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Abstract  
 
Genetic risk factors for autism spectrum disorder (ASD) have yet to be fully elucidated. Somatic mosaic 
mutations (SMMs) have been implicated in several neurodevelopmental disorders and overgrowth syndromes. 
Here, we systematically evaluate SMMs by leveraging whole-exome sequencing (WES) data on a large family-
based ASD cohort, the Simons Simplex Collection (SSC). We find evidence that ~10% of previously published 
de novo single nucleotide mutations are potentially SMMs. Then using a custom somatic calling pipeline, we 
recalled all SSC WES data. We validated high and low confidence mutation predictions for a subset of families 
with single molecule molecular inversion probes. With these validation data, we iteratively developed a high 
confidence calling approach by integrating logistic regression modeling and additional heuristics, which we 
applied to the full cohort. Surprisingly, we found evidence of significant synonymous SMM burden in probands, 
with mutations more likely to be close to splicing sites. Overall, we observe no strong evidence of missense 
SMM burden. However, we do observe nominally significant signal for missense SMMs in those families 
without germline mutations, which strengthens specifically in genes intolerant to mutations. In contrast to 
missense germline mutations, missense SMMs show potential enrichment for chromatin modifiers. We observe 
7-11% of parental mosaics are transmitted germline to a child as occult de novo mutations, which has 
important implications for recurrence risk for families and potential subclinical ASD features. Finally, we find 
SMMs in previously implicated high-confidence ASD risk genes, including CHD2, CTNNB1, KMT2C, 
SYNGAP1, and RELN, further suggesting that this class of mutations contribute to population risk. 
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Introduction 
 
Autism spectrum disorder (ASD [MIM: 209850]) has a strong genetic component and complex genetic 
architecture. Over the past decade, technological advances have allowed for the genomewide discovery of 
rare inherited and de novo mutations in ASD cohorts, including: copy number variants (CNVs), structural 
variants, single nucleotide variants (SNVs), and small insertions and deletions (indels).1-13 These studies, 
especially those focused on simplex cohorts (single affected individual within a family), have also revealed a 
strong burden of de novo mutation that implicates hundreds of independent loci in ASD risk as well as, to a 
lesser yet significant extent, rare inherited mutations. Moreover, while many novel high-confidence risk loci and 
genes have emerged from these studies, the full complement of risk factors and mechanisms have yet to be 
fully elucidated. 

Postzygotic mutations occur after fertilization of the embryo. Depending on their timing and cell lineage, 
they may contribute to both the soma and germ cells. For simplicity we refer to these mutations generally as 
somatic mosaic mutations (SMMs), as in most cases their contribution to the germline is unknown. Mosaicism 
affecting the germline is usually only identified when a mutation is transmitted to multiple offspring. If the 
mutation cannot be detected in peripheral tissues of the parent, this argues for a germline only origin, or 
gonadal mosaicism. SMMs accumulate over an individual’s lifetime and have been shown to have a similar 
mutation spectrum to germline de novo mutations (GDMs)14. In addition to their well-known role in cancer, 
SMMs have been firmly implicated in several neurodevelopmental/brain disorders including epilepsy, cortical 
malformations, RASopathies, and overgrowth syndromes.15-21 Pathways underlying some of these syndromes, 
e.g. PI3K/ATK/mTOR and RAS-MAPK, are also implicated in syndromic and nonsyndromic ASD. The mosaic 
nature of these mutations can make them difficult to identify with current clinical testing, even if the correct 
gene is known, leading to no diagnosis, misdiagnosis, or misinterpretation of recurrence risk.16, 22 Importantly, 
when and where mutations occur in development can have a dramatic effect on the phenotypic presentation as 
exemplified by PIK3CA-related overgrowth spectrum (PROS).15, 23 SMM occurring early in development may 
be detectable in the soma, e.g. blood or skin tissue, and also contribute to the germ layer—allowing a mutation 
to be fully expressed germline in the next generation. Moreover, recent data has suggested that even low-level 
mosaicism (~1% in affected tissue) can be clinically significant, as shown in the affected skin/brain of Sturge-
Weber patients.24 Finally, novel genetic etiologies may exist, driven by loci where germline mutations are 
embryonic lethal.25

  

In previous work focusing on discovering GDMs in simplex ASD families, we were surprised to validate 
~4% of de novo mutations as likely mosaic in origin, including 9 SMMs and 2 gonadal mosaic mutations (from 
a total 260 mutations), suggesting that SMM might be a common and under-recognized contributor to ASD 
risk.26 A similar observation has been made from de novo mutations identified in whole-genome sequencing 
from simplex intellectual disability trios.27 However, the mutation calling approaches used previously were 
tuned to detect GDMs. Here, we systematically evaluate the role of SMMs in ASD by leveraging a harmonized 
dataset12 of existing whole-exome sequences (WES) from a well-characterized cohort of ~2,300 families—the 
Simons Simplex Collection (SSC), including parents, proband, and an unaffected sibling. Our goal was to 
answer several fundamental questions: 1. What are the rates of SMMs (detectable in whole blood DNA) in 
parents versus children? 2. How often are mosaic events in the parental generation transmitted to offspring? 3. 
Do SMMs play a role in ASD risk? 4. Do the targets of GDMs and SMMs overlap?  

To address these questions, we developed a systematic method for identifying likely SMM SNV 
mutations from WES (or other next-generation sequencing [NGS] data) that integrates calls from 
complementary approaches. We benchmarked this approach on a high-coverage WES dataset and then 
performed extensive validations with molecularly tagged single molecule molecular inversion probes (smMIPs). 
Using this validation data, we developed a logistic regression model that is both highly sensitive and specific in 
distinguishing false positive from true mutations. We also established additional heuristics that when combined 
with our regression model, generate high confidence somatic mosaic calls. With this approach, we evaluated 
mutation burden in the SSC cohort by recalling genotypes on all ~2,300 families. We find that ~10% of the 
previously published de novo mutations identified in the SSC are likely mosaic and that both synonymous and 
missense SMMs are likely contributing to ASD risk. We also find strong evidence of transmission of parental 
mosaic mutations to children. This finding has important potential implications for recurrence risk for families 
and may explain some instances of parents with subclinical ASD features.28 Importantly, we find missense 
SMMs, which are generally not detectable using standard methods, in previously implicated high-confidence 
ASD risk genes, including CHD2 (MIM: 602119), CTNNB1 (MIM: 116806), KMT2C (MIM: 606833), SYNGAP1 
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(MIM: 612621), and RELN (MIM: 600514). Overall, these findings suggest that future studies of SMMs in ASD 
and related-disorders are warranted. The methods and tools developed here will allow continued discovery of 
SMMs in future datasets and have potential translational benefits for clinical detection, case management, 
interventions, and genetic counseling. 
 
Material and Methods 

 
Family Selection and Sequence Data 
 
We obtained the initially published1, 2, 4, 5, 11 and harmonized reprocessed12 WES data from 2,506 families of the 
Simons Simplex Collection (SSC).29 Informed consents were obtained by each SSC recruitment site, in 
accordance with their local institutional review board (IRB). Oregon Health & Science University IRB approved 
our studies as human subjects exempt as only de-identified data was accessed. Exomes were captured largely 
with NimbleGen EZ Exome v2.0 (Roche Nimblegen, Inc., Madison, WI) reagents and sequenced using Illumina 
(San Diego, CA) chemistry at one of three centers: Cold Spring Harbor Laboratory (CSHL), University of 
Washington (UW), and Yale University School of Medicine. Where individuals had been sequenced by multiple 
centers, the library with the highest mean coverage was included in the reprocessed dataset (N. Krumm, 
personal communication).12 We initially selected 24 family quads (the pilot 24) for developing our methods. 
These families had WES performed in parallel across all three centers: CSHL, UW, and Yale University School 
of Medicine.11 WES data from all three centers were merged and then reprocessed to match the harmonized 
dataset.12 We then expanded to a cohort of 400 additional independent quad families (the pilot 400) with the 
highest median coverages,11 also requiring proportionate distribution across the three centers (Yale: 193, 
CSHL: 118, UW: 89). Finally, we expanded our analysis to the full SSC harmonized reprocessed dataset.12 
Families with known identity issues (N. Krumm personal communication) were excluded, yielding 2,366 
families, of which 1,781 are quads and 585 are trios (Table S1). One hundred and two families with individuals 
showing elevated GDM or SMM calls were excluded post variant calling (Supplemental Material and Methods, 
Figure S1). Upon excluding these families, the cohort used in the downstream analyses included 2,264 
families, of which 1,698 are quads and 566 are trios. We removed additional families with low joint coverage 
depending on the minimum coverage requirement for analyzing variants of different minimum allele 
frequencies (AF) (see Supplemental Material and Methods). 
 
