root of the tree. We simulated the diversification process along 
each tree with a rate of 0.25 (speciation/lineage/time unit). Anagenetic changes were simulated 
under two dispersal rates {d (transition/lineage/unit time) = 0.03, 0.06}, chosen from within a 
range of dispersal values estimated from empirical datasets. When anagenetic dispersal happens, 
a lineage occupies an additional region chosen at random. Across these two values of “d”, we 
held local extirpation rates constant at e = 0.03 (local extirpation/lineage/unit time), the median 
value used for simulations in Matzke 2014. In cases where a lineage occupying only one region 
goes locally extinct, that lineage goes extinct (Matzke 2014).  

The cladogenetic events possible in the DEC+J model are—briefly  (for a detailed 
explanation of each of these processes, see Matzke 2014)— sympatric speciation (both daughter 
lineages keep the one-region ancestral range, parameter “y”), subset sympatric speciation (one of 
the daughter lineages keeps the ancestral range, the other one inherits a subset of the ancestral 
range, parameter “s”), vicariance (the two daughter lineages split the ancestral range, parameter 
“v”), and founder event speciation (one daughter lineages keeps the ancestral range, the other 
occupies a new region, parameter “j”).  

As the pool of possible daughter ranges changes depending on the ancestral range (e.g., 
there are fewer ways in which the ancestral two-region range “AB” can be propagated to 
daughter lineages than the three-range region “ABC”), cladogenetic range changes are sampled 
by first assigning each type of cladogenetic change (y,s,v, and j from above) a particular weight. 
From these weighted ranges, the probability that a daughter inherits a specific range is calculated 
by dividing the weight assigned to that range by the sum of the weights of each possible daughter 
range (Matzke 2014). By default, the relative weight of sympatric speciation (range copying), 
subset sympatric speciation, and vicariance are equal in most implementations of the DEC model 
(i.e., y=s=v). To generate biogeographic scenarios where recently diverged sister taxa are more 
likely to be allopatric, we implemented a scenario where the weight of either type of sympatric 
speciation event is very low {y = s = 0.005*v} as well as under default parameter values {y = s = 
v}. Across both scenarios, we held the relative weight of founder event speciation constant (j = 
0.1, y + s + v = 2.9). 

 
Simulating Character Displacement 

 
Datasets were simulated under Eq. 1 in the main text as follows:   
1. At the first time step (the root), the trait value was set to z0 (= 0 in all cases). 
2. Each time step dt was set to the total tree height divided by 2500. To complete the simulation 
along any branch not divisible by this value of dt, we set the time step equal to the remainder of 
the branch length divided by dt. 
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3. During each time step from the root to the tip of the tree, the trait value of lineage i is 
calculated according to Eq 1. For the component of Eq.1 dictating the magnitude of divergence 
or convergence, between-lineage distances in trait space were calculated based on similarity at 
time t-dt. In simulations of divergent character displacement, if species have identical trait 
values, the “sign” value is overridden so that species move in the opposite direction of one 
another in trait space. 
4. At a branching event, the trait values of both daughter lineages are set to equal the value of the 
parent lineage. 
 
 For divergent character displacement scenarios, we arbitrarily chose simulation parameter 
values based on visual inspection of simulated trajectories under different combinations of 
parameter values. We chose to focus on m = 2, and also explored the effect of varying this 
parameter between 1 & 10, because we could visualize divergence in the realized simulations. 
For example, for a 20 tip tree simulated with high dispersal and low sympatric speciation: 
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In convergent character displacement simulations, we likewise chose parameter values 
based on visual inspection of simulated trajectories under different combinations of parameter 
values. We chose to focus on m = -0.25, and also explored the effect of varying this parameter 
between -0.1 & -0.50, because we could visualize convergence in the realized simulations and 
the simulated trait values did not converge across the entire clade. For example, on the same tree 
as above: 
 

 
 
 
Analytical Methods 
 
Non-phylogenetic regressions: General Linear Models (GLMs) were fitted to simulated datasets 
using the glm function in R. For character displacement analyses, linear models were fit to 
pairwise differences in trait data, with sympatry/allopatry as the predictor variable. For 
interaction analyses, logistic regressions were fit to the simulated species interaction variable, 
with pairwise difference in the focal trait as the predictor variable. 
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Mantel tests: We computed raw Mantel tests using mantel.rtest in ade4 (Dray and Dufour 2007), 
specifying 1000 permutations to assess statistical significance. We computed phylogenetically 
permuted partial Mantel (pppMantel) tests (Lapointe and Garland 2001) using the script 
phyloMantel.R from Harmon & Glor (2010), again using 1000 permutations to test for 
significance. 
 
