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Abstract  27 
 28 
 Much ecological and evolutionary theory predicts that interspecific interactions often 29 
drive phenotypic diversification and that species phenotypes in turn influence species 30 
interactions. Several phylogenetic comparative methods have been developed to assess the 31 
importance of such processes in nature; however, the statistical properties of these methods have 32 
gone largely untested. Here, we assess the performance of available comparative approaches for 33 
analyzing the interplay between interspecific interactions and species phenotypes. We find that 34 
currently used statistical methods largely fail to detect the impact of interspecific interactions on 35 
trait evolution, that sister taxa analyses often erroneously detect character displacement where it 36 
does not exist, and that recently developed process-based models have more satisfactory 37 
statistical properties. In weighing the strengths and weaknesses of different approaches, we hope 38 
to provide a clear guide for empiricists testing hypotheses about the reciprocal effect of 39 
interspecific interactions and species phenotypes and to inspire further development of process-40 
based models. 41 
 42 
Keywords: character displacement, competition, interspecific interactions, phylogenetic 43 
comparative methods, trait evolution 44 
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 Interactions between species are a fundamental aspect of life on earth, and understanding 47 
the evolutionary and ecological consequences of such interactions are a central goal of many 48 
classical theoretical frameworks in ecology and evolutionary biology. Identifying both the 49 
predictors of interspecific interactions and the consequences of such interactions for 50 
diversification and coexistence is thus an important contemporary research area, with strong 51 
implications for conservation biology. 52 

Several phylogenetic comparative methods have been deployed with the goal of 53 
elucidating how interspecific interactions drive (or are driven by) character evolution, but the 54 
reliability and efficacy of these methods remain largely untested. Here we focus on methods used 55 
to study interactions between closely related species (e.g., members of the same family) that 56 
arise from similarity in morphology, signaling traits or habitat (Brown and Wilson 1956; 57 
Schluter 2000; Pfennig and Pfennig 2009), rather than on community-wide interactions and 58 
interaction networks (Webb et al. 2002; Rezende et al. 2007; Cavender-Bares et al. 2009; 59 
Cadotte et al. 2013).  60 

Classical character displacement theory (Brown and Wilson 1956; Grether et al. 2009; 61 
Pfennig and Pfennig 2009) predicts that, where heterospecifics compete, selection should favor 62 
divergence in the traits responsible for competition, until lineages in sympatry no longer compete 63 
intensely. In a seminal example, selection resulting from exploitative competition between 64 
medium and large ground finches (Geospiza fortis & G. magnirostris) has driven bill size 65 
divergence on Daphne Major in the Galápagos (Grant and Grant 2006). Investigators who 66 
conduct comparative studies of divergent character displacement often test for a relationship 67 
between biogeographic overlap and trait dissimilarity, predicting that coexisting species will be 68 
more phenotypically divergent than non-coexisting ones.  Recent studies on Bicyclus butterflies 69 
and Euglossa bees, for example, show that male chemical cues are more distinct between 70 
sympatric species than allopatric species, suggesting that reproductive character displacement 71 
has driven signal divergence in these taxa (Bacquet et al. 2015; Weber et al. 2016).  72 

Interspecific interactions can also lead to convergent, rather than divergent, character 73 
displacement (Cody 1969, 1973; Grant 1972; Grether et al. 2013). Agonistic character 74 
displacement theory (Grether et al. 2013) predicts convergence in traits mediating interspecific 75 
aggression when species compete strongly for the same resources. In other words, between-76 
species similarity in resource use may make interspecific territoriality adaptive, resulting in 77 
subsequent convergence in signaling traits involved in mediating territorial interactions (e.g., 78 
song in ovenbirds, Tobias et al. 2014). Therefore, tests of convergent character displacement 79 
typically test the prediction that sympatric lineages are more phenotypically similar than 80 
allopatric ones.  Because sympatric similarity can also result from convergence to local 81 
conditions (e.g., habitat, climate), it is important for empiricists to account for abiotic factors in 82 
tests of character convergence. 83 
 In some instances, rather than identifying the effect of species interactions on trait 84 
evolution, empiricists aim to identify traits that mediate particular pairwise interactions, such as 85 
hybridization or interspecific aggression. In this case, investigators test for a relationship 86 
between the measured interactions and trait similarity. Recent studies on New World warblers 87 
(Parulidae), for example, show that hybridization occurs more often between species with similar 88 
songs and that interspecific territoriality occurs more often between species that share similar 89 
plumage and territorial song phenotypes (Willis et al. 2014; Losin et al. 2016). 90 
 Regardless of the biological question, a particularity of comparative tests aimed at 91 
understanding the interplay between interspecific interactions and species phenotypes is that they 92 
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largely involve testing correlations between pairwise data (e.g. range overlap, phenotypic 93 
similarity, frequency of hybridization). In contrast, most phylogenetic comparative methods have 94 
been developed and tested on tip data (e.g. range size, morphological trait values), and the 95 
statistical properties of methods adapted to handle pairwise data (Box 1) have gone untested (but 96 
see Harmon & Glor 2010). Furthermore, species interactions are inherently affected by the 97 
biogeographic history of dispersal and speciation in an evolving clade and the resulting patterns 98 
of range overlap. Patterns of trait dissimilarity between sympatric lineages—the classic test of 99 
character displacement—may actually be the null expectation if allopatric speciation is the norm, 100 
because then sympatric species pairs will tend to share more distant common ancestors than 101 
allopatric species pairs do (Weir and Price 2011; Tobias et al. 2014). 102 
 Here, we apply the main phylogenetic comparative methods that investigators use to test 103 
hypotheses about interactions between closely related lineages and phenotypes (Box 1, Fig. 1) to 104 
datasets simulated under different evolutionary histories of speciation, dispersal, species 105 
interactions, and trait evolution. We then compare the efficacy of these methods, discuss the 106 
relative merits of each, and outline directions for future research.	 107 
 108 

109 
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 110 
 111 
Figure 1.  Schematic examples of the processes examined in our simulation study. A. Phylogeny 112 
along which the trait evolves. B. A trait evolving via divergent character displacement, C. A trait 113 
evolving via convergent character displacement, and D. A species interaction that exists at 114 
present due to pairwise trait similarity. For simulation details, see Supplementary Methods. 115 
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METHODS 117 
 118 

We compared the performance of different phylogenetic comparative methods by 119 
measuring the statistical power (e.g., probability of detecting divergence when divergence is 120 
simulated) and Type I error rate (e.g., probability of detecting an effect of species interactions 121 
when such an effect is not simulated) across several scenarios.  122 
 123 
Phylogeny and Range Simulations 124 
 125 

We jointly simulated trees {# spp. = 20,50,100,150, 200, 250} and biogeographies under 126 
the dispersal-extinction-cladogenesis model of biogeographical evolution (i.e., DEC+J, with the 127 
inclusion of founder event speciation) in BioGeoBEARS (Ree and Smith 2008; Matzke 2014). 128 
For each tree, we started with a single ancestral species occupying one of ten equidistant regions, 129 
and simulated trees with constant rates of speciation and local extinction. We considered 130 
different biogeographic scenarios by varying the rate of dispersal events between ranges (“high” 131 
and “low” dispersal; see details in Supplementary Methods) and the probability that speciation 132 
events occur in sympatry versus allopatry (“high” and “low” sympatric speciation; 133 
Supplementary Methods). Each of these simulations resulted in a phylogeny (the tree of extant 134 
species) and its associated biogeography (the set of regions in which each lineage occurred 135 
throughout the history of the clade). Lineages were identified as sympatric if they co-occurred in 136 
at least one of the ten geographic regions, and allopatric if they did not co-occur in any.  137 

We simulated four biogeographic scenarios (combinations of low or high dispersal and 138 
low or high sympatric speciation) for each tree size. The resulting biogeographies span scenarios 139 
where sympatric speciation is common and dispersal is low (e.g., lizards on islands) to scenarios 140 
where allopatric speciation is the main mode of speciation and dispersal between regions is high 141 
(e.g., birds on continents). These parameter combinations produced a range of realistic 142 
proportions of sister taxa that are sympatric (Fig. S1A) and a range of realistic differences in age 143 
between sympatric and allopatric sister taxa (Pigot & Tobias 2015; Fig S1B). 144 

For each combination of tree sizes and DEC parameter combinations (n = 24), we 145 
performed 100 simulations, resulting in a bank of 2,400 trees with associated biogeographies. 146 

