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ABSTRACT	

Recent	efforts	have	catalogued	genomic,	transcriptomic,	epigenetic	and	proteomic	changes	in	tumors,	but	

connecting	these	data	with	effective	therapeutics	remains	a	challenge.	In	contrast,	cancer	cell	lines	can	

model	therapeutic	responses	but	only	partially	reflect	tumor	biology.	Bridging	this	gap	requires	new	

methods	of	data	integration	to	identify	a	common	set	of	pathways	and	molecular	events.	Using	

MAGNETIC,	a	new	method	to	integrate	molecular	profiling	data	using	functional	networks,	we	identify	

219	gene	modules	in	TCGA	breast	cancers	that	capture	recurrent	alterations,	reveal	new	roles	for	H3K27	

tri-methylation	and	accurately	quantitate	various	cell	types	within	the	tumor	microenvironment.	We	

show	that	a	significant	portion	of	gene	expression	and	methylation	in	tumors	is	poorly	reproduced	in	cell	

lines	due	to	differences	in	biology	and	microenvironment	and	MAGNETIC	identifies	therapeutic	

biomarkers	that	are	robust	to	these	differences.	This	work	addresses	a	fundamental	challenge	in	

pharmacogenomics	that	can	only	be	overcome	by	the	joint	analysis	of	patient	and	cell	line	data.	
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INTRODUCTION	

Cancer	is	caused	by	molecular	aberrations	that	lead	to	de-regulation	of	cellular	networks.	Large-scale	

tumor	sequencing	efforts	have	sought	to	identify	these	molecular	events	in	common	cancer	types	across	

thousands	of	patients1.	For	example,	The	Cancer	Genome	Atlas	(TCGA)	cataloged	the	molecular	

aberrations	present	in	human	tumors	by	systematically	measuring	somatic	mutations,	copy-number	

alterations,	gene	methylation,	transcriptomes	and	proteomes	in	over	11,000	tumors2,3.	While	these	

studies	have	been	highly	successful,	the	precise	function	of	most	of	these	molecular	events	is	unclear,	and	

exploiting	them	to	better	tailor	therapies	for	patients	remains	a	challenge.	Computational	approaches	can	

help	by	annotating	tumors	based	on	pathway-level	aberrations4-6,	connecting	tumors	with	relevant	cell	

line	models7,8	and	grouping	tumors	that	have	similar	global	molecular	phenotypes2,9-13.	Such	approaches	

have	shown	the	importance	of	using	the	complementary	nature	of	different	profiling	platforms	to	identify	

active	cancer	pathways.	Thus	far,	such	integration	has	been	limited	to	curated	pathway	knowledge	rather	

than	the	discovery	of	new	functional	networks4-6.	The	identification	of	pathways	using	a	more	unbiased	

approach	can	reveal	new	functionally	related	gene	sets	in	cancer,	which	we	refer	to	as	gene	modules.	

In	breast	cancer,	the	discovery	of	molecular	biomarkers	has	centered	on	classification	and	treatment	

based	on	gene	expression	subtypes9,13-16.	The	major	subtypes	in	breast	cancer	include	luminal	A/B	that	

display	characteristics	of	cells	of	the	breast	lumen	and	are	usually	estrogen	receptor	positive	(ER+),	basal	

which	share	similarity	to	cells	of	the	basement	membrane	and	usually	receptor	negative	and	those	that	

express	the	HER2	receptor9.	However,	patients	often	do	not	respond	to	therapies	thought	to	be	specific	

for	their	subtype17,18	and	studies	of	drug	sensitivities	in	breast	cancer	cell	lines	have	shown	that	

responses	to	69-75%	of	drugs	cannot	be	predicted	by	subtype14,19.	This	suggests	that	therapeutic	efficacy	

is	often	based	on	the	presence	of	molecular	modifiers	that	are	not	represented	by	the	global	measures	of	

subtype,	cell	type	and	receptor	diversity.	
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To	uncover	biomarkers	of	drug	response,	several	groups	have	profiled	large	collections	of	cell	lines	by	