Phylogenetic linear mixed models (PLMMs): For the character displacement datasets, we fitted 
PLMMs using asreml-R (Butler et al. 2009), including both sympatry and the patristic distance 
(calculated using the cophenetic.phylo function in ape [Paradis 2011]) between each pairwise 
species comparison as fixed effects and including the identity of each lineage and the phylogeny 
as random effects, following Tobias et al. (2014). To assess statistical significance of the fixed 
effects, we used Wald-type F-tests with Kenward-Rogers adjustments to the denominator 
degrees of freedom using the wald.asreml function with the option denDF = “numeric” in 
asreml-R, again following Tobias et al. (2014) 

For the scenario using traits to predict species interactions, we fit PLMMs using 
MCMCglmm in R (Hadfield 2010), because the residual maximum likelihood approach used in 
asreml-R may bias estimates for logistic regressions (Bolker et al. 2009). We used standard 
inverse-Gamma priors for the fixed and random effects, using the code:  

 
 prior<-list(G=list(G1=list(V=1,nu=0.002),G2=list(V=1,nu=0.002),G3=list(V=1,nu=0.002)),R=list(V=1,nu=0.02)) 

 
We ran each fit for between 2 million and 20 million chains based on preliminary 

assessment of convergence for different tree sizes, varying the burn-in and thinning periods to 
result in approximately 2000 runs. We visually inspected convergence for a large sample of 
model fits to make sure that our MCMC parameterization was working well. MCMC fits were 
very computationally expensive, so we fit the models to a subset of simulated datasets (n = 100 
per tree size, biogeography, and simulation parameter combination). 

For all PLMMs, we randomized the order in which the identity of the lineages was passed 
to the random effects.  
 
Simulation approach: BM models were first fit to simulated trait data using mvBM in the 
mvMORPH package (Clavel et al. 2015). Then, 5,000 datasets were simulated using the 
maximum likelihood estimate of the BM rate parameter and state at the root using fastBM in 
phytools (Revell 2012). A GLM (as outlined in “non-phylogenetic regressions”, the predictor 
variable for character displacement analyses was biogeographical overlap and the response 
variable was pairwise trait similarity, and for analyses of species interactions, the pairwise trait 
similarity was the predictor variable and a binomial variable of species interaction was the 
response variable) was fit to each of these simulated datasets, and the resulting analysis was 
considered statistically significant if both (a) the non-phylogenetic test on the raw data was 
statistically significant and (b) the test statistic from the raw analysis was outside of the 2.5-
97.5% quantile interval of test statistics estimated on the simulated datasets. 
 
Sister taxa analyses: for trees of size 150 and larger, we culled sister taxa from the full trees. We 
then ran non-phylogenetic regressions, PLMMs, the simulation approach and sister taxa GLMs 
on the culled dataset. 
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Phenotypic models: We fit all phenotypic models by maximum likelihood. We fit BM and OU 
models using geiger (Pennell et al. 2014) and the matching competition and two diversity 
dependent models (with either linear or exponential dependence of sigma on the number of 
species) using RPANDA (Morlon et al. 2016) in R. For the latter models, we included the 
biogeography used to simulate the datasets in the model fits, as described in Drury et al. (2016). 
We then compared the relative support of these models using Akaike weights (Burnham and 
Anderson 2002), since the models are not nested. Since model-fitting is computationally 
expensive, we fit the process-based models to a subset of datasets simulated on 100 tip trees (n = 
100 biogeography and simulation parameter combination). 
 Additionally, to analyze the effect of m and ψ on rates of evolution, we fit four trait 
models to the sister-taxa datasets for both divergent and convergent character displacement 
scenarios using the R package EvoRAG (Weir and Lawson 2015): BM, OU, plus versions of BM 
and OU that allow the rate of trait evolution to change with the number of sympatric lineages 
(i.e., “BM_null”, “OU_null”, “BM_linear”, and “OU_linear_beta”). 
 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2017. ; https://doi.org/10.1101/083485doi: bioRxiv preprint 