 147 
Character Displacement 148 
 The model.—We simulated a continuous trait under a model in which species’ trait values 149 
are repelled from (or drawn toward) the trait values of sympatric members of an evolving clade 150 
as a function of their phenotypic similarity. We modified the matching competition model 151 
(Nuismer & Harmon 2015; Drury et al. 2016) such that the mean trait value !"	in lineage i after 152 
an infinitesimally small time step dt is described by: 153 
 154 

!" $ + &$ = !" $ + ( ) − !" $ &$ + + ,",.	×	0123 !" $ − !.	 $ ×		456 78	 9 57: 9
;<

.	="
&$ + > 155 

(Eq. 1) 156 
 157 
where ( ) − !" $ 	describes attraction to a single stationary peak (i.e., the Ornstein-Uhlenbeck 158 
[OU] model), n	is the number of species, δ is a random variable with mean 0 and variance = σ2dt 159 
(the Brownian motion [BM] rate parameter, describing the stochastic component of trait 160 
evolution), and A is a piecewise-constant matrix representing biogeographical overlap such that 161 
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Ai,j equals 1 if species i and j are sympatric at time t, and 0 otherwise. The “sign” portion 162 
determines the relative position of each species in trait space. The α value determines the effect 163 
of pairwise similarity in trait y on competition, with large α values biasing the strength of 164 
interactions toward species pairs with similar y values; conversely, as α decreases towards zero, 165 
all sympatric lineages interact equally. The parameter m represents the magnitude of the effect of 166 
competition when two lineages have identical y values (i.e., it provides an upper bound for the 167 
deterministic effect of competition). When m = 0, this equation reduces to an OU model, whereas 168 
positive m values result in pairwise divergence and negative values result in pairwise 169 
convergence. When both m and ψ = 0, this model reduces to Brownian motion. For additional 170 
simulation details, see Supplementary Methods. 171 
 We use a lineage-based “phenomenological” model for our simulations rather than an 172 
individual-based model in order to have the computational ability to produce datasets of a size 173 
comparable to those typically used in empirical comparative phylogenetic studies (i.e. often 174 
reaching several hundreds of species). A model derived from microevolutionary first principles 175 
would generate similar patterns of character displacement and would be much more 176 
computationally intensive, therefore largely restricting the range of parameter values that can be 177 
studied. For simplicity, this model also omits the effect of a species geographic structure and 178 
gene flow between distinct populations resulting from dispersal on the evolution of the mean 179 
species phenotype. This simplification is reasonable in the context of our study because there is 180 
no reason to expect that it will systematically bias the patterns generated in such a way as to 181 
yield different conclusions regarding the performance of the various analytical approaches that 182 
we use here.  183 
 184 
 Divergent character displacement.—We simulated datasets with divergent character 185 
displacement by setting y = z in Eq. 1 such that trait divergence is driven by pairwise similarity 186 
in that trait. Biologically, this could represent a feeding trait that co-varies with resource use 187 
(e.g., bill shape in Galápagos finches, Grant & Grant 2011) and which would be directly affected 188 
by interspecific competition. To assess whether each method could detect divergent character 189 
displacement when it occurred and did not erroneously detect character displacement when it 190 
was absent, we simulated datasets both with repulsion {m = 2} and without repulsion {m  = 0} 191 
(see Supplementary Methods). We also simulated datasets with {ψ = 2} and without {ψ = 0} the 192 
OU process. In all simulations, we held σ2 constant at 0.5, α constant at 1, and both the state at 193 
the root (z0) and the OU optimum (θ) constant at 0.  194 

In additional simulations run only on 100-species trees, we analyzed the effect of both the 195 
maximum strength of repulsion {m = 0, 1, 2, 10} and, to understand how the opposing forces of 196 
repulsion and attraction to an optimum influence analyses, the ratio of attraction to the maximum 197 
effect of competition {ψ:m	= 0, 0.2, 0.5, 1} on inferences. As above, these values were arbitrarily 198 
chosen based on visual inspection of realized simulations. 199 

For each parameter combination, we simulated 10 datasets for each tree, resulting in 200 
1,000 simulations for each tree size / biogeographic scenario combination.  201 

 202 
 Convergent character displacement.—We simulated datasets with convergent character 203 
displacement under Eq. 1, where the term y represents a trait determining resource use or niche 204 
occupation evolving via BM or OU. A species’ trait z in this model—a trait used as a territorial 205 
signal—is thus attracted most strongly to the signal trait values of sympatric lineages with the 206 
most similar resource-use traits. Biologically, this represents a scenario where selection favors 207 
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interspecific territoriality—mediated by similarity in territorial signals—because the benefits of 208 
excluding heterospecifics are similar to the benefits of excluding conspecifics (Grether et al. 209 
2009). As a species’ resource-use trait becomes less similar to that of sympatric species, the 210 
strength of attraction decreases to zero.  211 

We simulated resource-use traits under both BM (σ2
resource = 0.5, ψresource = 0) and OU 212 

(σ2
resource = 0.5, ψresource = 2, θresource = 0) models. For the signal trait, we simulated datasets both 213 

with convergence {m = -0.25} and without convergence {m = 0}. We did not include attraction 214 
toward a stable peak for the signal trait (i.e. ψ was held constant at 0). As above, we held σ2 = 0.5 215 
and !? = 0, though we held α constant at 10, since smaller values result in rapid, cladewise 216 
convergence in traits. To analyze the effect of the maximum strength of convergence, we ran 217 
another set of simulations on 100-species trees varying m {m = 0, -0.1, -0.25, -0.5} (see 218 
Supplementary Methods). The resource trait (y) and signal trait (z) were modeled as unlinked and 219 
genetically uncorrelated. 220 

As above, we simulated 10 datasets for each tree, resulting in 1,000 simulations for each 221 
tree size / biogeographic scenario combination.  222 
 223 
Predictors of Interspecific Interactions 224 

In some cases, investigators wish to identify which factors explain the occurrence of 225 
particular interspecific interactions. For example, investigators may want to understand which 226 
traits cause species to hybridize (e.g., Willis et al. 2014). In this scenario, species interactions 227 
vary according to phenotypic similarity between sympatric species pairs (i.e., species pairs that 228 
could potentially interact). Additionally, and unlike character displacement analyses, predicting 229 
the occurrence of interspecific interactions requires treating trait similarity as a predictor variable 230 
rather than a response variable. Thus, we generated datasets where the presence of interactions 231 
between sympatric taxa depends on pairwise similarity in traits.  232 

Under this scenario, we first evolved a trait along the phylogeny under a BM (σ2 = 0.5,ψ 233 
= 0) or OU (σ2 = 0.5, ψ = 2, θ = 0) model. Next, we simulated a second, independently evolving 234 
trait (σ2

unmeasured = 1, ψunmeasured = 0) to represent an unmeasured trait that could cause the 235 
interaction of interest. To generate datasets where species interactions depend on similarity in 236 
trait space at the present, we created species interactions in the form of a binomial variable by 237 
sampling from a binomial distribution with the probability of interaction equal to: 238 
 239 

@ = 4 ABCDBE	A;CD;

1 + 4 ABCDBE	A;CD;  240 

(Eq. S2) 241 
 242 

(e.g., Hilbe 2009) where Dxn is the distance between species at the present (e.g., distance 243 
between tip values) in simulated trait n (simulated using fastBM in phytools, Revell 2012), and 244 
bn is the coefficient determining the magnitude of the relationship between the species 245 
interaction and similarity in trait n. Trait 1 is the measured, focal trait and trait 2 represents the 246 
independently evolving, unmeasured trait. As the effect of bn on the species interaction depends 247 
on the Dxn distribution, which in turn depends on the total height of the tree, we scaled the trees 248 
to a height of one prior to simulating datasets to facilitate comparison of results across trees and 249 
parameter space. 250 

To determine the statistical power of each analytical method, we generated species 251 
interactions based on similarity in the measured trait (b1 = -4, b2 = 0); to assess the Type I error 252 
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rate, we simulated species interactions based on similarity in the unmeasured trait (b1 = 0, b2 = -253 
4). To determine the effect of the magnitude of the coefficient determining the relationship 254 
between the measured trait and the interactions, we ran another set of simulations on 100-species 255 
trees varying b1 {b1 = 0, -2, -4, -6, -8} and holding b2 = -4. As above, we ran 1,000 simulations 256 
for each tree size / biogeographic scenario combination.  257 
 258 
Phylogenetic Tests 259 