Estimations of SMMs in Germline De Novo Calls 
  
To estimate the prevalence of SMMs in the SSC, we evaluated previously reported GDMs for mosaic status. 
Allele counts from prior analysis were used where available (N. Krumm, personal communication), and 
otherwise extracted on a quality-aware basis from mpileups of the corresponding exomes using a custom 
script (samtools mpileup -B -d 1500 | mPUP -m -q 20 -a count). Reported mutation sites that had no variant 
reads from the mpileup data were excluded from our analysis. Mutations were considered putative SMMs if 
significantly skewed from the heterozygosity expectation of 0.5 AF for autosomal and X chromosome sites of 
females (binomial p <= 0.001). Sex chromosome sites of males were evaluated under a hemizygous 
expectation. We further analyzed the robustness of the data using additional filters for observed AF (5-35%, 
10-35%, 10-25%, or corresponding hemizygous values), or at more strict deviations from the binomial 
expectation (p <= 0.0001).   
 
Evaluating Callers with Simulated Data 
 
These data consisted of 202 synthetic variants in 101 nucleotide single-end Illumina reads generated by 
simNGS, with variant frequencies ranging from 1-50% and coverage depths (DP) of 30-500 reads. Reads were 
aligned to the GRCh37-hg19 Broad variant human reference using BWA (0.5.6, 0.7.12)30 and BWA-mem 
(0.7.12), and mpileups generated using samtools (1.1).31 Given that read coverage peaked at variant sites and 
tapered off over surrounding bases, we only counted bases having at least 90% of the target depth. Callers 
included: VarScan (2.3.2 ,2.3.7)32, LoFreq (0.4.0, 2.1.1)33, Atlas2 (1.4.1, 1.4.3)34, and an in-house mpileup 
parsing script, referred to as mPUP. For all callers we required a minimum mapping quality (MAPQ) of 29 and 
DP >=8, and disabled samtools base adjusted quality (BAQ). Additional parameters per caller were: VarScan, -
-min-var-freq 1x10-15 --p-value 0.1; LoFreq, --no-default-filter; mPUP, -m -c 8 -v 2. For mPUP calls, we required 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 4, 2016. ; https://doi.org/10.1101/083428doi: bioRxiv preprint 

https://doi.org/10.1101/083428


5 

a significant difference from the empirical error rate (in simulated data) of 0.005 (binomial p <= 0.005). All caller 
versions were run on all combinations of variant frequency, coverage depth, and aligner version. Caller 
performance was evaluated on sensitivity, positive predictive value (PPV), and F-score (beta=0.5) for each 
condition. 
 
Raw Variant Calling and Annotation 
 
For all pilot and full cohort analyses, variants were called on individual samples using VarScan 2.3.2, LoFreq 
2.1.1, and our in-house script mPUP. Variant calling was performed as described above, with the exception 
that no error rate test was utilized for mPUP calls in order to maximize sensitivity. All caller outputs were 
combined at the individual level and used to generate family-level variant tables. Reference and variant allele 
counts were extracted from mpileups for all family members at all family variant sites as described above.  

All called variants were annotated with ANNOVAR (03/22/15 release [see Web Resources])35 against 
the following databases: RefSeq genes (obtained 2015-12-11), segmental duplications (UCSC track 
genomicSuperDups, obtained 2015-03-25), repetitive regions (UCSC track simpleRepeat, obtained 2015-03-
25), ExAC release 0.3 (prepared 2015-11-29), ESP 6500 (prepared 2014-12-22), and 1000 Genomes Phase 3 
version 5 (prepared 2014-12-16). Population frequency databases were obtained from the ANNOVAR website.  
 
Initial Variant Filtering: Pilot 24 
 
To build our systematic SMM calling pipeline, we first performed detailed evaluation of the high depth pilot 24 
dataset (Figures S2-10). The combined annotated raw calls were classified for germline versus mosaic status. 
Variants with AFs significantly below 50% (binomial p <= 0.001) were considered putative SMMs. For putative 
transmitted parental SMMs, which also had skewed AFs in child(ren), we required a significant difference 
between parent and child AF (Fisher’s exact p <= 0.01), with child AF > parental AF. Only SMM (child or 
parental) or GDM calls were considered for validation. For validation sites, we required at least four variant 
reads with total AF >= 3% or at least three variant reads with AF >= 5% and DP >= 8 in all family members. 
We removed variants that were: present in the raw calls of more than one of the pilot 24 families, noncoding or 
non-canonical splicing annotations, or having population frequency >= 0.5% in any reference (Supplementary 
Note and Supplementary Material and Methods). Previously published GDMs11, 12 were added to the validation 
set if not identified by our pipeline.  
  
smMIP Design, Capture, and Sequencing 
 
Three to four independent single molecule molecular inversion probes (smMIPs) were designed against 
candidate variant sites using the 11-25-14 release of MIPGEN36 and a custom in-house selection script 
(Supplemental Material and Methods). The selected smMIPs were divided into pools with roughly equal 
numbers (Table S2). A 20 base PCR adapter, unique for each pool and containing a StyD41 or NlaIII cut site, 
was appended to each smMIP arm. The MIP oligos were synthesized by Custom Array (Bothell, WA). Low 
scoring smMIPs were replicated on the array to account for poorer predicted performance (Table S2). Single 
strand capture probes were prepared similarly to previous approaches with modifications (Supplemental 
Material and Methods).36 DNA samples prepared from whole blood (WB) and lymphoblastoid cell lines (LCLs) 
were obtained from the Simons Simplex Collection through Rutgers University Cell and DNA Repository 
(Piscataway, NJ). Probe captures and PCRs to append sequencing adaptors and barcodes were performed as 
previously described with minor modifications.37

  

The purified pools were then combined together for sequencing with NextSeq500 v2 chemistry 
(Illumina, San Diego, CA). Overlapping reads were merged and aligned using BWA 0.7.12, collapsed on 
unique smMIP tags, and their initial validation status determined. Validation outcomes were compared across 
WB and LCL data. 
 
Initial Logistic Model Development 
 
We trained an initial logistic model using the pilot 24 initial resolutions (i.e. prior to analyzing the pilot 400 or full 
cohort data), using only sites validated as true SMMs or false positives in the smMIP data. Candidate 
predictors were derived from WES data, e.g. quality-aware total read depth (DP), quality-aware alternative 
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allele read depth (DPALT), sequence context, and which callers identified the variant (Supplemental Material 
and Methods). Univariate models were built for each candidate predictor using the R function glm. Univariate 
predictors with p<=0.2 were considered for inclusion in a multivariate model. These terms were ranked in order 
of most to least significant univariate p-values and successively added into the multivariate model. Any 
predictor that became nonsignificant (p>0.05) during this process was excluded. Pairwise interactions were 
evaluated using the R function step(). Finally, any predictors that had become nonsignificant as a result of 
model adjustments were also excluded, unless the predictor was also present in a significant interacting term. 
Fit was evaluated for each candidate multivariate model using the Hosmer-Lemeshow test across a range of 
five group sizes beginning at one greater than the number of model terms, with models rejected at p <= 0.05. 
Models not rejected were then compared based upon the Akaike information criterion (AIC) and sensitivity 
(within the dataset) and PPV as determined by 3-fold cross-validation. We selected an initial model that 
maximized sensitivity and minimized AIC while also maintaining reasonable PPV (Figure S9). 
  
Initial SMM Filtering and Validation: Pilot 400 
 
Based on results from the initial pilot 24 dataset, we next evaluated 400 additional pilot quad families (Figures 
S11-15). Variant filtering was performed similarly as for the pilot 24 group, but we required calls not occur more 
than five times throughout the entire pilot 400 filtered variant set. For all putative parental transmitted SMMs, 
we required more significant skew in parental AF (binomial p <= 0.0001), significant difference between parent 
and child AF (Fisher’s exact p <= 0.01), and child AF > parental AF, having observed that pilot 24 transmitted 
variants not meeting these criteria largely validated as germline (Figure S10). All putative SMMs were scored 
using our initial logistic model, and excluded from validations if they scored < 0.2. This threshold was selected 
to eliminate the majority of false positives but retain high sensitivity and allow further evaluation of model 
performance. Family 14208 was excluded due to excessive SNV calls. Validation smMIP design, sequencing, 
analysis, and resolution were performed similarly as for the pilot 24 group, using WB DNA from 78 quad 
families (Supplemental Material and Methods). All initial validation positive sites, from both pilot sets, were then 
subjected to an additional manual review of the WES and smMIP alignments to flag potentially problematic 
sites prior to modeling, e.g. sites with evidence of mismapping, to produce a set of high-confidence validation 
resolutions. 
 
Refined Logistic Model Development and Testing 
 
Based on our manual review, we chose to focus on the predictions that were not observed repeatedly in the 
pilot 400 quad families and removed sites with a median number of mismatches greater than or equal to three. 
For developing this refined model, we trained on all predicted SMMs from this filtered subset of pilot 400 high-
confidence resolutions, including those resolved as germline variants. (Supplemental Material and Methods, 
Figure S12). Candidate predictors were as described in initial model development, with continuous variables 
coded as categorical terms. Univariate and multivariate models were built and evaluated as previously 
described in initial model development. We further evaluated this logistic model, applying the same filtering 
parameters as the training set, using the pilot 24 validation sites, which had been selected prior to any 
modeling or validations.  