https://doi.org/10.1101/083485


	 7	

SUPPLEMENTARY REFERENCES 
 
Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.-

S. S. White. 2009. Generalized linear mixed models: a practical guide for ecology and 
evolution. Trends Ecol. Evol. 24:127–135. Elsevier. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a 
practical information-theoretic approach. 2nd editio. Springer, New York, NY. 

Butler, D., B. Cullis, A. Gilmour, and B. Gogel. 2009. ASReml user guide release 3.0. VSN Int. 
Ltd, Hemel Hempstead, UK. 

Clavel, J., G. Escarguel, and G. Merceron. 2015. mvMORPH: an R package for fitting 
multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6:1311–1319. 
Wiley Online Library. 

Dray, S., and A. B. Dufour. 2007. The ade4 package: implementing the duality diagram for 
ecologists. J. Stat. Softw. 22:1–20. 

Drury, J., J. Clavel, M. Manceau, and H. Morlon. 2016. Estimating the effect of competition on 
trait evolution using maximum likelihood inference. Syst. Biol. 65:700–710. 

Hadfield, J. D. 2010. MCMC methods for multi-response generalized linear mixed models: the 
MCMCglmm R package. J. Stat. Softw. 33:1–22. 

Harmon, L. J., and R. E. Glor. 2010. Poor statistical performance of the Mantel test in 
phylogenetic comparative analyses. Evolution (N. Y). 64:2173–2178. 

Lapointe, F. J., and T. Garland. 2001. A generalized permutation model for the analysis of cross-
species data. J. Classif. 18:109–127. Springer. 

Matzke, N. J. 2014. Model selection in historical biogeography reveals that founder-event 
speciation is a crucial process in island clades. Syst. Biol. 63:951–970. 

Morlon, H., E. Lewitus, F. L. Condamine, M. Manceau, J. Clavel, and J. Drury. 2016. RPANDA: 
an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 
7:589–597. Wiley Online Library. 

Paradis, E. 2011. Analysis of Phylogenetics and Evolution with R. Springer, New York, NY. 
Pennell, M. W., J. M. Eastman, G. J. Slater, J. W. Brown, J. C. Uyeda, R. G. FitzJohn, M. E. 

Alfaro, and L. J. Harmon. 2014. geiger v2. 0: an expanded suite of methods for fitting 
macroevolutionary models to phylogenetic trees. Bioinformatics btu181. Oxford Univ 
Press. 

Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other 
things). Methods Ecol. Evol. 3:217–223. 

Tobias, J. A., C. K. Cornwallis, E. P. Derryberry, S. Claramunt, R. T. Brumfield, and N. Seddon. 
2014. Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. 
Nature 506:359–363. Nature Publishing Group. 

Weir, J. T., and A. Lawson. 2015. Evolutionary rates across gradients. Methods Ecol. Evol. 
6:1278–1286. 

 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2017. ; https://doi.org/10.1101/083485doi: bioRxiv preprint 

https://doi.org/10.1101/083485


	 8	

Supplementary Diagram 1. Analytical methods used for each simulation scenario (see Box 1 
for more details). 
analytical method divergent character 

displacement 
convergent character 
displacement 

predicting spp. 
interactions 

 whole tree sister taxa whole tree sister taxa sympatric spp. 
(1) non-phylogenetic 
regression ü ü ü ü ü 