Among our tests of character displacement (both divergent and convergent), the 260 
“correlation” tests involved assessing the significance of the relationship between phenotypic 261 
similarity and coexistence, using either the “full” dataset (all species pairs) or the “sister taxa” 262 
subset obtained by culling sister taxa from trees with ≥150 tips. To the full datasets, we applied 263 
standard non-phylogenetic regression analyses that ignore phylogenetic non-independence, the 264 
raw and phylogenetically permuted partial Mantel tests, phylogenetic linear mixed models 265 
(PLMMs), and the simulation approach (see Box 1, 1-6 and Supplementary Methods). To the 266 
sister-taxa datasets, we applied non-phylogenetic regression analyses, PLMMs, the simulation 267 
approach, sister-taxa GLMs, and fit process based models in EvoRAG (see Box 1, 7-8 and 268 
Supplementary Methods). We did not perform Mantel tests on the sister-taxa data because such 269 
tests require complete matrices and distance matrices with data for only sister taxa would mostly 270 
contain empty cells (i.e. all those cells that correspond to non sister taxa species pairs). We 271 
compared the fit of process-based phenotypic models with and without species interactions 272 
(Brownian motion, Ornstein-Uhlenbeck, diversity dependent, and matching competition models; 273 
see Box 1, 5 and Supplementary Methods) to the full datasets from divergence scenarios using 274 
the R packages geiger (Pennell et al. 2014) and RPANDA (Morlon et al. 2016). We acknowledge 275 
that diversity-dependent models were not designed to analyze character displacement per se, but 276 
because they incorporate interspecific interactions, we hypothesized that (and wanted to test if) 277 
they could be useful in doing so. We did not apply process-based models to convergence 278 
scenarios because the necessary model fitting tools have yet to be developed (see Discussion).  279 

Our tests of predictors of species interactions involved assessing the significance of the 280 
relationship between phenotypic similarity and species interactions (i.e., whether the species 281 
interact where they occur in sympatry). Since the response variable is binary, we fit non-282 
phylogenetic logistic regressions, logistic PLMMs, and employed the simulation approach (see 283 
Supplementary Methods). We did not perform Mantel tests or sister-taxa analyses because the 284 
species pair matrix was incomplete (species that do not coexist cannot interact) and typically too 285 
few sister taxa occurred in sympatry for regression analysis.   286 
  287 
 288 
RESULTS 289 
 290 
Divergent Character Displacement 291 
 When all possible pairwise comparisons are included in analyses, the ability of most 292 
methods to detect divergent character displacement depends on the presence of the OU process. 293 
As expected, non-phylogenetic regression analyses have a high Type I error rate in either 294 
scenario (Figs. 2Ai,iv, S2Ai,iv [NB: throughout, results for low sympatric speciation 295 
biogeographies are plotted in the main text and high sympatric speciation biogeographies in the 296 
supplement]). When the OU process is present (ψ = 2), all methods generally have low Type I 297 
error rates and high power (Figs. 2Aiv-vi, S2iv-vi, Supplementary Tables). However, when there 298 
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is no pull toward a peak (ψ = 0), the Type I error rate is higher for Mantel tests (Figs. 2Ai-ii, S2i-299 
ii), and the power is much lower for all methods, though the pppMantel and raw Mantel perform 300 
better than the simulation and PLMM methods (Figs. 2Aiii, Fig. S2iii). Repulsion is easier to 301 
detect against an OU background of traits converging toward a common optimum than against a 302 
background of traits diverging under BM, likely because the repulsion process is more active 303 
when species occupy similar trait space (Figs. S3, S4). High rates of sympatric speciation and 304 
dispersal tend to slightly decrease the power of all methods (Fig. S2ii,iv, Supplementary Tables). 305 
 The ability to detect divergence was relatively similar for m = 1 and m = 2, but declined 306 
for m = 10 (Fig. S5). This is due to a positive relationship between the ability to detect character 307 
displacement and the ratio of ψ:m (Fig. S6), resulting from a higher absolute magnitude of 308 
repulsion when both processes are present (Figs. S4, S6), indicating that this ratio impacts the 309 
ability to detect divergence more than the raw value of m. 310 

For sister-taxa analyses, there is a high probability of falsely concluding that character 311 
displacement occurred in datasets simulated under BM and, to a lesser extent, OU, whether 312 
analyzed with simple linear regressions, sister-taxa GLMs, or PLMMs (Figs. 2Bi,iii, S2Bi,iii). 313 
As with the whole-tree approach, the power tends to increase and Type I error rate tends to 314 
decrease in datasets with attraction toward a single-stationary peak (Figs. 2Biv-vi, S2Biv-vi). 315 
However, the overall power to infer the presence of divergence was low with sister-taxa analyses 316 
(Figs. 2Biii,vi, S2Biii,vi). Inferences were generally better when dispersal was high, which may 317 
reflect the elevated observed divergence in high dispersal scenarios (Fig. S3). Allopatric 318 
speciation scenarios increased the probability of Type I error (Fig. 2Bi-ii).  319 

For the phylogenetic trait model-fitting analyses, BM and OU were generally correctly 320 
chosen when they were the generating models (i.e., when m = 0 and when ψ = 0 or 2, 321 
respectively, Figs. 3, S8). When ψ = 0 and m > 0, the matching competition (MC) model with 322 
biogeography is consistently the best-fit model (Figs. 3A, S8A). When m > 0 and ψ =2, the 323 
diversity dependent exponential (DDexp) model with biogeography was favored over other 324 
models in most scenarios (Figs. 3B, S8B), with positive rate parameters estimated in the 325 
maximum likelihood solution (Fig. S9). The biogeographic scenario did not greatly affect the 326 
outcome of model fitting, though correct models were slightly more supported when dispersal 327 
was high (Fig. S10), again in agreement with the observed magnitude of repulsion (Fig. S3). 328 
Although the models are less identifiable when m = 10 and ψ = 2 (Figs. 3, S8), this results from 329 
variation in the ψ:m ratio— there is a ratio of ψ:m around which these models cannot be 330 
distinguished (Fig. S11). 331 

Process-based models fit to sister-taxa datasets in EvoRAG did not mistakenly identify an 332 
effect of species interactions when they were absent (Fig. S4A, C, Table 2), but they were unable 333 
to identify the effect of competition when ψ = 0 (Fig. S4B, Table 2). However, as with process-334 
based models fit to the whole phylogeny, when data were simulated with both repulsion and a 335 
pull toward a stable peak, a model where evolutionary rates vary linearly with the number of 336 
sympatric taxa is often the best-fit model, though generally with only a marginally lower AICc 337 
value (i.e., DAICc < 2) than BM (Fig. S4, Table 2).  338 
 339 

340 
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 341 
Figure 2.  Proportion of statistically significant analyses in datasets simulated under divergent 342 
character displacement in biogeographic scenarios with low sympatric speciation rates. A. 343 
Results from approaches using data from all pairwise comparisons in a clade, plotted as a 344 
function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψ = 0 (i. all analyses and ii. 345 
only analyses returning divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 and ψ = 2 (iv. 346 
all analyses and v. only analyses returning divergence in sympatry), and vi. m = 2 and ψ = 2. B. 347 
Results from analyses of sister-taxa culled from complete phylogenies binned by the number of 348 
resulting species pairs, plotted as a function of the number of sister taxa comparisons and 349 
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dispersal rate when i-ii. m = 0 and ψ = 0 (i. all analyses and ii. only analyses returning 350 
divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 and ψ = 2 (iv. all analyses and v. only 351 
analyses returning divergence in sympatry), and vi. m = 2 and ψ = 2. For scenarios where m = 2, 352 
only the proportion of significant results showing divergence are plotted. Dashed horizontal lines 353 
represent a Type I error rate of 5%. 354 
 355 