Based on the performance of the refined logistic model, we evaluated a third set of sites that had not 
previously been validated due to data missingness in population frequency datasets (Supplementary Note). 
We reiterated SMM prediction in the pilot cohorts with the addition of filters described above. To better 
separate germline from mosaic calls based on our empirical validations, we calculated 90% binomial 
confidence intervals (CI) (Agresti-Coull method) for the variant AFs derived from the WES data using the R 
binom package. Based upon the distribution of germline resolutions in these data, we reclassified putative 
SMMs as germline if the upper bound of their observed AF was >= 0.4 (95% CI, one-tailed) (Figure S14). We 
additionally excluded sites annotated as segmental duplication regions/tandem repeat finder (SD/TRF) sites or 
mPUP only calls as they had a significantly higher false positive and smMIP probe failure rate. Putative SMMs 
passing filters were scored with our refined logistic model and excluded from validations if they scored < 0.26. 
Validation smMIP design, sequencing, analysis, and resolution of added variants were performed similarly as 
for prior sets (see Supplemental Material and Methods). 
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Finally, we retroactively applied our refined filtering scheme to all validation sites in order to develop a 
harmonized set of high-confidence resolutions for final model evaluations. We scored all harmonized 
resolutions using the refined model and evaluated sensitivity and PPV (Figure S15).  
 
Cohort Variant Calling and Burden Analysis 
 
Variants were called from all WES data in the harmonized reprocessed dataset and filtered with our refined 
filtering scheme (Supplementary Material and Methods). We additionally required all variants be supported by 
at least five variant reads and present in no more than two families throughout the cohort to improve PPV for 
true SMMs (Figure S13). We removed outlier families (~4%) from the analysis if any individual, upon 
extrapolation of counts to the full exome, showed an excess of SMMs or GDMs. Some of these outlier 
individuals showed evidence of DNA contamination in the samples, indicated by the AF distribution (Figure 
S1). 

We selected five minimum variant AFs (5%, 7.5%, 10%, 12.5%, 15%) at which to evaluate SMM 
prevalence across the entire SSC cohort. For each AF threshold, we determined the minimum total depth 
(130x, 85x, 65x, 50x, 45x) at which we had approximately 80% binomial probability to observe five or more 
variant reads (Figure S16). Variants that met minimum coverage requirements in all family members were 
included in each AF burden analysis and we determined the total number of jointly sequenced bases at or 
above each depth threshold in each family. Based on these joint coverage values, families in the 5th percentile 
or lower were excluded; in the 130x analysis the bottom decile was excluded (Figure S17). Variants with a 
refined logistic model score >=0.518 and AFs with 90% upper CIs (95% one-sided) that met or exceeded the 
corresponding minimum AF thresholds were included.  

To determine mutation burden in the unique autosomal sequence, we first calculated the rate of 
mutation in each individual by summing all SNVs within a given functional class or gene set, e.g. for missense 
variants, and dividing by the total number of jointly sequenced bases (diploid, 2n) meeting the minimum 
coverage thresholds. Rates of mutation were then compared between groups (probands v. siblings, or fathers 
v. mothers) using appropriate paired or unpaired nonparametric methods (see Results). We calculated the 
mean rates for each group by summing all SNVs within a given functional class or gene set and dividing by the 
total number of jointly sequenced bases (diploid, 2n) for all families meeting the minimum coverage thresholds. 
Poisson 95% confidence intervals for rates were estimated using the Poisson exact method based on the 
observed number of SNVs. We used the recently updated essential gene set38, which contains human 
orthologues of mouse genes associated with lethality in the Mouse Genome Database38, 39. The intolerant, 
moderately tolerant, and tolerant genes are based on gene pLI scores calculated from the ExAC consortium 
dataset, which denote probability of being loss-of-function intolerant.40 Intolerant genes have scores > 0.9, 
Moderately Tolerant > 0.1 and < 0.9, and Tolerant genes < 0.1. We also performed subcohort burden analyses 
by separating families on whether or not probands had a previously identified GDMs in published calls11, 12, 41. 
Mutations with no read support or flagged as potentially mosaic from our initial analysis of published de novo 
calls were removed (binomial p <= 0.001). We defined two subgroups based on level of disruption. The first, 
likely gene disrupting (germline LGD list) included LGD SNVs and indels as well as de novo CNVs that affect 
at least one gene. The second include the LGD list and any other nonsynonymous SNVs or indels (any 
germline NS list).  
 
Analysis of SMM Properties 
 
The AF distribution between children and parents SMMs was compared using all calls with a minimum depth of 
45x, AFs with 90% upper CIs intersecting 5%, and refined logistic model score >= 0.518. To determine the 
fraction of parental SMMs that may be attributed to lack of grandparental data, we regenerated variant calls for 
the pilot families (reprocessed WES data) applying the same refined logistic model and final filters, but ignoring 
family data. We then fit the observed bimodal AF distributions to normal mixed-model using R package 
mixtools, function normalmixEM(). For mode 1 (lower AFs), we combined calls within two standard deviations 
of the estimated mean. For mode 2, we combined calls more extreme than the mean of mode 1 plus two 
standard deviations. We then determined the fraction remaining after applying transmission filters. We used 
the fraction of variants retained in the children to estimate the number of variants we expect to remain in the 
parents if we had sequenced the grandparental generation.  
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Splice site distances for variants were annotated using Variant Effect Predictor (see Web Resources). 
The absolute value of the shorter of the two distances between donor or acceptor site was chosen as the 
distance to nearest splice site. We also examined potential of enrichment of missense variants in five different 
gene sets that have been previously been evaluated using de novo mutations,11 including an updated version 
of the essential gene list.39 We downloaded genesets from GenPhenF (See Web Resources) and then mapped 
gene symbols to our Refseq ANNOVAR annotations. We removed genes that we were unable to map. To 
determine enrichment, we took a similar approach as previously described,11 using the null length model.11 
However, we calculated joint coverage for all genes within a set as well as all the genes outside of that set 
(across the cohort) and used this value to estimate the expected proportion of mutations (p). Since more than 
one gene can overlap any genomic position, for this analysis we counted based on all genes impacted. Thus, if 
a mutation or genomic position overlapped a gene within the set and outside of the set, it was counted twice. 
We tested for gene set enrichment using a binomial test in R binom.test(x, n, p), where x=number of genes 
impact within set, n=total number of genes impacted, p= expected mean based on joint coverage. 

To determine if genes targeted by missense or synonymous mutations in probands showed enrichment 
for ASD candidate genes, we used genomewide gene rankings generated from two previously studies.38, 42 The 
LGD intolerance ranking is based on the load of LGD mutations observed per gene.38 The LGD-RVIS is the 
average rank between LGD and RVIS (another measure of constraint) scores.38, 43 ASD association rankings 
are the results of a machine learning approach that uses the connections of ASD candidate genes within a 
brain-specific interaction network to predict the degree of ASD association for every gene.42

 

 
Intersection of SMM with Previously Published GDMs 
 
Excluding all GDMs we reclassified without read support or as potential SMMs (binomial p <= 0.001), we 
combined previously identified GDMs within the cohort and looked for overlap with our SMMs at both 45x 
minimum coverage and AF >= 5% (based on the upper 90% CI intersection) and the more stringent AF >= 
15% burden threshold.11, 12 Degree of overlap with GDMs for different functional classes between probands 
and siblings was determined using Fisher’s exact test.  
 
Results 
 
Reanalysis of Previously Reported De Novo Mutations 
 
We began by analyzing the existing set of previously reported exonic or canonical splicing site de novo 
mutations.2, 4, 5, 11, 12 We extracted allele count information from available variant tables or directly from the 
originally mapped read files (Material and Methods). Excluding sites without any high quality variant bases (>= 
Q20), we evaluated 5,076 SNVs (probands: 2,996; siblings: 2,080) and 416 small insertion/deletions (indels) 
(probands: 273; siblings: 143) (Table S3). Using a binomial approach, we identified mutation sites that 
significantly deviated from the expected germline 0.5 AF. We found an excess of mutations with observed AFs 
lower than expected (Figure 1 and Figure S18-19). For SNVs, we observe that ~10% of SNV sites show 
evidence of being SMM in both affected probands and unaffected sibling (Table S4, binomial p<= 0.001). This 
included a missense SMM in the high-confidence ASD risk gene SYNGAP1, which plays an important role in 
the regulation of NMDA receptor signaling by suppressing the RAS-MAPK pathway and excitatory 
transmission.44 A higher rate is observed in sites that annotated as SD/TRF loci, ~24%, which may be more 
prone to false SMM calls due to uncertain mapping of WES reads. However, these SD/TRF loci represent 8% 
of the called sites and thus have a modest effect on the overall rate. We observe a similar rate of potential SNV 
SMMs (8-9%) applying additional AF cutoffs, more strict binomial deviations (p<=0.0001), or both (Table S5), 
suggesting these are robust estimates. In probands, the relative proportion of mutation types, i.e. fraction of 
synonymous or missense, were similar between sites classified as GDM versus SMM. Interestingly, in siblings, 
the fraction of synonymous sites appears reduced in SMMs compared with GDM (0.22 versus 0.29, Fisher’s 
exact two-sided, p = 0.054). 