measuring	baseline	molecular	features	as	well	as	sensitivity	to	a	wide	range	of	compounds	and	using	

machine	learning	methods	to	identify	therapeutic	predictors19-24.	While	such	approaches	can	generate	

statistically	significant	biomarkers	in	cancer	cell	lines,	there	have	been	challenges	when	translating	them	

to	human	tumors25,26.	One	major	challenge	stems	from	the	altered	biology	and	tumor	environment	that	

distinguishes	human	cancers	from	cell	lines25,27.	Computational	approaches	that	address	this	factor	in	the	

biomarker	discovery	process	have	not	yet	been	developed.	

In	this	paper,	we	present	a	new	method	called	Modular	Analysis	of	Genomic	NETworks	In	Cancer	

(MAGNETIC)	that	integrates	data	across	molecular	profiling	platforms	by	performing	functional	network	

analysis	to	identify	tumor	biomarkers	and	connect	them	to	therapies.	Using	profiling	data	from	breast	

cancers	in	The	Cancer	Genome	Atlas	(TCGA),	we	identify	219	gene	modules	that	capture	molecular	

features	that	are	closely	linked	across	samples	and	enriched	for	protein	pathways.	Using	MAGNETIC	we	

uncover	new	biological	processes	and	present	a	quantitative	landscape	of	micro-environmental	factors	in	

breast	cancers	that	can	inform	new	therapeutic	targets.	The	method	pinpoints	molecular	features	that	

are	limited	to	growth	in-vivo	and	reveals	that	a	surprising	amount	of	gene	expression	and	methylation	

data	from	human	tumors	reflects	signals	derived	from	the	tumor	environment	that	are	not	reflected	in	

cell	lines.	Building	on	this	finding,	we	show	that	modules	preserved	in	cell	lines	can	act	as	accurate	

biomarkers	that	are	more	robust	than	standard	approaches	because	they	are	more	reflective	of	a	tumor	

context.	This	work	reveals	a	new	approach	for	the	integrative	analysis	of	molecular	programs	within	

human	tumors	and	provides	a	powerful	and	clinically	relevant	way	to	connect	tumor	genotype	to	

therapy.	

RESULTS	

Pathway	signals	are	embedded	across	–omics	platforms.	We	sought	to	measure	the	extent	to	which	

the	interactions	found	in	pathway	databases	carry	information	for	interpreting	correlations	between	
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molecular	changes	detected	in	cancer.	We	started	with	molecular	profiles	of	primary	breast	cancers	from	

the	TCGA	obtained	using	gene	expression,	DNA	methylation,	copy-number	alteration,	exome	sequencing	

and	Reverse	Phase	Protein	Array	(RPPA)	platforms	covering	941	patients3.	After	normalization,	we	

constructed	a	correlation	network	by	comparing	all	pairs	of	gene	features	across	patients	both	within	

and	between	platforms.	To	measure	concordance	with	known	pathways	we	compared	the	distribution	of	

these	correlations	to	a	compendium	of	60,194	functional	protein-protein	interactions	(PPIs)	from	the	

HumanNet	database28.	

We	observed	strong	agreement	of	molecular	signals	between	protein	pairs	known	to	interact	both	within	

and	across	–omics	platforms	in	the	TCGA.	For	example,	two	related	ubiquitin	specific	peptidases	USP32	

and	USP6	were	not	only	highly	co-expressed	(r=0.95,	p=5.5x10-268)	but	the	copy-number	of	USP32	was	

also	strongly	predictive	of	expression	of	USP6	(r=0.73,	p=6.4x10-84)	(Fig.	1a,b).	Beyond	this	gene	pair,	

other	pairs	of	molecular	features	at	this	level	of	correlation	were	enriched	by	9-fold	to	interact	and	the	

most	highly	correlated	gene	pairs	were	100-fold	more	likely	to	interact	than	at	random	(Fig.	1c).	In	