356 
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 357 
Figure 3. Boxplots of Akaike weights for each trait model fit to simulated datasets in 358 
biogeographic scenarios with low sympatric speciation rates as a function of m in trees with 100 359 
species. A. When OU is absent, BM is the best-fit model when m = 0, and the matching 360 
competition model with biogeography is the best model when competitive divergence is present. 361 
B. When OU is present, OU is the best-fit model when m = 0, and the diversity-dependent 362 
exponential model with biogeography is the best model when competitive divergence is present 363 
and ψ:m is relatively high. 364 
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Convergent Character Displacement 366 
As with divergent character displacement, with all pairwise species combinations, the 367 

ability of most methods to detect convergent character displacement depends on the presence of 368 
the OU process on the resource-use trait: datasets simulated under an OU model were more 369 
likely to be statistically significant (Figs. 4A.iv-vi, S12A.iv-vi) across all methods than those 370 
with BM simulated resource-use traits (Figs. 4A.i-iii, S12A.i-iii). Again, this is likely because 371 
the presence of the OU process in the resource-use trait amplifies the magnitude of convergence 372 
(Fig. S13, S14). Overall, however, only the simulation approach had substantial power (> 0.80) 373 
to detect convergent character displacement (Table 1), and only in trees with 100 or more tips 374 
and datasets with the OU process in the simulated resource-use trait. Indeed, the non-375 
phylogenetic regressions often (spuriously) detected divergence rather than the simulated 376 
convergence, especially in smaller trees (Supplementary Tables). Both types of Mantel tests were 377 
unable to detect convergence, in fact having a higher Type I error rate (detecting divergence in 378 
BM simulated datasets, Supplementary Tables) than power. As with divergent character 379 
displacement, there was a tendency for higher power in lower dispersal scenarios. 380 

The power to detect convergence generally increased with increasingly negative values of 381 
m, the maximum strength of attraction in the signal trait when species are identical in the 382 
resource-use trait (Fig. S15), though as m gets large, the probability that all species converge on 383 
the same trait value increases, especially when ψresource = 2 (data not shown). 384 

Regardless of whether resource-use traits are simulated under OU or BM, when there is 385 
no convergence, most methods used for sister-taxa analyses tend to have high Type I error rates, 386 
though these analyses return an erroneous inference of divergence, rather than convergence, 387 
between sister taxa (Figs. 4B.i,ii,iv,v, S12B.i,ii,iv,v, Supplementary Tables). Sister-taxa analyses 388 
had overall low power to detect convergence when it did exist, and non-phylogenetic regressions 389 
often detected divergence, rather than convergence (Supplementary Tables). When convergence 390 
was detected, it tended to be in biogeographic scenarios with high dispersal, likely reflecting the 391 
overall magnitude of convergence achieved (Fig. S13). As with divergent character displacement 392 
simulations, the allopatric speciation biogeographic scenarios were more likely to lead to higher 393 
Type I error rates (Figs. 4B.i,iv). Process-based models fit to sister-taxa datasets in EvoRAG did 394 
not erroneously detect divergence or convergence (i.e., BM was the best-fit model when m = 0, 395 
Fig. S14 A, C, Table 2), but they could not detect an effect of species interactions when 396 
convergence was present, at least for the number of sister taxa in this study, as OU was the best-397 
fit model when m = -0.25 (Fig. S14 B, C, Table 2). 398 

  399 
400 
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 401 
Figure 4. Proportion of statistically significant analyses in datasets simulated under convergent 402 
character displacement in biogeographic scenarios with low sympatric speciation rates. A. 403 
Results from approaches using data from all pairwise comparisons in a clade, plotted as a 404 
function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. all analyses 405 
and ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource  = 0, iv-v. m 406 
= 0 and ψresource  = 2 (iv. all analyses and v. only analyses returning convergence in sympatry), 407 
and vi. m = -0.25 and ψresource = 2. B. Results from analyses of sister-taxa culled from complete 408 
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phylogenies binned by the number of resulting species pairs, plotted as a function of the number 409 
of sister taxa comparisons and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. all analyses and 410 
ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource = 0, iv-v. m = 0 411 
and ψresource = 2 (iv. all analyses and v. only analyses returning convergence in sympatry), and vi. 412 
m = -0.25 and ψresource = 2. For scenarios where m = -0.25, only the proportion of significant 413 
results showing convergence are plotted. Dashed horizontal lines represent a Type I error rate of 414 
5%. 415 

416 
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Predicting Interspecific Interactions 417 
 418 
 Although all three methods used to identify traits that are causally related to interspecific 419 
interactions had high power (>>0.8, Table 1, Supplementary Tables) to do so in the parameter 420 
space explored here (Figs. 5ii,iv, S16ii,iv), only the simulation approach had both high power 421 
and a low Type I error rate (Table 1), whereas non-phylogenetic regressions and PLMMs had 422 
fairly high Type I error rates (Table 1) when interactions were simulated based on similarity in a 423 
trait other than the measured one (Fig. 5i,iii, S16i,iii). The power to detect an interaction was not 424 
greatly affected by the coefficients used to simulate datasets (Fig. S17). Biogeography did not 425 
have a large impact on analyses, though there were slightly higher Type I error in low dispersal 426 
scenarios (Fig. 5i,iii). 427 
 428 
DISCUSSION 429 

As open-access databases with species range, trait, and phylogenetic data rapidly expand, 430 
investigators are able to test hypotheses about the relationships between interspecific interactions 431 
and phenotypic evolution at an unprecedented scale. Understanding the relative strengths and 432 
weaknesses of phylogenetic comparative methods available for testing such hypotheses is thus 433 
paramount. We found that currently used methods for detecting causal relationships between 434 
interspecific interactions and species phenotypes suffer from severe limitations (Tables 1,2).  435 

Overall, standard methods are better at detecting divergent character displacement when 436 
divergence does not drive unbounded trait evolution (i.e., when selection acts against extreme 437 
phenotypes). Consistent with previous reports (Harmon and Glor 2010; Guillot and Rousset 438 
2013), Mantel tests had high Type I error rates and both standard and pppMantel tests have low 439 
power (Table 1, Figs. 2Ai, S2Ai). Alarmingly, we found that commonly used sister taxa 440 
approaches have high Type I error rates (Table 2, Figs. 2Bi,iv, S2Bi,iv, 4Bi,iv, S12Bi,iv, 441 
Supplementary Tables), which would lead investigators to conclude that divergent character 442 
displacement had acted when, in fact, it had not, and none have a reasonable combination of 443 
Type I error and power.  444 

Fitting process-based phylogenetic trait models to datasets simulated with divergent 445 
character displacement yielded more consistent patterns (Fig. 3). Without attraction toward a 446 
single stationary peak to bound trait evolution, the matching competition (MC) model with 447 
biogeography was predominantly the best-fit model. For datasets simulated with the OU process, 448 
the diversity-dependent exponential (DDexp, see Box 1) model with biogeography was the best-fit 449 
model, and similarly a model with a linear relationship between evolutionary rates and the 450 
number of sympatric taxa often fit sister-taxa datasets, though with much lower power overall  451 
 452 

453 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2016. ; https://doi.org/10.1101/083485doi: bioRxiv preprint 

https://doi.org/10.1101/083485


	 18	

 454 
Figure 5. Proportion of statistically significant analyses in datasets with interactions simulated 455 
under a simple phenotype matching process in biogeographic scenarios with low sympatric 456 
speciation rates. Results from analyses where the measured trait was simulated under BM (i, ii) 457 
or OU (iii, iv), plotted as a function of the phylogeny size and dispersal rate when i. b1 (the 458 
simulation coefficient determining the relationship between the interaction and the measured 459 
trait) = 0, b2 (the simulation coefficient for an unmeasured trait) = -4, and ψ = 2, ii. b1 = -4, b2 = 460 
0, and ψ = 2, iii. b1 = 0, b2 = -4, and ψ = 0, and iv. b1 = -4, b2 = 0, and ψ = 0. 461 
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Table 1. Summary of the statistical properties of the analytical approaches tested under scenarios using data from all tips (i.e., with 463 
sister-taxa analyses excluded). Values refer to the range of type I error rates and power levels for each tree size ≥50, averaged across 464 
biogeographic scenarios and scenarios where ψ or ψnf  = 0 or 2. Power refers to only those statistically significant tests in the 465 
appropriate tail (i.e., in the lower tail for divergent character displacement and upper tail for convergent character displacement). For 466 
each analytical scenario, the cell with the method with the best trade-off between Type I error and power is highlighted. 467 
	468 