For indels, we also observed a large number of potential SMMs, ~26% (Table S6), binomial p <= 
0.001), and a similar elevation of the rate for SD/TRF loci (~49%). In contrast to SNVs, there was more 
variability overall between probands and siblings (22% versus 35% SMMs respectively, Fisher’s exact two-
sided, p = 0.005). However, the estimates were less robust when applying additional AF cutoffs, more strict 
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binomial deviations (p <= 0.0001), or both (Table S7). For example, the overall SMM rates using the stricter 
binomial threshold were 15% and 24% respectively (Fisher’s exact two-sided, p = 0.045).  
 We next examined validation data previously reported or available for a subset (63/545) of the 
predicted mosaic sites, which included Sanger and NGS data. We find 39/63 (62%) show strong evidence of 
allele skewing in the validation data (Table S8), arguing the majority of these calls are bona fide SMMs but that 
systematic approaches tuned to detecting SMMs were still needed.  
 
Developing a Systematic Mutation Calling Framework  
 
Based on these preliminary findings of variants identified using germline variant calling pipelines, we sought to 
perform a systematic analysis of SMMs with methods specifically geared toward mosaic SNV mutations. Unlike 
the analogous situation with cancer WES data, we do not generally have access to matched ‘normal’ tissue 
data. Moreover, we expect a large number of suspected SMM calls to be false because of random sampling 
biases, mapping artifacts, or systematic sequencing errors. Therefore, we sought to build a robust calling 
framework that would integrate different approaches and could be empirically tuned based on validation data.   

We evaluated several standalone SMM single nucleotide variant (SNV) callers and a custom read 
parser (mPUP) using simulated data containing artificial variants at 202 loci. These loci were simulated at 
varying AF and depths ranging from 1 to 50% and 30 to 500-fold respectively, allowing a wide evaluation of the 
possible detection search space (Table S10). We found that within the simulated data, caller sensitivity greatly 
varied at different depths and AFs, but many had high PPV (Table S11). Based on their complementary 
performances at different depths and AFs, we selected Varscan2, Lofreq, and mPUP for further evaluation.  
 Next, we took advantage of the fact that 24 quad families (96 individuals) had WES independently 
generated by three centers, providing an opportunity to empirically evaluate these methods on a combined 
high-depth WES dataset. We remapped and merged these data and then applied the three variant callers 
(Figure S2). We classified 902 exonic coding or splice site variants as raw SMM calls and 63 GDM calls for 
forward validation using smMIPs and Illumina sequencing. This set included predicted SMM calls from a wide 
range of AFs, depths, and support levels. We validated these sites using pools of smMIPs on matched whole 
blood (WB) and transformed lymphoblast cell line (LCL) derived DNA (Table S9 and Figure S3). We obtained 
high confidence validation data from at least one DNA source for 645 of the predicted SMM and 56 of the GDM 
sites. Not surprisingly, we found the majority of the SMM predicted by a single approach were false positives, 
and the union set of calls had the greatest PPV (Figure S8). LoFreq showed the best performance as a single 
caller; however, it failed to predict 13/51 validated SMM. The majority of the SMM sites were validated in both 
WB and LCL DNA (42/49 with high-confidence dual data). In addition, a number of SMM were in cis with 
existing heterozygous polymorphisms. SMM alleles tracked with specific haplotypes, but were absent from a 
number of overlapping reads, strongly suggesting that these are bona fide postzygotic events (Figure S6). 
 Using these pilot 24 validation data, we constructed an initial logistic regression model trained on the 
validated predicted true/false SMM, which took into account depth, caller, reference base, and transition vs. 
transversion changes (Supplemental Material and Methods). We selected a logistic score threshold of >=0.2, 
which performed well in three-way cross validations, but was nevertheless conservative given the limited 
number of training sites (Figure S9). We further found that for transmitted sites, we could eliminate most of the 
mischaracterized calls that validated as parental germline by requiring a more significant binomial deviation 
and performing a Fisher’s exact test of the read counts from the parent- child pair (Figure S10). Some of these 
sites showed consistently skewed AFs that transmitted in a Mendelian fashion, suggesting they are either 
systematically biased or multicopy sites that we co-sampled (Figure S4).   

We then applied this initial logistic regression model and additional filters for ambiguous transmitted 
sites to an independent set of 400 quad families (Material and Methods, Figure S11). We performed validation 
on WB DNA samples from 78 of these quads. Importantly, the initial logistic regression model reduced the raw 
number of raw SMM calls by 93% (2,198/31,279 passing score filter). We designed smMIPs for these sites and 
obtained high-confidence validation data from WB on 1,388 sites.  
 For both pilot 24 and 400 validations, we manually inspected WES and smMIP alignment data for all 
initially positive validations (based on read count data) and a subset of false positive sites. In doing so, we 
observed a number of common features associated with poor prediction outcomes or problematic genomic 
regions. First, we found that a large number of false positive validations had an excess of multiple mismatches 
within the variant reads (Figures S5, S13). This feature was not present in the vast majority of true germline or 
mosaic calls. Based on the median number of mismatches we identified <=3 as a filter threshold that would 
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remove a large number of false positive sites, without dramatically altering sensitivity. We similarly observed 
that a number of the pilot 24 calls were detected multiple times in the pilot 400 call set, which had not been 
processed at the time of selecting pilot 24 validation sites. Variant calls present in multiple families typically 
validated as false positives or parental germline. Therefore, we elected to remove all calls with these two 
features prior to building a refined logistic regression model.  
 Using the filtered pilot 400 high-confidence validation set, we built a refined logistic regression model on 
all predicted SMMs (Figure S12). The model performed well in 3-way cross validations with sensitivity 
estimated at 92% and PPV at 80% (threshold 0.26, Figure S15A). In evaluating the model, we found that sites 
generally fell within three groups (Figure S15B). First, low scoring and largely false positive sites had low AFs, 
low read counts, and medium-high empirical error rates. The middle grouping had either low-medium AF, low 
error rate, and lower variant read counts or low-medium AF, medium-high error rate, and high variant read 
count. The highest scoring group was largely driven by higher AFs and variant read counts. This group 
includes the bulk of the validated sites (both mosaic and germline). To further evaluate this model, we rescored 
the pilot 24 validation sites with and without additional filters (Material and Methods). Importantly, these sites 
were selected and validated prior to model development, giving an independent set of data to evaluate 
performance. These data performed better than the training data (after removing mPUP only calls), likely due 
to the increased WES coverage of the pilot 24 samples with sensitivity of 94% and PPV of 83% (threshold 
0.26, Figure S15C-D).  

Finally, as we specifically developed our model to separate predicted SMM calls that validate as false 
versus true variants, regardless of whether they were mosaic or germline, we subsequently examined the 
validation data to determine if an additional heuristic could further distinguish true mosaic sites from sites that 
validated as germline. We observed that sites validating germline tended to have higher observed WES AFs. 
We calculated the 90% binomial CI (95% one-sided) for the observed AF as a potential complement to the 
observed significant binomial deviations. We found that the vast majority (99%) of validated SMM sites had 
upper CI bounds that remained below 0.4, while bounds for the majority of true germline sites (76%) fell above 
this threshold (Figure S14). In addition, we observed that a significant fraction of the false positive calls 
exceeding our logistic score threshold were annotated as SD/TRF sites (Figure S13C). Moving forward we 
chose to remove these SD/TRF sites and re-classify mosaic versus germline status based on the AF binomial 
CI.  

We scored and filtered the pilot cohorts using these parameters and conducted a third set of validations 
on SMM and GDM sites not previously evaluated (Supplementary Note). We evaluated these new data and 
our previous validation calls under these harmonized filters (Figure S15E-F). We observed that across the test 
sets, both sensitivity and PPV converged at a logistic score of ~0.5 (sensitivity ~0.8, PPV ~0.9). Of the true 
variant predictions in children, 96% of mosaic predictions were validated as mosaic with only 4% validated as 
germline.  We chose to use this more stringent score threshold for our subsequent burden analysis. In addition, 
we removed calls with less than five variant allele reads as these disproportionately contributed to false calls 
(Figure S13E). In our final high confidence 45x joint coverage call set, we observed a higher fraction of 
potential SMMs than in the previously published calls, 12% of de novo mutations at a 15% minimum AF 
(burden analysis threshold) and 22% at a 5% minimum AF (Table S12). 
 