another	example,	the	kinase	LCK	was	not	only	highly	co-expressed	with	its	substrate	LAT	(r=0.88,	

p=1.4x10-181),	but	it	was	also	co-methylated		(r=0.58,	p=3.3x10-87)	and	the	expression	of	LCK	was	highly	

anti-correlated	with	the	methylation	of	LAT	(r=-0.68,	p=1.6x10-74)	(Fig.	1d,e).	Gene	pairs	with	this	level	of	

anti-correlation	were	21-fold	more	likely	to	interact	and	the	most	anti-correlated	pairs	were	over	100-

fold	more	likely	to	interact	(Fig.	1f).	Other	comparisons	within	and	across	platforms	revealed	a	similar	

trend.	For	example,	gene	pairs	that	were	highly	co-expressed	(r>0.7)	were	40-fold	more	likely	to	interact	

(Supplementary	Fig.	1).	These	trends	were	also	insensitive	to	the	choice	of	pathway	database,	as	analysis	

using	the	iRefWeb	database	revealed	similar	patterns	(Supplementary	Fig.	2)29.	Thus,	co-variation	

networks	encode	pathway	information	and	could	be	used	to	identify	new	functional	relationships	in	

cancer.	

A	Modular	Analysis	of	Genomic	NETworks	in	Cancer	(MAGNETIC).	Based	on	the	observation	that	

molecular	correlations	are	reflective	of	pathway	co-membership	we	sought	to	integrate	these	gene	
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linkages	into	a	single	network.	The	multi-platform	correlation	network	can	be	visualized	as	an	undirected	

graph	with	multiple	layers,	each	representing	a	data	type	(Fig.	2).	Each	gene	corresponds	to	a	node	in	

every	layer	and	edges	connect	nodes	both	within	and	between	layers.	There	are	15	different	edge	types	

(all	pairs	of	five	data	types,	with	repetition).	Next,	we	re-scored	the	network	edges	by	mapping	a	given	

correlation	value	to	the	log-likelihood	ratio	(LLR)	of	it	reflecting	a	known	interaction	and	merged	them	

into	a	single	network	(see	Supplementary	Methods).	The	integrated	network	was	highly	enriched	for	

known	PPIs	and	outperformed	any	single	correlation	network	type	(Supplementary	Fig.	3).	

We	next	used	a	network-clustering	algorithm	based	on	repeated	random	walks	to	find	densely	inter-

connected	modules	within	the	integrated	network30.	Clustering	of	this	network	at	different	score	cutoffs	

revealed	an	optimal	overlap	with	known	PPIs	at	an	LLR>3	(Supplementary	Fig.	4).	At	this	cutoff,	we	

identified	a	total	of	219	modules	with	a	median	number	of	18	genes	per	module	and	scored	them	in	the	

TCGA	cohort	(Supplementary	Fig.	5,	Supplementary	Table	1,	2).	The	modules	were	highly	integrative	

with	84.5%	reflecting	data	from	multiple	platforms.	For	example,	the	module	containing	ERBB2	(HER2)	

consisted	of	25	genes	and	included	60	co-expression	and	44	co-copy	number	variation	edges	at	an	LLR>3,	

reflecting	the	coordinated	amplification	and	expression	of	genes	in	the	HER2	amplicon	(Fig.	3a,b).	Module	

37,	based	largely	on	gene	expression,	reflected	the	status	of	ER	and	was	enriched	for	its	direct	

transcriptional	targets	(p=3.1x10-6)	(Fig	3c,d)31.	Sixteen	percent	of	modules	were	significantly	enriched	

for	a	particular	GO,	KEGG,	or	Reactome	pathway	or	function,	and	44%	contained	known	PPIs	

(Supplementary	Table	1).	Modules	recapitulated	previously	published	mutational	events	in	breast	

cancers	such	as	TP53	(#181),	PIK3CA	(#9),	GATA3	(#37),	and	MAP3K1	(#5)	as	well	as	published	gene	

signatures	associated	with	proliferation,	stromal	involvement	and	angiogenesis	32,33		(Supplementary	

Table	3).	Therefore,	we	conclude	that	our	approach	integrates	data	from	diverse	platforms	covering	

48,093	unique	gene	and	protein	features	into	a	set	of	219	pathway-enriched	modules	that	decompose	

complex	tumor	genomes	into	independent	molecular	signatures.		
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An	integrated	module	map	of	human	breast	cancers	recapitulates	known	subtypes	and	markers.	