Analysis non-phylogenetic 
regression 

Mantel test pppMantel test PLMM simulation test process-based models 

type I power type I power type I power type I power type I power type I* power† 
divergent char. displacement 0.37-0.61 0.51-1 0.05-0.10 0.29-1 0.04-0.06 0.19-1 0.05-0.06 0.12-1 0.05-0.07 0.08-1 0.04-0.05 0.91-0.94 
convergent char. displacement 0.40-0.60 0.31-0.99 0.08-0.09 0-0.02 0.05-0.06 0-0.01 0.05-0.07 0.07-0.26 0.04-0.05 0.12-0.91 -- -- 
predicting spp. interactions 0.08-0.3 1 -- -- -- -- 0.07-18 1 0.03-0.04 1 -- -- 
*Type I error rate calculated as the proportion of datasets simulated without divergence for which a model that includes species interaction— DDexp, DDlin, or MC—was chosen by 469 
model selection (i.e., for which ΔAICc = 0 and ΔAICc for all other models > 2). 470 
† Power calculated as the proportion of datasets simulated with divergence for which either DDexp, DDlin, or MC was chosen by model selection. 471 
 472 
  473 
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Table 2. Summary of the statistical properties of the analytical approaches tested under scenarios using sister-taxa analyses. Values 474 
refer to the range of type I error rates and power levels, averaged across biogeographic scenarios and scenarios where ψ or ψnf  = 0 or 475 
2. Power refers to only those statistically significant tests in the appropriate tail (i.e., in the upper tail for divergent character 476 
displacement and lower tail for convergent character displacement). We caution against using sister-taxa approaches to test for 477 
character displacement. 478 
	479 

Analysis non-phylogenetic 
regression 

sister-taxa GLM PLMM simulation test process-based models in 
EvoRAG 

type I power type I power type I power type I power type I* power† 
divergent char. displacement 0.07-0.42 0.68-0.75 0.05-0.07 0.05-0.07  0.20-0.34 0.08-0.50 0.70-0.78 0.01-0.02 0.18-0.31 0.04-0.07 0.03-0.36 
convergent char. displacement 0.33-0.43 0.01-0.2 0.07 0.04-0.06 0.41-0.5 0.02-0.21 0.03 0.01-0.2 0.04 0.09-0.55 

*Type I error rate calculated as the proportion of datasets simulated without divergence for which a model that includes a linear dependency on the number of sympatric lineages— 480 
BMlinear or OUlinear_beta—was chosen by model selection (i.e., for which ΔAICc = 0 and ΔAICc for all other models > 2). 481 
† Power calculated as the proportion of datasets simulated with divergence for which either BMlinear or OUlinear_beta was chosen by model selection. 482 
	483 
  484 
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 (Fig S4, Table 2). In the DDexp model, rates of trait evolution vary exponentially with the 485 
number of sympatric lineages through time, so incorporating the effect of interspecific 486 
interactions on the rate of trait of evolution but not explicitly modeling the process of character 487 
displacement acting on the mean trait values. It may nonetheless provide a useful proxy for 488 
detecting patterns that are similar to those left by character displacement, in the absence of a 489 
process-based model that incorporates both attraction toward an optimum trait value and 490 
divergent character displacement. We emphasize, however, that statistical support for the DDexp 491 
model does not in itself constitute decisive evidence that character displacement has occurred, as 492 
other processes may generate increasing evolutionary rates with increasing lineage diversity. 493 
Given that the DDexp model is the best-fit model in parameter space where other methods also 494 
perform well, combined evidence from model-fitting and other, non-process based methods 495 
would constitute a strong case for the presence of character displacement. In the absence of tip 496 
data (e.g., due to incomplete sampling or traits that are inherently measured as pairwise 497 
properties), process-based models are unsuitable and we recommend using data from as many 498 
species pairs as possible—not just sister taxa—and using simulation approaches or PLMMs.  499 

Interestingly, even though most previous investigators have used the DDexp model to 500 
represent a decline in ecological opportunity with increasing species richness (Mahler et al. 501 
2010; Weir and Mursleen 2013), the maximum likelihood estimates of the rate parameters for 502 
this model were positive, rather than negative, when both divergence and the OU process were 503 
present (Fig. S9). This is consistent with our finding of increasing evolutionary rates with 504 
increasing species richness (Figs. S3, S4, S7) in this scenario. An increase in the rate of 505 
evolutionary changes in trait values toward the present likely results from selection not only 506 
restricting species to certain trait space but also partitioning that space. The resulting adaptive 507 
landscape is therefore rapidly changing, causing accelerating evolutionary rates as lineages fill 508 
this increasingly constrained space.  509 

The MC model (Box 1) is similar to the model used to simulate data (Eq. 1), with the 510 
assumption that ! is very small (<< 1) and consequently, competitive interactions are affected by 511 
the mean trait values of all sympatric species, rather than by pairwise similarity (Nuismer and 512 
Harmon 2015; Drury et al. 2016). Biologists, however, generally assume that competition is 513 
stronger between phenotypically similar species (Brown and Wilson 1956). Our results show that 514 
this assumption does not render the MC model useless for studying character displacement, as 515 
the MC model is the best-fit model for many datasets simulated under the character displacement 516 
model used here. Nevertheless, the finding that the DDexp model is the best-fit model in datasets 517 
simulated with the OU process indicates that the MC model is not a perfect model of character 518 
displacement.  519 

For datasets simulated including the OU process, the ratio of the pull-parameter in the 520 
OU portion of the model to the maximum amount of repulsion (ψ:m) had a consistent impact 521 
across all methods, which results from the overall larger magnitude of evolutionary changes in 522 
traits in scenarios with a high ψ:m ratio (Figs. S3, S4, S7). As ψ:m approached 1, all methods 523 
were better at detecting character displacement. Currently, there are no analytical approaches that 524 
can disentangle the simultaneous impact of attraction toward a peak and divergence due to 525 
competition, though we hope our results will inspire development of such tools.  526 
 Unlike for divergent character displacement, available statistical methods for detecting 527 
convergence in comparative datasets generally do a poor job of detecting convergence, with the 528 
simulation method outperforming others (Table 1). With whole-dataset approaches, Type I error 529 
rates are acceptable for phylogenetic analyses (~5%), however, so although detecting 530 
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convergence is difficult, the risk of mistakenly detecting convergence is low. In sister-taxa 531 
analyses, although Type I error rates are high for PLMMs (Table 2), these largely return 532 
erroneous divergence results, rather than erroneous convergence (Figs. 4Bii,v, S12Bii,v). In 533 
short, if an empiricist detects convergence in their dataset, they can be fairly confident in the 534 
result. Currently, there are no tools to fit phylogenetic trait models of convergence between 535 
species (e.g., Nuismer & Harmon 2015); such tools might more successfully identify convergent 536 
character displacement in comparative datasets than the available statistical methods. 537 
 For both divergent and convergent character displacement scenarios, we found that sister-538 
taxa GLMs and the simulation approach had a mean Type I error rate near 5% (Table 2). 539 
However, in some scenarios, the Type I error for sister taxa GLMs was much higher than for the 540 
simulation approach (Figs. 2Bi, 4Bi, Supplementary Tables), which suggests that including a 541 
model-based estimate of the rate of trait evolution more properly accounts for the effect of 542 
divergence than simply including the branch lengths separating sister taxa as a covariate in 543 
analyses to control for variation in the amount of time sister taxa have had to diverge from one 544 
another. The high overall Type I error rate for sister-taxa analyses may also result from the 545 
unrealistic assumption that transitions between allopatry and sympatry are uncommon along 546 
branches connecting sister taxa (Weir and Price 2011; Tobias et al. 2014). Supporting this 547 
explanation, we found that biogeographic scenarios with high levels of sympatric speciation and 548 
low dispersal tended to have overall lower Type I error rates (cf. Figs. 2,S2; Figs. 4,S12). 549 
 The outlook for identifying which traits drive species interaction is brighter. The 550 
statistical methods available to test for causal relationships between phenotypic similarity and 551 
interactions between species have very high power. The simulation approach has a low Type I 552 
error rate when causal relationships are simulated based on an unmeasured trait, although non-553 
phylogenetic regressions and PLMMs suffer from relatively high Type I error rates. While we 554 
did not simulate interactions between clades, our results are likely applicable to other empirical 555 
questions, such as identifying traits that predict links in ecological networks (Rafferty and Ives 556 
2013; Hadfield et al. 2014; Eklöf and Stouffer 2016). 557 
 By simulating datasets with various types of interactions between species across different 558 
modes of speciation and dispersal rates, we have shown that many of the methods that 559 
investigators use to analyze empirical datasets have low power to detect such patterns (Table 1). 560 
Worse still, widely-used sister taxa approaches, including standard regressions and sister-taxa 561 
GLMs, often detected character displacement in datasets that were simulated under a simple BM 562 
model (Figs. 2Bi-ii, 4Bi-ii). We therefore urge investigators to use caution when interpreting the 563 
results of such analyses. When process-based models could be fit to these datasets, they tended 564 
to consistently identify patterns of divergence (i.e., either the matching competition model or a 565 
diversity-dependent model is the best fit model >91% of the time). Thus, when possible, 566 
empiricists should employ such methods. Statistical tools to fit process-based models of 567 
phenotypic evolution including species interactions are in their infancy (Drury et al. 2016) and 568 
many possible models are not yet available (e.g., convergent character displacement, character 569 
divergence in the presence of an adaptive pull towards a peak). We hope that our results 570 
encourage the continued development of such tools. 571 
 In closing, we note that divergent character displacement is erroneously detected with 572 
many statistical approaches, indicating that there may be an overrepresentation of empirical 573 
studies that imply that divergence has occurred. Conversely, convergent character displacement 574 
is often hard to detect with existing methods, suggesting that convergence in signal traits (e.g., 575 
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Cody 1969, 1973; Tobias et al. 2014; Losin et al. 2016) might be more prevalent than previously 576 
thought. 577 
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Box 1. Methods for assessing the interplay between interspecific interactions and species 706 
phenotypes 707 
 708 
 Comparative analyses of the interplay between interspecific interactions and species 709 
phenotypes can either be conducted on entire clades, or, commonly, on sister taxa—species pairs 710 
that share a most recent common ancestor—that are culled from larger phylogenies. Such 711 
analyses generally consist of testing the statistical significance of correlations between either 712 
phenotypic similarity and geographic overlap (to test for divergent or convergent character 713 
displacement) or species interactions and phenotypic similarity (to find predictors of species 714 
interactions). As we are looking for correlations between pairwise comparisons (e.g., trait 715 
similarity, biogeographical overlap, hybridization, magnitude of pre-zygotic isolation), rather 716 
than “tip values” belonging to a single species, phylogenetically independent contrasts and 717 
extensions of PGLS analyses (Felsenstein 1985; Rezende and Diniz-Filho 2012) cannot be used, 718 
and alternative tests have been developed. 719 
 720 
1. Non-phylogenetic regressions 721 
 “Non-phylogenetic regressions” refers to Generalized Linear Models (GLMs) that ignore 722 
phylogenetic structure. Though less commonly applied to whole-clade analyses, investigators 723 
sometimes use non-phylogenetic regressions for sister-taxa analyses, on the basis that branches 724 
connecting sister taxa represent independent evolutionary histories (Felsenstein 1985).  725 
 726 
2. Mantel tests 727 
 Several previous investigators have implemented Mantel tests (Mantel 1967) in analyses 728 
of species-pair comparisons (e.g., Roncal et al. 2012). These tests are designed to assess 729 
correlations between matrices, which here comprise interspecific trait distances or differences. 730 
Existing accounts of Mantel tests describe procedures only for complete matrices, so they cannot 731 
be used in many cases, including sister-taxa analyses (for which most off-diagonal elements of 732 
distances matrices are by definition excluded) and in identifying predictors of species 733 
interactions (e.g., hybridization), as only sympatric lineages can interact and setting values for 734 
allopatric comparisons to zero would not make biological sense. 735 
 736 
3. Phylogenetically permuted partial Mantel tests  737 
 Phylogenetically-permuted partial Mantel (pppMantel) tests (Lapointe and Garland 2001) 738 
account for phylogenetic non-independence by permuting null datasets that are structured 739 
phylogenetically, and are popular among investigators studying species interactions (e.g., Allen 740 
et al. 2014; Willis et al. 2014; Medina-García et al. 2015). Like Mantel tests, pppMantel tests 741 
also require complete interaction matrices. 742 
 743 
4. Phylogenetic linear mixed models 744 