Evaluation of Mutation Rates and Burden in Children with ASD 
 
In the SSC, de novo large gene disrupting CNVs, likely gene disrupting (LGD) GDMs, and missense GDMs, 
have been shown to have a greater mutation burden in individuals affected with ASD versus their unaffected 
siblings. We reasoned that the burden of SMMs might differ based on embryonic timing given that an early 
embryonic mutation would contribute more substantially to postembryonic tissues. We could then use AF as a 
surrogate for embryonic time—the higher the AF, the more likely an event occurred early in development. 
Therefore, we evaluated burden across the entire SSC cohort at several defined minimum AF thresholds, 5%, 
7.5%, 10%, 12.5%, and 15%. Likewise, we defined the search space (minimum total depth) for each analysis 
as the jointly covered bases across a family for which we had an 80% probability of observing a minimum 
number of five variant reads (Figure S16). We removed low-coverage outlier families independently from each 
joint coverage data set and only analyzed the unique autosomal coding regions (Material and Methods).  
 We first examined the quad families exclusively as they provided a matched set of child samples. 
Within our GDM calls (which largely overlap those previously published), we unsurprisingly recapitulated the 
previously observed mutation burdens for missense (p = 0.003, one-sided Wilcoxon signed-rank test (WSRT)) 
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and nonsense/splice mutations (p = 0.00025, one-sided WSRT) and lack of burden for synonymous mutations. 
Mean rates were similar across AF and coverage thresholds (AF-COV) with a slight trend toward lower rates at 
high minimum depths. In contrast, for SMM we see an increase in mutation rate at higher depths and 
corresponding lower AFs. This is in line with expectations as newer mutations (lower AFs) would accumulate 
during development. Given the low number of nonsense/splice mutations, we restricted our analyses to 
synonymous and missense SMMs. Unexpectedly, we observed a significant increased burden of synonymous 
SMM in probands (Figure 2A). The signal is strongest at the 12.5%-50x analysis (minimum 12.5% mosaic) with 
probands having twice as many mutations (32 in probands or 7.2x10-10/base pair vs. 16 in siblings or 3.6x10-

10/base pair, p = 0.0024, two-sided WSRT. This trend continued for the three lower AF windows, of which 10%-
65x and 7.5%-85x are nominally significant (p = 0.023, 0.041, two-sided WSRT). Interestingly, at the highest 
AF, 15%-45x, only a marginal non-significant increase was observed. We extrapolated the observed mean per 
base rates to the full unique autosomal Refseq exome (31,854,496 bases/haplotype, including canonical splice 
sites) in order to calculate the average differential between probands and siblings, similar to the analysis 
performed previously for GDMs.11 We found probands had a rate of 0.046-0.073 synonymous SMMs per 
exome and siblings 0.023-0.04, within the significant AF-COV windows. The differential between probands and 
siblings was 0.022-0.033, suggesting 41-50% of proband synonymous SMM contribute to ASD risk based on 
this differential. In sharp contrast, we observed no bulk mutation burden signal for missense SMM (Figure 2B). 
We next combined the data from quad and trio-only (father, mother, proband) families to potentially increase 
power, and observed the same trends (Figure 2). 
 Since a large fraction of the SSC has GDM events that are likely contributory, we reasoned that 
grouping families by those with or without proband GDMs might improve our ability to detect any SMM signal 
that might be present11. We generated a list of families with published, large de novo CNVs or LGD GDM in 
identified probands, but excluding variants deemed from our analysis to be likely SMM (germline LGD list). In a 
similar way, we generated a more inclusive list of families with any other nonsynonymous GDM in identified 
probands (any germline NS list). In the families without a germline LGD, we observed synonymous rates that 
were similar to the full cohort for both probands and siblings. In contrast, for the families without any reported 
nonsynonymous GDMs, we observed a dramatic depletion of synonymous SMM events in the unaffected 
siblings, with proband to sibling rate ratios ranging from 3.75 to 12, depending on the specific AF-COV window 
(Figure 2D-F). In this group (without germline nonsynonymous), this equates to synonymous SMM events per 
proband exome ranging from 0.02-0.07 and 0.003-0.05 per sibling exome. The differential between probands 
and siblings ranges from 0.02-0.05. For probands who do not have any germline nonsynonymous variants we 
estimate that 71-86% of proband synonymous SMM contribute to ASD risk. Next, we examined missense 
variants using the two cohort subgroupings. At the 15%-45x AF-COV threshold, we observed a nominal burden 
of missense variants in probands for families either without any germline LGD (ratio 1.28) or without any 
germline nonsynonymous (ratio 1.49) (Figure 3, combined proband versus sibling p = 0.085 and p = 0.076 and 
respectively, one-sided Wilcoxon rank-sum test (WRST)). 
 It has now been well documented using several approaches that LGD GDM in probands show 
enrichments for genes that are highly conserved/intolerant to LGD. We similarly reasoned that missense SMM 
relating to ASD risk would also show similar enrichments. We selected two intolerant gene sets, an updated 
set of essential genes (n = 2,455)39, and the recently published Exome Aggregation Consortium (ExAC)40 
intolerant set (n = 3,232) (and corresponding midrange and tolerant sets). To define the correct proportions of 
WES adequately observed within each gene list, we recalculated joint coverage for the whole cohort (quads & 
trios) across all exonic/canonical splicing bases intersecting these sets. We then repeated the missense 
burden analysis. For both essential and ExAC intolerant sets at the 15%-45x AF-COV threshold, we observed 
similar nominally significant enrichments for missense variants (ratios 1.4, combined proband versus sibling p 
= 0.093 and p = 0.13 and respectively, one-sided WRST). We found a corresponding non-significant depletion 
of proband events within the ExAC midrange genes, but no depletion within the ExAC tolerant genes. In the 
subset of families without germline LGD, we saw a stronger effect for both essential and ExAC intolerant genes 
(ratios ~2, combined proband versus sibling, p = 0.034 and p = 0.025 and respectively, one-sided WRST). We 
observed similar results when restricting to quad only families (Figure S20). Missense SMM in essential genes 
occur at a rate of 0.12 events per exome in probands who do not have a germline LGD and at a rate of 0.11 for 
intolerant genes. In siblings of probands who do not have a germline LGD, the rate for missense SMM in 
essential genes is 0.06 and 0.05 for intolerant genes. The differential in essential genes between probands 
who do not have a germline LGD and siblings is 0.06 and 0.06 for intolerant genes. Therefore, in families 
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where probands do not have a germline LGD, we estimate that 52.5% of missense SMM in essential genes 
and 55% of intolerant genes contribute to ASD risk. 

Interestingly, the families without any nonsynonymous GDMs showed the largest effect in the ExAC 
intolerant set (ratio 2.6, p = 0.047, one-sided WRST), but similar rates to the full cohort in the essential gene 
set. For probands that do not have any nonsynonymous GDM, the rate is 0.12 events per exome for missense 
SMMs in intolerant genes and 0.05 for siblings, which is a 0.07 differential. Therefore, in families where 
probands do not have a germline nonsynonymous mutation, we estimate that 61% of missense SMMs in 
intolerant genes contribute to risk in probands, which is similar to the without germline LGD subcohort.  
 
Parental SMM Mutation Rates and Transmission Risk 
 
Using our SMM approach, we also identified SMM originating in the SSC parents (Figure S7). For transmitted 
sites, which by definition require the postzygotic mutation contribute to the soma and germline, we required a 
stricter deviation from the binomial expectation based on empirical validation data. The overall SMM rates were 
similar between parents. We found the SMM rate to be ~2.5-fold greater in the SSC parents relative to their 
children (Figure S21). However, we expect that some of this bias may be due to differences in filtering out 
transmitted sites that show false mosaic signal, as we do not have the previous generation, i.e. grandparents, 
to compare to as we do in the children. Therefore, we looked at variants in a subset of the cohort and 
determined the fraction of variants remaining in children before and after applying transmission filters. Using 
this rate, we estimated the number of SMMs expected to be filtered from the parental calls based on 
transmission. We find that based on the fraction of calls filtered from children, ~40% of our parental SMM calls 
are in excess of what is expected and likely attributed to incomplete filtering (Figure S22). Applying this 
correction reduces the parental excess SMM rate to ~1.5-fold.  