Because	modules	form	a	reduced	representation	of	the	molecular	features	in	breast	cancers,	we	next	

asked	whether	the	set	of	module	scores	for	individual	tumors	could	be	used	to	support	published	

subtyping	approaches	in	this	disease9,13.	Consensus	clustering	of	all	module	scores	across	the	TCGA	

cohort	revealed	the	presence	of	three	patient	groups	that	largely	supports	the	molecular	subtypes	called	

by	PAM50	(p=2.2x10-68	via	χ2	test),	as	well	as	the	receptor	status	of	ER	(p=1.1x10-32),	PR	(p=3.3x10-25)	

and	HER2	(p=5.4x10-9)	(Fig.	3e,	Supplementary	Fig.	6a,b	and	Supplementary	Table	4)9.	Further	

interrogation	revealed	that	Cluster	1	is	largely	ER/PR	positive,	Cluster	2	is	largely	triple-negative	due	to	

an	absence	of	receptor	expression	and	enrichment	for	TP53	mutations3,	and	Cluster	3	is	mixed	ER,	PR	

and	HER2	positive	(Fig.	3e).	As	validation	in	an	independent	cohort,	we	scored	modules	based	on	

available	copy-number	and	gene	expression	data	across	1,966	patients	in	the	METABRIC	study	

(Supplementary	Table	2)13.	Consensus	clustering	of	this	cohort	also	revealed	three	subtypes	that	

mirrored	those	found	in	the	TCGA	(Fig.	3f,	Supplementary	Fig.	6c-e	and	Supplementary	Table	4).	In	

addition,	our	three	subtypes	coincided	with	receptor	status	and	molecular	subtypes	identified	in	the	

original	study	using	IntClust	(Fig.	3f)13.	This	stratification	based	on	receptor	status	largely	parallels	

recent	work	showing	that	HER2+	tumors	are	not	restricted	to	any	particular	subtype34.	Therefore,	we	

conclude	that	the	modular	decomposition	of	the	TCGA	allows	for	the	grouping	of	patients	with	similar	

tumor	phenotypes	and	similar	disease	progression	characteristics	largely	in	agreement	with	previous	

approaches.		

Modules	reveal	a	role	for	differentiation	via	H3K27	tri-methylation	in	breast	cancer.	We	observed	

a	module	(#27)	that	was	largely	based	on	expression	which	was	highly	enriched	for	genes	whose	

promoters	are	marked	by	histone	H3	Lysine	27	tri-methylation	(H3K27me3)	in	ES	cells,	including	SOX1,	

NEUROG1,	NEUROG3,	FOXB1	and	FOXD3	(Fig.	4a,b).	H3K27me3	is	deposited	by	the	Polycomb	Repressive	

Complex	2	(PRC2)	histone	methyltransferase	complex	consisting	of	EZH1/2,	SUZ12,	RBBP7/4,	and	

EED35,36.	This	modification	is	associated	with	the	repression	of	genes	involved	in	development	and	
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differentiation,	but	its	role	in	breast	cancer	is	almost	completely	unknown.	To	determine	if	genes	in	this	

module	are	regulated	via	H3K27me3	in	breast	cancer	we	obtained	H3K27me3	ChIP-seq	data	for	three	

breast	cancer	cell	lines:	SUM159PT	(score=0.11),	T47D	(0.37)	and	MCF7	(1.39)37.	We	first	verified	that	

the	module	score	reflected	the	expression	level	of	genes	within	the	module	(Fig.	4c).	We	found	that	the	