In recent years, researchers have adapted animal models from quantitative genetics to 745 
incorporate phylogenies as random effects in mixed-effect regressions on comparative datasets 746 
(Hadfield & Nakagawa 2010). Such phylogenetic linear mixed models (PLMMs) have been 747 
modified to accommodate pairwise species data (Tobias et al. 2014), wherein the identity of the 748 
species being compared and the node connecting them in the phylogeny are included as random 749 
effects. PLMMs are promising new tools, as they are not limited to sister-taxa data and model 750 
predictions can be generated and plotted.  751 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2016. ; https://doi.org/10.1101/083485doi: bioRxiv preprint 

https://doi.org/10.1101/083485


	 28	

 752 
5. Phylogenetic simulations 753 
 Simulation approaches are widely used to control for phylogenetic non-independence in 754 
tip data (Martins & Garland Jr 1991; Garland et al. 1993), and have been applied to pairwise 755 
species comparisons (Elias et al. 2008; Drury et al. 2015; Losin et al. 2016). In these approaches, 756 
trait evolution is simulated along phylogenies, often scaled such that the simulated tip data 757 
resemble real data. Pairwise comparisons are then calculated on many simulated datasets and 758 
used to generate a phylogenetically informed null distribution of test statistics against which to 759 
compare test statistics calculated from the real data.  760 
 761 
6. Process-based models of phenotypic evolution 762 
 In the statistical approaches outlined thus far, the data analyzed are measurements of 763 
pairwise differences between species, and the statistical tests for the effect of species interactions 764 
on trait evolution consist of testing for significant correlations between either phenotypic 765 
similarity and geographic overlap or species interactions and trait similarity. However, it is also 766 
possible to detect a signature of interspecific competition in the distributions of continuous trait 767 
values across the tips of a phylogeny by fitting process-based models of phenotypic evolution to 768 
the data. These models allow testing hypotheses about which processes are most likely to have 769 
generated the observed distribution of traits in a clade (Hansen & Martins 1996).  770 
 Interspecific interactions have recently been incorporated into such models in two ways. 771 
First, in diversity-dependent (DD) models, evolutionary rates change as a function (either linear 772 
[DDlin] or exponential [DDexp]) of the number of extant lineages through time (e.g., Weir & 773 
Mursleen 2013). Secondly, in the ‘matching competition’ (MC) model, trait evolution in an 774 
evolving lineage varies as a function of the values of traits in other evolving lineages (Nuismer & 775 
Harmon 2015, Drury et al. 2016). Comparing the fit of these models to other models that exclude 776 
interspecific interactions (e.g., Brownian motion and Ornstein-Uhlenbeck models) tests whether 777 
there is evidence that interspecific interactions have influenced the trajectory of trait evolution in 778 
a clade.  779 
 780 
7. Sister-taxa GLMs 781 
 If allopatric speciation is common, then sympatry occurs after a period of initial isolation, 782 
resulting in a pattern where sympatric sister taxa are older than allopatric sister taxa. Thus, even 783 
random genetic drift can generate a pattern in which sympatric lineages have more divergent 784 
traits compared to allopatric lineages, simply because divergence has had more time to evolve 785 
(Weir and Price 2011; Tobias et al. 2014). To control for variation in the evolutionary distance 786 
between sister taxa, “sister taxa GLMs” include patristic distance as a predictor in non-787 
phylogenetic regressions (e.g., Davies et al. 2007; Martin et al. 2010).  788 
 789 
8. Sister-taxa model fitting 790 
 Recently, tools have been described for fitting process-based models to sister taxa 791 
datasets using maximum likelihood (Weir and Wheatcroft 2011; Weir and Lawson 2015). With 792 
these tools, it is possible to test whether models that allow evolutionary rates to vary as a linear 793 
function of a gradient (e.g., whether male plumage coloration varies as a function of the strength 794 
of sexual selection, Seddon et al. 2013) better fit sister-taxa datasets than constant rates models. 795 
When the gradient is the number of sympatric lineages, these models are conceptually similar to 796 
the linear diversity dependent models described above. 797 
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SUPPLEMENTARY METHODS 
 
Simulating Phylogenies Under Varying Biogeographic Scenarios 
 

Joint simulation of trees and biogeographies requires parameterizing (1) the 
diversification process (the rules defining how new species appear), (2) rates of anagenetic range 
gains/losses (the rules defining how lineages’ ranges change), and (3) cladogenetic range 
inheritance (the rules defining how two sister lineages divide their ancestral range upon 
speciation). In each scenario, we evolved species ranges under the DEC+J model (Matzke 2014) 
across a grid of ten possible regions with equal probability of transitions between regions and 
only one region occupied at the root of the tree. We simulated the diversification process along 
each tree with a rate of 0.25 (speciation/lineage/time unit). Anagenetic changes were simulated 
under two dispersal rates {d (transition/lineage/unit time) = 0.03, 0.06}, chosen from within a 
range of dispersal values estimated from empirical datasets. When anagenetic dispersal happens, 
a lineage occupies an additional region chosen at random. Across these two values of “d”, we 
held local extirpation rates constant at e = 0.03 (local extirpation/lineage/unit time), the median 
value used for simulations in Matzke 2014. In cases where a lineage occupying only one region 
goes locally extinct, that lineage goes extinct (Matzke 2014).  