As with the children’s SMMs, we observed slight increases in mutation rate at higher depths and 
corresponding lower AF thresholds. Across the AF-COV windows, we found that ~7-10% of parental SSM 
were transmitted to one or more children, which requires an early embryonic origin. This includes sites 
previously reported as GDM. Moreover, in our high-depth validation data, we found 1/164 GDM predictions 
(outlier, SD/TRF, population frequency, and cohort count filters applied) showed evidence of low AF in parental 
DNA, which was not detected by WES (Table S9). Taken together, these data argue that at a minimum, ~7-
11% of new mutations are likely occurring prior to germline specification. In addition to these sites that showed 
evidence of SMM in the parental WES/smMIP data, we also identified 6 (0.4% of GDM) obligate SMM, given 
their GDM presence in two offspring, i.e. gonadal mosaic mutations (Table S9, Table S13).  
 In the nontransmitted parental SMM, we observed similar rates between fathers and mothers for 
different mutation functional classes and across AF-COV windows. In contrast, for transmitted parental SMM 
we found a trend toward higher synonymous rates in fathers, which was strongest at 15%-45x (quad families: 
15 in fathers versus 6 in mothers, p = 0.044, two-sided WSRT). The rates of missense transmitted SMM are 
similar, although slightly reduced in fathers, across AF-COV windows. These observed differences may reflect 
subtle differences in selection pressures within the gametes, but additional whole-genome data will be needed 
to fully power such an analysis. Finally, within the quad families we do observe some skewing of transmission 
to siblings (18 to both, 39 siblings, 22 probands).  
 
Properties of SMM and Gene Set Enrichments 
 
We next examined additional properties of SSM and whether, similar to GDMs in the SSC, they were enriched 
for mutations in particular sets of genes. To increase power for this analysis, we combined all SMM with 45x 
joint family coverage, an AF CI lower bound at or above 5%, and high-confidence logistic score (Material and 
Methods). We first examined the AF distributions of SMM. We found that individuals within each category of 
SMM (parental or child) had similar AF distributions. Therefore, we combined parental calls and child calls. We 
observed that the nontransmitted parental SMM have a distinct AF distribution, which is bimodal, and 
significantly different from both transmitted parental SMM and child SMM distributions (nontransmitted parental 
versus transmitted, p = 7.07 x 10-14, nontransmitted parental versus children, p = 2.99 x 10-14, two-sided 
WRST). Our analysis of transmission filtering suggests that a major faction of this rightmost mode is false 
mosaic calls that would have been filtered given the availability of grandparental data (Figure S22). 
Interestingly however, the parental transmitted SMM distribution closely resembles the rightmost mode of the 
nontransmitted distribution, suggesting that this subset of the distribution is still representative of likely early 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 4, 2016. ; https://doi.org/10.1101/083428doi: bioRxiv preprint 

https://doi.org/10.1101/083428


13 

embryonic events, a fraction of which are also found in the germline. We further examined the AFs of the 
parental SMM taking into account the confidence intervals of the AFs, similar to how we empirically separated 
germline and mosaic calls (Figure S23). Although we find some transmitted variants within the low AF range, 
the vast majority have AF CIs in excess of 10% (20% mosaicism), suggesting early embryonic origin for SMM 
within this AF range and consequently the largest risk for transmission.  
 We hypothesized that if the observed burden of synonymous SMM contributed to ASD risk, one 
possible mechanism would be by disrupting splicing within the associated exon. If this was the case, we 
expected proband synonymous SMM to be preferentially localized near existing canonical splicing sites. 
Therefore, we calculated the absolute minimum distance of all SMM and GDM synonymous to their closest 
splicing site (Figure 4). We found the proband synonymous SMM distribution to be shifted towards splicing 
sites compared to both sibling variants and parental synonymous SMM (p = 0.017 and p=0.008 respectively, 
two-sided WRST), while the sibling distribution was similar to the parental (p = 0.61, two-sided WRST). We 
observed a similar shift towards splice sites for GDM in probands as compared to siblings (p = 0.005, two-
sided WRST). 
 Next, we applied a similar approach as Iossifov and colleagues to look for enrichments of SMMs within 
different gene sets.11 To account for coverage differences, both within samples and across genes, we again 
recalculated joint coverage for the cohort, specifically for genes within a set and for the remaining exome. 
Using this coverage data, we calculated the expected binomial probability for obtaining a mutation within a 
gene set. These binomial probability estimates were similar to those used previously. Using these values, we 
examined if our SMM/GDM showed more or less mutations than expected independently for probands and 
siblings. As expected, our GDM dataset showed similar enrichments or lack thereof to previous reports (Table 
1). In probands, we found a nominally significant enrichment (1.8-fold) for missense SMM intersecting 
chromatin modifiers (p = 0.055, two-sided binomial) and a depletion of missense SMM in embryonically 
expressed genes (p = 0.043, two-sided binomial). Interestingly, missense GDM showed no evidence of 
enrichment or depletion for these gene sets, while LGD GDM have previously been shown to be enriched.   
 
Intersection of SMM with Germline ASD Candidate Risk Genes  
 
Recently, several groups have taken different approaches to generate genomewide ASD candidate risk gene 
rankings and predict novel gene targets. These approaches have largely been validated on LGD germline 
mutations. We next explored whether our high-confidence SMM (45x-5% set) calls showed any shift in mean 
rankings for probands compared with their unaffected siblings (Table S14). We evaluated rankings based on 
gene mutation intolerance (LGD rank, LGD-RVIS average rank)38 or based on a human brain-specific gene 
functional interaction network (ASD association).42 At this population level, we found only nominally significant 
increases in LGD-RVIS rankings for proband synonymous and essential missense SMM in the subcohort of 
families without any proband germline nonsynonymous mutation (p = 0.029 and p = 0.073, one-sided WRST). 
We observed no rankings shifts for missense GDM. 
 Finally, we intersected the high confidence 45x SMM calls, including the 15% AF burden analysis 
subset, with the re-classified published GDM calls. While we observed no enrichment of proband SMM with 
sibling GDM of any type, we did find an apparent enrichment of the burden SMM call set (15%-45x) with 
proband missense GDM (proband: 25/100; sibling: 9/69, p = 0.042, odds ratio, 2.222, 95% CI 0.904-5.582, 
one-sided Fisher’s exact).  
 
Discussion 
 
The aim of our study was to systematically evaluate exonic SMMs in a large-family based SSC cohort and their 
potential role in ASD. Historically, SMM, much like GDM, have been intractable to systematically study 
genomewide. However, there are numerous examples in the literature of SMM at Mendelian loci that cause the 
same disorder or have a similar but less severe presentation. While, structural or CNV mosaics have been 
identifiable with a variety of cytogenetic and array approaches, NGS technologies have for the first time made 
this class of genomic variation accessible at single base resolution genomewide. Studies published in only the 
past few years have widened our appreciation for the role mosaic mutations may play in overgrowth 
syndromes, including those that involve the brain.15, 16 However, little is still known about how frequent and 
widespread these events might be in early and/or late development and how they might relate to complex 
disorders. 
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 Studying SMM in neurodevelopmental disorders presents several challenges. Mutations represent only 
a fraction of the alleles in a mixture. Under a simplistic model, if a mutation occurred in a single cell at the two 
cell embryo stage, only ~25% of the alleles in a bulk DNA sample should show the mutation. Less pervasive 
mutations with lower AF are more difficult to detect. Depending on the real mutation AF and sequence 
coverage, it may be more or less difficult to discern if an event is somatic, germline, or noise. We began by 
analyzing the underlying variant support data for previously reported de novo mutations from the SSC WES 
data, which largely used WB derived DNA for library construction. These calls were generated using a variety 
of calling approaches designed to identity germline variants. We find evidence for ~10% of SNVs and ~21-24% 
of indels having AFs consistent with a SMM. This is excess of our original observation of ~4% (9/260) events 
consistent with SMM made from only 209 families. A similar analysis of coding de novo mutations identified 
from whole-genome sequencing of simplex intellectual disability trios, validated 6.5% (7/107) as SMM.  
 As the previously published de novo calls were all generated with germline variant callers, we reasoned 
that re-analyzing the WES data systematically with approaches tuned to detect SMM would reveal novel 
mutations, especially those with lower AFs (<20%). Most approaches for detecting SMM have been developed 
specifically to identify cancer-associated mutations using a tumor specimen and matched normal tissue. For 
neurodevelopmental disorders we cannot routinely biopsy or otherwise obtain the suspected “affected tissue”, 
i.e. brain/neuronal. Instead we are usually only able to examine a single peripheral DNA source. Given these 
issues and the inherent difficulty of obtaining affected brain tissue in living patients, we sought to develop 
generalizable methods that can be applied to unmatched WES data and in the context of nuclear families 
(parent-child trios) to identify SMMs and GDMs. We focused our analysis on SNVs because of their higher 
predicted frequency and more uniform AF distribution.  