promoters	of	gene	in	module	27	were	more	likely	to	be	marked	by	H3K27me3	than	other	genes	and	that	

the	level	of	H3K27me3	occupancy	was	higher	in	cells	with	a	low	module	score	indicating	that	histone	

modification	state	regulates	the	activity	of	this	module	(Fig.	4d,	Supplementary	Table	5).	EZH2	over-

expression	has	been	implicated	as	an	oncogene	in	many	epithelial	cancers38	and	analysis	of	RNA-seq	data	

from	murine	lung	tumors	driven	by	EZH2	over-expression	indicated	a	specific	down-regulation	of	genes	

in	module	27	compared	to	non-transformed	lung	tissue	(Fig.	4e)39.	In	support	of	a	similar	mechanism	in	

breast	cancer	we	found	that	EZH2	expression	was	anti-correlated	with	the	activity	of	this	module	in	

breast	cancer	cell	lines	(r=-0.34,	p=0.029)	(Supplementary	Fig.	7).	Given	the	significance	of	PRC2-driven	

epigenetic	regulation	in	other	cancers,	determining	the	importance	of	regulating	this	module	during	

tumorigenesis	could	yield	new	biological	insights	and	clinical	targets	for	breast	cancer.	

Modules	as	reporters	of	the	tumor	microenvironment.	The	tumor	microenvironment	exerts	a	high	

level	of	control	on	tumor	behavior	and	can	influence	the	interpretation	of	genomic	analyses40,41.	The	

influence	of	the	microenvironment	is	apparent	in	the	activity	of	several	modules.	Module	#3	was	highly	

enriched	for	genes	related	to	the	immune	system	(GO	enrichment,	p=1x10-160,	Supplementary	Table	1).	

This	included	the	expression	of	B	cell	marker	CD19,	T	cell	marker	CD4,	and	NK	cell	marker	IL15,	and	

protein	abundance	of	the	T	cell	kinase	LCK	(Fig.	4f)42,43.	Comparing	with	gene	expression	data	from	

purified	cell	populations	we	found	that	genes	in	the	module	were	highly	expressed	in	NK	cells,	ILC1	cells,	

T	cells,	monocytes	and	macrophages	(Fig.	4g,	Supplementary	Table	6)42.	Furthermore,	we	found	that	the	

activity	of	Module	#3	was	related	to	general	lymphocyte	infiltration	scores	based	on	pathological	

assessment	in	both	the	TCGA	and	METABRIC	cohorts	(Fig.	4h).	Next,	we	sought	to	explore	how	this	

module	might	influence	disease	progression.	This	module	was	highest	in	the	HER2	and	Basal	PAM50	
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subtypes	(Supplementary	Fig.	8)	where	it	is	associated	with	a	favorable	outcome	(Fig.	4i),	consistent	with	

the	positive	role	of	T	cell	infiltration	on	cancer	prognosis44.	Interestingly,	the	module	contained	immune	

checkpoints	PD1	and	CTLA4,	both	markers	of	T	cell	exhaustion45	(Fig.	4j).	Therefore,	while	infiltrating	

immune	cells	reflect	anti-tumor	recognition	and	promote	a	tumor	suppressive	environment,	we	

hypothesize	that	these	patients	could	benefit	from	re-activation	of	resident	immune	cells	through	anti-

CTLA4	or	anti-PD1	immunotherapy.	

Other	modules	were	reflective	of	non-tumor	cell	types.	Module	#12	enriched	for	a	stromal	gene	signature	

and	included	many	collagens	associated	with	the	extra-cellular	matrix	(ECM)	(p=4.1x10-52,	

Supplementary	Fig.	9a)33.	This	module	was	correlated	with	pathological	assessments	of	stromal	cells	and	

indicated	tumors	with	the	presence	of	significant	ECM	involvement	(Supplementary	Fig.	9b,c).	Module	

#16	was	enriched	for	genes	involved	in	vascularization	and	highly	expressed	in	endothelial	cells,	

including	F10	and	KDR/VEGFR2	(Supplementary	Fig.	9d,	Supplementary	Table	6).	Tumors	scoring	highly	

for	module	#16	were	highly	vascularized	and	less	necrotic	based	on	pathological	assessment	

(Supplementary	Fig.	9e,f).	Taken	together,	these	data	indicate	that	gene	modules	report	on	the	presence	

of	components	of	the	microenvironment	that	would	be	difficult	to	identify	by	approaches	that	are	strictly	

limited	to	known	pathways.		