The cladogenetic events possible in the DEC+J model are—briefly  (for a detailed 
explanation of each of these processes, see Matzke 2014)— sympatric speciation (both daughter 
lineages keep the one-region ancestral range, parameter “y”), subset sympatric speciation (one of 
the daughter lineages keeps the ancestral range, the other one inherits a subset of the ancestral 
range, parameter “s”), vicariance (the two daughter lineages split the ancestral range, parameter 
“v”), and founder event speciation (one daughter lineages keeps the ancestral range, the other 
occupies a new region, parameter “j”).  

As the pool of possible daughter ranges changes depending on the ancestral range (e.g., 
there are fewer ways in which the ancestral two-region range “AB” can be propagated to 
daughter lineages than the three-range region “ABC”), cladogenetic range changes are sampled 
by first assigning each type of cladogenetic change (y,s,v, and j from above) a particular weight. 
From these weighted ranges, the probability that a daughter inherits a specific range is calculated 
by dividing the weight assigned to that range by the sum of the weights of each possible daughter 
range (Matzke 2014). By default, the relative weight of sympatric speciation (range copying), 
subset sympatric speciation, and vicariance are equal in most implementations of the DEC model 
(i.e., y=s=v). To generate biogeographic scenarios where recently diverged sister taxa are more 
likely to be allopatric, we implemented a scenario where the weight of either type of sympatric 
speciation event is very low {y = s = 0.005*v} as well as under default parameter values {y = s = 
v}. Across both scenarios, we held the relative weight of founder event speciation constant (j = 
0.1, y + s + v = 2.9). 

 
Simulating Character Displacement 

 
Datasets were simulated under Eq. 1 in the main text as follows:   
1. At the first time step (the root), the trait value was set to z0 (= 0 in all cases). 
2. Each time step dt was set to the total tree height divided by 2500. To complete the simulation 
along any branch not divisible by this value of dt, we set the time step equal to the remainder of 
the branch length divided by dt. 
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3. During each time step from the root to the tip of the tree, the trait value of lineage i is 
calculated according to Eq 1. For the component of Eq.1 dictating the magnitude of divergence 
or convergence, between-lineage distances in trait space were calculated based on similarity at 
time t-dt. In simulations of divergent character displacement, if species have identical trait 
values, the “sign” value is overridden so that species move in the opposite direction of one 
another in trait space. 
4. At a branching event, the trait values of both daughter lineages are set to equal the value of the 
parent lineage. 
 
 For divergent character displacement scenarios, we arbitrarily chose simulation parameter 
values based on visual inspection of simulated trajectories under different combinations of 
parameter values. We chose to focus on m = 2, and also explored the effect of varying this 
parameter between 1 & 10, because we could visualize divergence in the realized simulations. 
For example, for a 20 tip tree simulated with high dispersal and low sympatric speciation: 
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In convergent character displacement simulations, we likewise chose parameter values 
based on visual inspection of simulated trajectories under different combinations of parameter 
values. We chose to focus on m = -0.25, and also explored the effect of varying this parameter 
between -0.1 & -0.50, because we could visualize convergence in the realized simulations and 
the simulated trait values did not converge across the entire clade. For example, on the same tree 
as above: 
 

 
 
 
Analytical Methods 
 
Non-phylogenetic regressions: General Linear Models (GLMs) were fitted to simulated datasets 
using the glm function in R. For character displacement analyses, linear models were fit to 
pairwise differences in trait data, with sympatry/allopatry as the predictor variable. For 
interaction analyses, logistic regressions were fit to the simulated species interaction variable, 
with pairwise difference in the focal trait as the predictor variable. 
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Mantel tests: We computed raw Mantel tests using mantel.rtest in ade4 (Dray and Dufour 2007), 
specifying 1000 permutations to assess statistical significance. We computed phylogenetically 
permuted partial Mantel (pppMantel) tests (Lapointe and Garland 2001) using the script 
phyloMantel.R from Harmon & Glor (2010), again using 1000 permutations to test for 
significance. 
 
Phylogenetic linear mixed models (PLMMs): For the character displacement datasets, we fitted 
PLMMs using asreml-R (Butler et al. 2009), including both sympatry and the patristic distance 
(calculated using the cophenetic.phylo function in ape [Paradis 2011]) between each pairwise 
species comparison as fixed effects and including the identity of each lineage and the phylogeny 
as random effects, following Tobias et al. (2014). To assess statistical significance of the fixed 
effects, we used Wald-type F-tests with Kenward-Rogers adjustments to the denominator 
degrees of freedom using the wald.asreml function with the option denDF = “numeric” in 
asreml-R, again following Tobias et al. (2014) 

For the scenario using traits to predict species interactions, we fit PLMMs using 
MCMCglmm in R (Hadfield 2010), because the residual maximum likelihood approach used in 
asreml-R may bias estimates for logistic regressions (Bolker et al. 2009). We used standard 
inverse-Gamma priors for the fixed and random effects, using the code:  

 
 prior<-list(G=list(G1=list(V=1,nu=0.002),G2=list(V=1,nu=0.002),G3=list(V=1,nu=0.002)),R=list(V=1,nu=0.02)) 

 
We ran each fit for between 2 million and 20 million chains based on preliminary 

assessment of convergence for different tree sizes, varying the burn-in and thinning periods to 
result in approximately 2000 runs. We visually inspected convergence for a large sample of 
model fits to make sure that our MCMC parameterization was working well. MCMC fits were 
very computationally expensive, so we fit the models to a subset of simulated datasets (n = 100 
per tree size, biogeography, and simulation parameter combination). 

For all PLMMs, we randomized the order in which the identity of the lineages was passed 
to the random effects.  
 
Simulation approach: BM models were first fit to simulated trait data using mvBM in the 
mvMORPH package (Clavel et al. 2015). Then, 5,000 datasets were simulated using the 
maximum likelihood estimate of the BM rate parameter and state at the root using fastBM in 
phytools (Revell 2012). A GLM (as outlined in “non-phylogenetic regressions”, the predictor 
variable for character displacement analyses was biogeographical overlap and the response 
variable was pairwise trait similarity, and for analyses of species interactions, the pairwise trait 
similarity was the predictor variable and a binomial variable of species interaction was the 
response variable) was fit to each of these simulated datasets, and the resulting analysis was 
considered statistically significant if both (a) the non-phylogenetic test on the raw data was 
statistically significant and (b) the test statistic from the raw analysis was outside of the 2.5-
97.5% quantile interval of test statistics estimated on the simulated datasets. 
 