We developed our systematic method for identifying likely SMM SNV mutations from WES by 
integrated calls using three different complementary approaches and preforming extensive validations using 
smMIPs (Figure 1E). Using this data, we developed a logistic repression model and additional heuristics that 
clearly separate false calls, SMM, and GDM. Using this high confidence data, we evaluated mutation burden in 
the SSC cohort by comparing rates in autistic probands and their unaffected siblings. Given that the depth of 
sequence directly affects the observed minimum mutation allele fraction, we used varying AF-COV thresholds 
(e.g. 15%-45x, 5%-130x). Surprisingly, for the full cohort we found the strongest signal for SMM burden with 
synonymous SNVs (Figure 2). The distribution of proband SMMs showed a significant shift in distance to 
nearest splice site (Figure 4). Recently, it has been shown that in some cancers synonymous mutations may 
have a modest enrichment in oncogenes.45 Within 16 oncogenes, the signal was specific to the mutations 
within 30 base pairs (‘near-splice’) of the exon boundry and showed gains of exonic splicing enhancer (ESE) 
motifs and loss of exonic splicing silencer (ESS) motif sequences. Conducting an analysis of the intersection of 
ASD and schizophrenia WES GDMs and regulatory elements, Takata and colleagues recently reported an 
enrichment of near-splice synonymous GDM in ASD probands (odds ratio ~2) and, to a lesser extent SCZ 
probands, relative to controls.46 Stronger signal in their initial ASD cohort was seen for sites predicted to cause 
ESE/ESS changes, but reduced in a replication dataset (odds ratios 2.52 and 1.55 respectively). In their 
analysis they compared the fraction of near-splice or those also disrupting ESE/ESS sites mutations in cases 
versus controls (Fisher’s exact test), which does not take into account coverage differences across 
individuals/cohorts. We repeated our analysis of the distance to splice site distributions for the high-confidence 
45x-joint coverage SSC synonymous GDM, finding them to be significantly closer to splice sites in probands as 
compared to siblings (p = 0.005), similar to the SMM calls. Taken together, these data are consistent with a 
possible role of synonymous de novo germline and somatic mutations that functionally disrupt splicing 
regulation in ASD. However, given the uncertainty of splice regulatory predictions and cell-type specific splicing 
patterns, it is difficult to interpret the effect of individual mutations. Additional functional validation of these 
mutations using in vitro approaches, e.g. minigene assays, or in vivo approaches, e.g. genome editing of cell 
lines, is warranted. 

We do not see evidence of missense SMM burden in the full cohort of ASD probands. This is perhaps 
not surprising given the strong contribution of GDM to ASD in the SSC and that most new de novo events will 
be missense changes by chance, i.e. form most of the background non-disorder related mutations. Our sample 
size is too small given their rate of mutations to fully evaluate nonsense/splice SMMs as a separate class. 
Based on their differential between probands and siblings, it has been reported that germline LGD mutations 
have a 40% likelihood of being contributing to ASD (90% of loci with recurrent LGD), while the likelihood for 
missense variants is ~35%.11 We reasoned that restricting our analysis to families without proband germline 
mutations would increase our power to detect any effect of SMM, even though we would be removing a 
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significant fraction of families with germline events unrelated to ASD. Indeed if we subdivide the SSC cohort 
into families that have or do not have a proband germline LGD/de novo CNVs or alternatively any germline 
nonsynonmous mutation we observe a difference emerging, specifically for the highest AF SMMs (minimum 
15% group). This difference is strongest statistically in the subset of genes predicted to be essential/intolerant 
to mutation (Figure 3). Similarly, we also saw a further increase in synonymous SMM burden in the subcohort 
without any reported nonsynonymous GDM (Figure 2). 
 We also explored whether missense SMMs would show similar enrichments in genes sets previously 
examined in the SSC by Iossifov and colleagues,11 calculating our own expect priors based our coverage 
thresholds (Table 1). We observe nominal enrichment for chromatin modifiers in the probands and a depletion 
of embryonic genes. We also examined our pipelines GDM calls across these gene sets. Compared to the 
previous analysis,11 we observed a similar, but stronger and more significant enrichment of proband missense 
GDM in FMRP targets (1.2 versus 1.4-fold). We also tested whether SMMs and GDMs shared common gene 
targets. We found proband missense SMMs were more likely than sibling missense SMMs to intersect with 
proband GDMs (odds ratio ~2), suggesting that they do in fact target a common set of genes. Moreover, we 
find missense SMMs in some of the highest confidence ASD risk genes identified in the SSC or other 
combined studies including those targeting, SCN2A, CHD2, SYNGAP1, CTNNB1, KMT2C, and RELN (Table 
2).37, 38, 41, 47 Interestingly, small de novo deletions targeting CHD2, SYNGAP1, CTNNB1, and KMT2C have 
been reported in the SSC as well48, demonstrating that new mutations of multiple types and origins at these 
sites contribute to ASD risk. Moreover, mutations in some of these genes are not restricted to ASD as these 
genes have also been found to be disrupted in cohorts primarily defined on diagnoses of: epileptic 
encephalopathy, intellectual disability (ID), and congenial heart defects with additional features49-52. 
Understanding how mutations impacting these important genes that blur our diagnostic constructs will be an 
important area of future research. These and other data suggest the creation of more broadly defined cohorts 
and better integration of genetic studies of developmental disorders are warranted. 

Freed and Pevsner recently reported on SMM mutation burden in probands and siblings in the SSC.53 
While our two studies used the same SSC datasets, we each used different computational and validation 
approaches. Most importantly, they restricted their burden analysis to their SMM calls that: overlapped the 
previously published de novo datasets, met 40x joint-coverage, and also included indel calls. Unlike our study, 
they did not restrict their analysis to different minimum AF-COV thresholds. They report the burden of all 
classes of variants combined (synonymous, missense, and LGD) as significant. Moreover, they found nominal 
contributions across all classes of mutations. Comparing our 15%-45x analysis to their data, we observe 
similar differences in the synonymous rates, but do not observe the apparent missense differences in the full 
cohort. They also observe a trend toward missense and LGD SMMs in embryonic genes, while we observe the 
opposite trend for missense SMM. These differences are likely driven by our different computational 
approaches and our use of a larger number of SMM calls unique to our pipeline. Combined our two analysis 
approaches suggest that ~4-5% of the SSC probands have a SMM likely contributing to ASD risk.  

Unique to this study, we also performed our SSM analyses in the parental data. We identified both non-
transmitted and transmitted mosaic mutations. In our initial validations, we found that most parental events 
initially classified as potentially mosaic (binomial <= 0.001), where in fact truly germline. This is consistent with 
the low probability of a true transmitted mosaic compared with the much higher prior probably of a 
misclassified germline variant. We therefore required an order of magnitude stronger binomial deviation and 
significant AF difference between parent and child(ren) for sites that showed transmission to be classified as 
SMM (Figures S7 and S10). Since these mutations are transmitted, they are obligated to be present in both the 
soma and the germline. Given the low number of parental offspring, we cannot rule out the possibility that a 
fraction of the nontransmitted parental events are also present in the parental germline. 

Our observed somatic mutation rate is much higher in the SSC parents compared to the SSC children. 
Moreover, the nontransmitted SMM AF distribution shows a bimodal distribution that is distinct from both the 
child SMMs and parental transmitted SMMs. There are several potential explanations for the increased rate of 
mutation and AF differences. As parents in this cohort were several decades older at time of DNA collect, this 
increase could be explained by the accumulation of SMMs in the blood, some of which might drift to or be 
selected for higher AF. We did not evaluate the grandparental generation. For the children, we were able to 
eliminate likely inherited sites that showed consistent bias in AF generation to generation (Figure S4). Our 
analysis on a subset of the cohort suggests that ~40% of this excess in nontransmitted parental SMM calls 
could be explained by incomplete filtering of these recurrently biased sites (Figure S22). These sites are either 
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biases for technical reason or reflect the capture of multi-copy regions that were not part of our SD/TRF 
dataset.  

Rahbari and colleagues recently performed WGS on moderately sized pedigrees followed by the 
identification of de novo mutations in multiple children, spanning approximately a decade.14 In validating these 
de novo sites using target capture and deep sequencing, they identified a number of mutations that were at low 
levels in the parental blood derived DNA. Importantly in contrast to our study, SMMs were not directly identified 
in the parents and sites with greater than 5% of reads showing the alternative allele in a parent were excluded 
from the de novo call set. Nevertheless, they found that 4.2% of apparent germline mutations are present in 
the blood of parents at >1% AF. The rate we observe in our high confidence smMIP validation data, however, 
is 0.6% (1 out of 164). In our 45x dataset, in the calls without any variant reads in parents we found 0.4% of 
GDM that are also obligate gonadal mosaic. Overall, our data support at least 7-11% (depending on the AF) of 
parental SMM events are also present in the parental germline and can be transmitted to the next-generation. 
Together these two sets of parental postzygotic mutations account for ~5% of all de novo mutations present in 
the children and have important implications for recurrence risk and clinical testing.   

We were limited by the availability of DNA from a single peripheral blood source and WES data that is 
non-uniform. Future studies in this area would greatly benefit from access to multiple peripheral and other 
tissue types of different embryonic origin as well as improved indel variant calling approaches. This could 
include brain tissue in cases of surgical resection to control intractable epilepsy. Moreover, we strongly suggest 
that new efforts to establish autism brain banks obtain peripheral DNA samples from the donor and their 
parents. These DNA would greatly aid in the classification of variant types, i.e. SMMs, GDMs, or inherited 
variants, identified in bulk brain and single-cell sequencing studies as well as help determine their likely 
embryonic timing.  