(2) Mantel test 
 ü  ü   

(3) phylogenetically 
permuted partial Mantel tests ü  ü   

(4) phylogenetic linear mixed 
models ü ü ü ü ü 

(5) phylogenetic simulations 
 ü ü ü ü ü 

(6) process-based models 
using maximum likelihood ü     

(7) sister taxa GLMs 
  ü  ü  

(8) sister taxa process-based 
models in EvoRAG  ü  ü  
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Supplementary Figure 1. The resulting biogeographic landscape under each of the four 
biogeographic scenarios. A. The proportion of sister taxa that are living in sympatry varies as a 
function of both the dispersal rate and the level of sympatric speciation. B. The patristic 
distances (the branch lengths separating sister taxa) are larger for sympatric taxa, although the 
magnitude of this difference depends on the biogeographic scenario. C. The mean number of 
ranges occupied at the tips is higher under high dispersal rates. D. The mean range overlap for 
sympatric species pairs, calculated as the number of areas two species both occur in, divided by 
the total number of areas occupied by the lineage with the smaller range. 
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Supplementary Figure 2. Proportion of statistically significant analyses in datasets simulated 
under divergent character displacement in biogeographic scenarios with high sympatric 
speciation rates. A. Results from approaches using data from all pairwise comparisons in a clade, 
plotted as a function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψ = 0 (i. all 
analyses and ii. only analyses returning divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 
and ψ = 2 (iv. all analyses and v. only analyses returning divergence in sympatry), and vi. m = 2 
and ψ = 2. B. Results from analyses of sister-taxa culled from complete phylogenies binned by 
the number of resulting species pairs, plotted as a function of the number of sister taxa 
comparisons and dispersal rate when i-ii. m = 0 and ψ = 0 (i. all analyses and ii. only analyses 
returning divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 and ψ = 2 (iv. all analyses 
and v. only analyses returning divergence in sympatry), and vi. m = 2 and ψ = 2. For scenarios 
where m = 2, only the proportion of significant results showing divergence are plotted. Dashed 
horizontal lines represent a Type I error rate of 5%. 
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Supplementary Figure 3. The effect of repulsion on the magnitude of changes in traits from the 
root to the tip of phylogenies under different simulation scenarios. To calculate the absolute 
value of divergence steps (A & B), we recorded the absolute value of the magnitude of the step 
size resulting from the deterministic repulsion step of Eq. 1 (i.e.,	" #$,&	×	()*+ ,$ - − ,&	 - ×/

&	0$

		123 45	 6 247 6
8
9-)	at each time step, took the mean during each internode interval for all extant 