Sister taxa analyses: for trees of size 150 and larger, we culled sister taxa from the full trees. We 
then ran non-phylogenetic regressions, PLMMs, the simulation approach and sister taxa GLMs 
on the culled dataset. 
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Phenotypic models: We fit all phenotypic models by maximum likelihood. We fit BM and OU 
models using geiger (Pennell et al. 2014) and the matching competition and two diversity 
dependent models (with either linear or exponential dependence of sigma on the number of 
species) using RPANDA (Morlon et al. 2016) in R. For the latter models, we included the 
biogeography used to simulate the datasets in the model fits, as described in Drury et al. (2016). 
We then compared the relative support of these models using Akaike weights (Burnham and 
Anderson 2002), since the models are not nested. Since model-fitting is computationally 
expensive, we fit the process-based models to a subset of datasets simulated on 100 tip trees (n = 
100 biogeography and simulation parameter combination). 
 Additionally, to analyze the effect of m and ψ on rates of evolution, we fit four trait 
models to the sister-taxa datasets for both divergent and convergent character displacement 
scenarios using the R package EvoRAG (Weir and Lawson 2015): BM, OU, plus versions of BM 
and OU that allow the rate of trait evolution to change with the number of sympatric lineages 
(i.e., “BM_null”, “OU_null”, “BM_linear”, and “OU_linear_beta”). 
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Supplementary Figure 1. The resulting biogeographic landscape under each of the four 
biogeographic scenarios. A. The proportion of sister taxa that are living in sympatry varies as a 
function of both the dispersal rate and the level of sympatric speciation. B. The patristic 
distances (the branch lengths separating sister taxa) are larger for sympatric taxa, although the 
magnitude of this difference depends on the biogeographic scenario. 
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Supplementary Figure 2. Proportion of statistically significant analyses in datasets simulated 
under divergent character displacement in biogeographic scenarios with high sympatric 
speciation rates. A. Results from approaches using data from all pairwise comparisons in a clade, 
plotted as a function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψ = 0 (i. all 
analyses and ii. only analyses returning divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 
and ψ = 2 (iv. all analyses and v. only analyses returning divergence in sympatry), and vi. m = 2 
and ψ = 2. B. Results from analyses of sister-taxa culled from complete phylogenies binned by 
the number of resulting species pairs, plotted as a function of the number of sister taxa 
comparisons and dispersal rate when i-ii. m = 0 and ψ = 0 (i. all analyses and ii. only analyses 
returning divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 and ψ = 2 (iv. all analyses 
and v. only analyses returning divergence in sympatry), and vi. m = 2 and ψ = 2. For scenarios 
where m = 2, only the proportion of significant results showing divergence are plotted. Dashed 
horizontal lines represent a Type I error rate of 5%. 
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Supplementary Figure 3. The effect of repulsion on the magnitude of changes in traits from the 
root to the tip of phylogenies under different simulation scenarios. To calculate the absolute 
value of divergence steps (A & B), we recorded the absolute value of the magnitude of the step 
size resulting from the deterministic repulsion step of Eq. 1 (i.e.,	" #$,&	×	()*+ ,$ - − ,&	 - ×/

&	0$

		123 45	 6 247 6
8
9-)	at each time step, took the mean during each internode interval for all extant 

lineages within trees, and then averaged each internode interval across all simulations. Each 
point thus represents the mean of means and the standard error across 100 phylogenies. The 
absolute value of the steps pulling trait values toward a stable peak (C & D) similarly represents 
the absolute value of the magnitude of the step size resulting from the deterministic component 
of the OU attraction to the peak in Eq. 1 (i.e.,	; < − ,$ - 9-).  
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Supplementary Figure 4. Models fit to sister-taxa datasets generated under divergent character 
displacement scenarios in EvoRAG corroborate the influence of the number of sympatric 
lineages on the rate of evolution. A. When ψ = 0, BM is the best fitting model, whether A. m = 0 
or B. m = 2. When ψ = 2, OU is the best fitting model when C. m = 0, whereas a BM model that 
allows the rate of trait evolution to vary linearly with the number of sympatric lineages is a best 
fitting model when D. m = 2. Plots depict the Akaike weight of each model as a function of both 
the biogeographic scenario and the number of sister taxa comparisons.  
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Supplementary Figure 5. The proportion of statistically significant analyses for datasets with 
divergent character displacement varies as a function of both m and ψ. 
  

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

pr
op

or
tio

n 
p 

< 
0.

05

low
 sym

patric speciation

i. ii.

iv.iii.

� = 2� = 0

high sym
patric speciation

m m
0 1 2 100 1 2 10

0 1 2 10 0 1 2 10

non-phylogenetic regression
simulation approach
PLMM
non-phylogenetic Mantel
pppMantel

high dispersal
low dispersal

biogeography: 

method:

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2016. ; https://doi.org/10.1101/083485doi: bioRxiv preprint 

https://doi.org/10.1101/083485


	 13	

 
 

 
 
Supplementary Figure 6. As ψ:m  increases, the ability of all methods to detect character 
displacement, when present, increases under both low sympatric speciation (A) and high 
sympatric speciation (B) scenarios. 
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Supplementary Figure 7. The effect of repulsion on the magnitude of changes in traits from the 
root to the tip of phylogenies as a function of the ratio ψ:m. As ψ increases relative to m, both the 
magnitude of divergence steps (panels A-C) and the magnitude of the steps pulling trait values 
toward the peak (panels D-F) increase. This effect becomes increasingly apparent at higher m 
values and in biogeographic scenarios generated under high dispersal rates. For a description of 
the data, see the legend of Fig. S3. In this plot, data are averaged within 10 time bins 
representing each 10% of the total height of the phylogeny. 
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Supplementary Figure 8. Proportion of simulated datasets for which a given phenotypic model 
was chosen using model selection as a function of m. We considered a model to be chosen if it 
had the lowest AICc score among all of the models, and if the AICc score was > 2 units away 
from BM model. A. Results for datasets simulated without the OU process. B. Results from 
datasets simulated with ψ = 2. 
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Supplementary Figure 9. The rate parameter r of the DDexp+GEO model is increasingly 
negative with increasing m values when ψ = 0, yet is positive when ψ > 0. 
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Supplementary Figure 10. Akaike weights for each trait model fit to simulated datasets in 
biogeographic scenarios with high sympatric speciation rates as a function of m. A. When OU is 
absent, BM is the best-fit model when m = 0, and the matching competition model with 
biogeography is the best model when competitive divergence is present. B. When OU is present, 
OU is the best-fit model when m = 0, and the diversity-dependent exponential model with 
biogeography is the best model when competitive divergence is present and ψ:m is relatively 
high.  
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Supplementary Figure 11. As ψ:m increases, the DDexp + GEO model is increasingly better fit 
to datasets simulated with character displacement. 
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Supplementary Figure 12. Proportion of statistically significant analyses in datasets simulated 
under convergent character displacement in biogeographic scenarios with high sympatric 
speciation rates. A. Results from approaches using data from all pairwise comparisons in a clade, 
plotted as a function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. 
all analyses and ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource  
= 0, iv-v. m = 0 and ψresource  = 2 (iv. all analyses and v. only analyses returning convergence in 
sympatry), and vi. m = -0.25 and ψresource  = 2. B. Results from analyses of sister-taxa culled from 
complete phylogenies binned by the number of resulting species pairs, plotted as a function of 
the number of sister taxa comparisons and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. all 
analyses and ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource  = 0, 
iv-v. m = 0 and ψresource  = 2 (iv. all analyses and v. only analyses returning convergence in 
sympatry), and vi. m = -0.25 and ψresource  = 2. For scenarios where m = -0.25, only the proportion 
of significant results showing convergence are plotted. Dashed horizontal lines represent a Type 
I error rate of 5%. 
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Supplementary Figure 13. The effect of convergence on the magnitude of changes in traits in 
simulations, plotted as a function of stabilizing selection in the resource-use trait (ψresource) and 
biogeography. With ψresource = 2, the magnitude of convergence steps is higher, and this is 
particularly true for high dispersal biogeographies. Data generated as described in the legend of 
Fig. S3. 
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Supplementary Figure 14. Models fit to sister-taxa datasets generated under convergent character 
displacement scenarios in EvoRAG. A. When m = 0, BM is the best fitting model, whether A. 
ψresource = 0 or C. ψresource = 2. When m = -0.25, OU is the best fitting model when C. ψresource = 0 
and D. ψresource = 2, but an OU model with evolutionary rates that change linearly as a function of 
the number of sympatric lineages (OU linear) is also a strong model. Plots depict the Akaike 
weight of each model as a function of both the biogeographic scenario and the number of sister 
taxa comparisons.  
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Supplementary Figure 15. The proportion of statistically significant analyses for datasets with 
convergent character displacement varies as a function of both m, and is generally lower in the 
absence of a pull toward a peak (i,iii) compared to cases where data were simulated with a pull 
toward a peak (ii,iv).  
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Supplementary Figure 16. Proportion of statistically significant analyses in datasets with 
interactions simulated under a simple phenotype matching process in biogeographic scenarios 
with high sympatric speciation rates. Results from analyses where the focal trait was simulated 
under A. BM or B. OU, plotted as a function of the dispersal rate when i. b1 (the simulation 
coefficient determining the relationship between the interaction and the measured trait) = 0, b2 
(the simulation coefficient for an unmeasured trait) = -4, and ψ = 2, ii. b1 = -4, b2 = 0, and ψ = 2, 
iii. b1 = 0, b2 = -4, and ψ = 0, and iv. b1 = -4, b2 = 0, and ψ = 0. 
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Supplementary Figure 17. The power to detect a causal relationship between a species 
interaction and similarity in a trait value is not affected greatly by varying the coefficient 
determining the strength of this relationship, regardless of whether the OU process is absent (i, 
iii) or present (ii, iv) in the measured trait. In these simulations, tree size was held constant at 100 
species. 
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