Identification	of	preserved	gene	modules	in	cancer	cell	lines.	We	expected	that	modules	reflecting	

tumor-specific	variation	would	be	more	accurately	modeled	by	cell	lines	in	culture	and	therefore	more	

useful	in	pharmacogenomics	efforts.		We	therefore	sought	to	exclude	modules	that	reflect	processes	not	

captured	in	cell	culture	due	to	alterations	in	the	growth	environment.	Since	each	module	represents	a	set	

of	relationships	in	an	underlying	molecular	network,	and	we	reasoned	that	modules	which	maintain	

these	relationships	in	both	tumors	and	cell	lines	are	likely	to	reflect	shared	biology.	We	investigated	

whether	the	molecular	features	that	are	linked	in	the	TCGA	network	were	also	linked	in	a	panel	of	82	

molecularly	characterized	breast	cancer	cell	lines19.	For	each	module	we	calculated	an	edge	preservation	

score	reflecting	the	average	increase	in	the	pairwise	correlation	between	molecular	features	when	
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calculated	across	cell	lines	as	compared	to	background	(see	Supplementary	Methods).	While	there	is	no	

clear	cutoff	of	edge	preservation	score,	based	on	the	resulting	bimodal	distribution	of	scores	we	chose	a	

threshold	of	module	preservation	that	excluded	59	modules	to	simplify	further	analysis	(Supplementary	

Fig.	10).	As	expected,	modules	reflecting	tumor	specific	events	such	as	amplification	of	HER2	were	

identified	as	preserved	(#92)	and	modules	associated	with	the	tumor	microenvironment	were	not	(#3	-	

immune,	#12	-	stromal,	and	#16	-	endothelial)	(Fig.	5a).			

The	differences	in	module	preservation	led	us	to	ask	whether	preserved	modules	were	more	likely	to	

reflect	data	from	certain	types	of	–omics	platforms.	Modules	associated	largely	with	gene	expression	or	

methylation	were	much	less	likely	to	be	preserved	(Fig.	5b,c).		In	support,	gene	networks	based	solely	on	

co-expression	or	co-methylation	in	the	TCGA	only	marginally	overlapped	with	such	networks	from	breast	

cancer	cell	lines	whereas	networks	that	include	copy-number	variation	(CNV)	as	a	component	were	much	

more	robust	(Supplementary	Fig.	11).	There	was	no	difference	in	the	frequency	of	CNV-expression	edges	

in	highly	versus	lowly	preserve	modules,	suggesting	that	expression	data	is	most	useful	when	tied	to	

genomic	events	that	are	tumor	specific.	Overall,	the	activities	of	the	59	lowly-preserved	modules	were	

significantly	associated	with	pathologic	assessments	of	necrosis	and	normal-cell	infiltration,	as	well	as	

computational	assessments	of	tumor	impurity	(Fig.	5d,e)41.	Based	on	the	2,596	genes	present	in	lowly-

preserved	modules	we	estimate	that	the	expression	and	methylation	of	at	least	13%	of	the	genome	

reflects	differences	in	biology	between	human	tumor	samples	and	cell	lines,	including	the	influence	of	the	

tumor	microenvironment.	Our	analysis	suggests	that	breast	cancer	biomarkers	in	cell	lines	tied	to	events	

such	as	copy-number	variation	and	mutation	are	more	likely	to	yield	clinically	translatable	biomarkers	

because	they	are	the	most	robust	to	issues	such	as	tumor	purity.	