lineages within trees, and then averaged each internode interval across all simulations. Each 
point thus represents the mean of means and the standard error across 100 phylogenies. The 
absolute value of the steps pulling trait values toward a stable peak (C & D) similarly represents 
the absolute value of the magnitude of the step size resulting from the deterministic component 
of the OU attraction to the peak in Eq. 1 (i.e.,	; < − ,$ - 9-).  
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Supplementary Figure 4. Models fit to sister-taxa datasets generated under divergent character 
displacement scenarios in EvoRAG corroborate the influence of the number of sympatric 
lineages on the rate of evolution. A. When ψ = 0, BM is the best fitting model, whether A. m = 0 
or B. m = 2. When ψ = 2, OU is the best fitting model when C. m = 0, whereas a BM model that 
allows the rate of trait evolution to vary linearly with the number of sympatric lineages is a best 
fitting model when D. m = 2. Plots depict the Akaike weight of each model as a function of both 
the biogeographic scenario and the number of sister taxa comparisons.  
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Supplementary Figure 5. The proportion of statistically significant analyses for datasets with 
divergent character displacement varies as a function of both m and ψ. 
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Supplementary Figure 6. As ψ:m  increases, the ability of all methods to detect character 
displacement, when present, increases under both low sympatric speciation (A) and high 
sympatric speciation (B) scenarios. 
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Supplementary Figure 7. The effect of repulsion on the magnitude of changes in traits from the 
root to the tip of phylogenies as a function of the ratio ψ:m. As ψ increases relative to m, both the 
magnitude of divergence steps (panels A-C) and the magnitude of the steps pulling trait values 
toward the peak (panels D-F) increase. This effect becomes increasingly apparent at higher m 
values and in biogeographic scenarios generated under high dispersal rates. For a description of 
the data, see the legend of Fig. S3. In this plot, data are averaged within 10 time bins 
representing each 10% of the total height of the phylogeny. 
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Supplementary Figure 8. Proportion of simulated datasets for which a given phenotypic model 
was chosen using model selection as a function of m. We considered a model to be chosen if it 
had the lowest AICc score among all of the models, and if the AICc score was > 2 units away 
from BM model. A. Results for datasets simulated without the OU process. B. Results from 
datasets simulated with ψ = 2. 
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Supplementary Figure 9. The rate parameter r of the DDexp+GEO model is increasingly 
negative with increasing m values when ψ = 0, yet is positive when ψ > 0. 
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Supplementary Figure 10. Akaike weights for each trait model fit to simulated datasets in 
biogeographic scenarios with high sympatric speciation rates as a function of m. A. When OU is 
absent, BM is the best-fit model when m = 0, and the matching competition model with 
biogeography is the best model when competitive divergence is present. B. When OU is present, 
OU is the best-fit model when m = 0, and the diversity-dependent exponential model with 
biogeography is the best model when competitive divergence is present and ψ:m is relatively 
high.  
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Supplementary Figure 11. As ψ:m increases, the DDexp + GEO model is increasingly better fit 
to datasets simulated with character displacement. 
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Supplementary Figure 12. Proportion of statistically significant analyses in datasets simulated 
under convergent character displacement in biogeographic scenarios with high sympatric 
speciation rates. A. Results from approaches using data from all pairwise comparisons in a clade, 
plotted as a function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. 
all analyses and ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource  
= 0, iv-v. m = 0 and ψresource  = 2 (iv. all analyses and v. only analyses returning convergence in 
sympatry), and vi. m = -0.25 and ψresource  = 2. B. Results from analyses of sister-taxa culled from 
complete phylogenies binned by the number of resulting species pairs, plotted as a function of 
the number of sister taxa comparisons and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. all 
analyses and ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource  = 0, 
iv-v. m = 0 and ψresource  = 2 (iv. all analyses and v. only analyses returning convergence in 
sympatry), and vi. m = -0.25 and ψresource  = 2. For scenarios where m = -0.25, only the proportion 
of significant results showing convergence are plotted. Dashed horizontal lines represent a Type 
I error rate of 5%. 
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Supplementary Figure 13. The effect of convergence on the magnitude of changes in traits in 
simulations, plotted as a function of stabilizing selection in the resource-use trait (ψresource) and 
biogeography. With ψresource = 2, the magnitude of convergence steps is higher, and this is 
particularly true for high dispersal biogeographies. Data generated as described in the legend of 
Fig. S3. 
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Supplementary Figure 14. Models fit to sister-taxa datasets generated under convergent character 
displacement scenarios in EvoRAG. A. When m = 0, BM is the best fitting model, whether A. 
ψresource = 0 or C. ψresource = 2. When m = -0.25, OU is the best fitting model when C. ψresource = 0 
and D. ψresource = 2, but an OU model with evolutionary rates that change linearly as a function of 
the number of sympatric lineages (OU linear) is also a strong model. Plots depict the Akaike 
weight of each model as a function of both the biogeographic scenario and the number of sister 
taxa comparisons.  
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Supplementary Figure 15. The proportion of statistically significant analyses for datasets with 
convergent character displacement varies as a function of both m, and is generally lower in the 
absence of a pull toward a peak (i,iii) compared to cases where data were simulated with a pull 
toward a peak (ii,iv).  
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Supplementary Figure 16. Proportion of statistically significant analyses in datasets with 
interactions simulated under a simple phenotype matching process in biogeographic scenarios 
with high sympatric speciation rates. Results from analyses where the focal trait was simulated 
under A. BM or B. OU, plotted as a function of the dispersal rate when i. b1 (the simulation 
coefficient determining the relationship between the interaction and the measured trait) = 0, b2 
(the simulation coefficient for an unmeasured trait) = -4, and ψ = 2, ii. b1 = -4, b2 = 0, and ψ = 2, 
iii. b1 = 0, b2 = -4, and ψ = 0, and iv. b1 = -4, b2 = 0, and ψ = 0. 
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Supplementary Figure 17. The power to detect a causal relationship between a species 
interaction and similarity in a trait value is not affected greatly by varying the coefficient 
determining the strength of this relationship, regardless of whether the OU process is absent (i, 
iii) or present (ii, iv) in the measured trait. In these simulations, tree size was held constant at 100 
species. 
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