In summary, our data support the conclusion that somatic mosaicism contributes to the overall genetic 
architecture of ASD and that future studies of SMMs in ASD and related-disorders are warranted. We present 
a general approach for detecting SMMs that overcomes many of the challenges to detecting and validating 
these events in family-based and unmatched samples. The methods developed will allow continued discovery 
of SMM in future datasets, including unsolved genetic disorders, and our findings have potential translational 
implications for clinical detection, case management, interventions, and genetic counseling. 
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Figure 1. Re-Evaluation De Novo Mutations Within the Simons Simplex Collection Cohort (SSC) 
(A-B) Histograms showing the allele fraction distributions of previously published de novo mutations. 
(A) Published de novo SNVs show an elevated number of low allele fraction calls that are potentially SMMs 
(left tail).  
(B) Published de novo indels show an elevated number of low allele fraction calls (left tail) that are potentially 
SMMs as well as an overall shifted distribution.  
(C) Venn diagram showing intersection of previously published GDMs not flagged as potentially mosaic and 
our GDMs call set after applying our final filters. Numbers in parentheses are calls remaining after applying a 
45x joint coverage threshold. *Of the 940 calls, 640 are seen in our raw calls but removed after applying filters.  
(D) Venn diagram showing intersection of previously published de novo mutations flagged as potentially SMMs 
(binomial p <= 0.001) and our SMM calls after applying our final filters. Number in parentheses are calls 
remaining after applying a 45x joint coverage threshold. *Our pipeline found an additional 45 calls that 
overlapped the published data flagged as potentially mosaic, but were re-classified as likely germline based on 
their AF CIs. Note: Krumm 2015 dataset only reported newly identified sites and therefore does not intersect 
the Iossifov 2014 dataset.  
(E) Schematic showing an overview of our systemic approach to developing a robust SMM calling pipeline and 
applying it to the SSC. Key analyzes and display items are indicated. Abbreviations: SD/TRF=segmental 
duplication or tandem repeat finder flagged region, WB=whole blood derived DNA, LCL=lymphoblast cell line 
derived DNA, trans sites=sites showing evidence of transmission from parent to child.    
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Figure 2. Rates and Burden of SNV SMMs Across Minimum AFs and Different Functional Classes  
(A-C) Rates and burden analyses of SMMs in full SSC. Mean rates with 95% Poisson CIs (exact method) are 
shown for probands from quad families, unaffected siblings, and the combined probands (quad+trios). 
Significance determined using WSRT (paired quads, two-sided) or WRST (combined probands v. siblings, two-
sided).  
(A) Synonymous SMMs have an unexpected increased rate and burden in probands at three minimum AF 
thresholds. 
(B) Missense SMMs show no evidence of burden in the full cohort.  
(C) Nonsense/splice SMM rates are similar and not evaluated further given their low frequency.  
(D-F) Analysis of synonymous SMMs of different minimum AFs in SSC subcohorts. All denotes all families 
within the cohort passing quality criteria, Has Germline LGD denotes whether or not proband also has a LGD 
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GNM or de novo CNV, and Has Any Germline NS denotes whether or not proband also has any 
nonsynonymous GNM. 
(D) Synonymous SMMs with AF >=10% show stronger proband burden in the subcohort without any germline 
nonsynonymos mutation.   
(E) Synonymous SMMs with AF >=12.5% show strongest proband burden in the subcohort without any 
germline nonsynonymos mutation.   
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Figure 3. Rates and Burden of Missense SMMs in Subcohorts and Gene Sets  
For all plots, minimum 15% AF and 45x joint coverage burden call set was used. Mean rates with 95% Poisson 
CIs (exact method) are shown for combined probands (quad+trios) and unaffected siblings. SSC subcohorts: 
All denotes all families within the cohort passing quality criteria, Has Germline LGD denotes whether or not 
proband also has a LGD GNM or de novo CNV, and Has Any Germline NS denotes whether or not proband 
also has any nonsynonymous GNM. Significance determined using WRST (combined probands v. siblings, 
one-sided).  
(A) Splitting by subcohort shows a trend toward increased missense SMM burden.  
(B) Evaluating mutations specific for the essential gene set shows higher and nominally significant proband 
burden in in the subcohort without any germline LGD GDM.   
(C) Similarly, evaluating mutations specific for the essential gene set shows higher and nominally significant 
proband burden in in the subcohort without any germline LGD mutation or subcohort without any germline 
nonsynonymos mutation.   
(D) Siblings of families where probands do not already have a germline LGD or any germline nonsynonymous 
mutation have a higher burden of mosaic missense variants in genes considered moderately tolerant to 
mutation (two-sided, WRST).  
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Figure 4. Distance to Nearest Splice Site for Synonymous SMMs.  
For all plots, minimum 5% AF and 45x joint coverage call set was used. Splice site distance is calculated as 
absolute minimum distance to nearest canonical splice site and histograms have one bp bins.  
(A) Distribution in combined probands.  
(B) Distribution in siblings. 
(C) Distribution in combined parents. 
(D) Combined data plotted using kernel density. Proband distribution is significantly shifted towards the 
canonical splice sites as compared to parents or siblings. Significance was determined using two-sided WRST 
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Figure 5. Mosaic Variant Allele Fraction Distributions  
(A) Distribution of proband variant allele fractions. 
(B) Distribution of sibling variant allele fractions. 
(C) Distribution of allele fractions for germline variants in children that were transmitted from mosaic variants 
in parents. 
(D) Distribution of allele fractions for variants in mothers that were not transmitted to children. 
(E) Distribution of allele fractions for variants in mothers that were transmitted to children.  
(F) Distribution of allele fractions for variants in fathers that were not transmitted to children.  
(G) Distribution of allele fractions for variants in fathers that were transmitted to children.  
(H) Distributions of allele fractions as Kernel Density Curves. Parental transmitted are significantly shifted 
towards a higher allele fraction than nontransmitted or child mosaic variants. Children have a significantly 
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different distribution than parental nontransmitted. Significance was determined using two-sided WRST. 
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Table 1. Enrichment of Missense Germline and Somatic Mutations in Gene Sets   
   GDM mis (pro) GDM mis (sib) SMM mis (pro) SMM mis (sib) 

 Total no. of genes= 704   431   184   134   

               Set p Genes in 
seta 

Obs Exp P Obs Exp P Obs Exp P Obs Exp P 

Chromatin 0.0372 410 32 26.2 0.233 20 16 0.307 12 6.8 0.051 2 5 0.249 

Embryonic 0.1433 1,880 114 100.9 0.162 60 61.8 0.891 16 26.4 0.027 25 19.2 0.173 

Essential 0.1967 2,455 160 138.5 0.046 83 84.8 0.904 41 36.2 0.355 24 26.4 0.665 

PSD 0.0701 905 58 49.4 0.209 35 30.2 0.346 17 12.9 0.246 14 9.4 0.126 

FMRP 0.1005 794 100 70.7 4x10^-4 57 43.3 0.037 20 18.5 0.712 13 13.5 1.000 

45x joint coverage, 5% AF call set. Expected (Exp) and P values obtained from two-sided binomial test, based on gene length model (p). 
Abrreviations: GDM mis=germline de novo mutation missense, SMM mis=somatic mosaic mutation missense, PSD=post synaptic density 
associated genes, FMRP=fragile X mental retardation protein-associated genes. aTotal number of genes differs from full lists as we only 
used genes that we were able to map to our gene symbol annotations.   
 
 
 
Family Mutation 

Type 
Gene Protein 

Change 
GDM 
Lista 

Ref Alt DP DPALT AF Pub 

13522 ma trans SCN2A p.S1124C rec LGD A T 50 11 0.220 N 

13073 pro CHD2 p.E91G rec LGD A G 125 14 0.112 N 

12139 pro CTNNB1 p.R376H LGD+mis G A 103 8 0.078 N 

14420 pro SSPO p.L4711V LGD+mis C G 98 29 0.296 Y 

13897 pro KMT2C p.R4806G LGD+mis G C 115 8 0.070 N 

14001 pro SYNGAP1 p.R1019C LGD+mis C T 74 18 0.243 Yb 

14051 pro CTNNA3 p.R63P LGD C G 295 9 0.031 N 

12025 pro USP15 p.Y271X LGD T G 164 8 0.049 N 

14547 pro UNC79 p.R2070X LGD C T 106 9 0.085 N 

aLists compiled after re-analysis of published calls, see Table S8  bSite did not mean joint coverage threshold to be included in 45x 
dataset. Abbreviations: Ref=hg19 reference allele, Alt=mutation allele, DP=total depth, DALT=alternative allele (mutation) depth, 
AF=allele fraction, Pub=published in de novo mutation calls, ma trans=maternally transmitted mosaic mutations, pro=proband somaic 
mosaic mutation, rec LGD=recurrent LGD list, LGD+mis=single LGD plus additional missense mutations, LGD=single LGD mutation.  
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