A	module-drug	network	identifies	determinants	of	drug	sensitivity	that	are	robust	to	differences	

between	patients	and	cell	lines.	We	next	investigated	whether	the	preserved	modules	could	be	used	for	

therapeutic	stratification	across	a	panel	of	82	breast	cancer	cell	lines	profiled	across	90	drugs19.	We	

found	a	total	of	271	module-drug	relationships	covering	74	drugs	and	99	modules	with	an	FDR<5%.	We	
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focused	our	attention	on	the	58	drugs	(64.4%)	whose	response	could	not	be	predicted	by	subtype	(Fig.	

6a;	Supplementary	Table	7).	While	we	identified	known	connections	such	as	the	HER2	module	associated	

with	sensitivity	to	the	HER2	inhibitor	Lapatinib	(Fig.	6b),	we	also	identified	97	connections	among	drugs	

where	the	module	combined	with	subtype	information	was	more	predictive	than	subtype	alone	(Fig	

6a,c).	

Current	pharmacogenomics	approaches	are	based	almost	exclusively	on	data	from	cancer	cell	lines19-

21,23,24.	We	reasoned	that	the	highly	preserved	modules	may	constitute	biomarkers	that	not	only	show	

strong	performance	as	predictors	of	drug	responses	but	also	are	more	likely	to	translate	when	evaluated	

in	human	tumors.	We	first	established	that	modules	perform	comparably	to	genes	as	features	used	to	

build	predictive	models	of	drug	responses	using	common	methods	of	machine	learning	for	this	task	(Fig.	

6d)24.	Central	to	the	performance	of	a	predictive	biomarker	is	the	structure	of	the	relationships	between	

the	features	it	uses.	Therefore,	to	assess	if	a	biomarker	is	likely	to	translate	when	applied	to	human	

tumors	we	examined	the	relationships	among	its	features	by	measuring	their	cross-correlation	

independently	in	cell	lines	and	in	the	TCGA.	Surprisingly,	we	found	that	the	relationships	among	features	

based	purely	on	cell	line	data	were	completely	altered	in	human	tumors.	As	an	example,	top	molecular	

features	correlated	with	Imatinib	sensitivity	were	highly	cross-correlated	in	cancer	cell	lines	(mean	

r2=0.165),	but	these	relationships	are	completely	lost	in	tumor	samples	(r2=0.015)	(Fig.	6e).	Logically,	if	

the	gene	inter-relationships	used	to	construct	a	biomarker	are	not	maintained	in	tumors,	it	cannot	be	

predictive	of	its	intended	drug	response.	We	performed	this	analysis	across	all	drugs	using	both	gene	sets	

and	modules,	using	simple	rank	based	methods	(FDR	cutoff	of	1%	and	5%)	as	well	as	with	elastic	net	

regression.	Applied	to	all	drugs,	biomarkers	based	on	genes	had	a	significantly	reduced	cross-correlation	

in	the	TCGA	when	compared	to	cell	lines,	whereas	module-based	approaches	maintained	a	consistently	

high	cross-correlation	in	both	cell	lines	and	human	tumors	(Fig.	6f).	We	conclude	that	preserved	modules	

reflect	molecular	relationships	found	in	both	cell	lines	and	tumors	and	can	aid	in	the	development	of	

improved,	clinically	relevant	biomarkers.	
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DISCUSSION	

MAGNETIC	integrates	genomics,	transcriptomic,	epigenomic,	and	proteomic	data	across	breast	cancers	to	

identify	a	set	of	gene	modules	that	have	coordinated	activity	across	patients.	As	opposed	to	previous	

approaches	for	identifying	gene	modules	based	solely	on	correlation46-48,	our	approach	integrates	

complementary	data	types	based	on	comparison	with	known	protein-protein	interactions	and	the	

resulting	modules	show	a	strong	enrichment	for	known	pathways	and	shared	functions.	Many	identified	

modules	were	concordant	with	disease	subtypes,	cell	surface	receptors	and	prognostic	gene	signatures.	

In	contrast	to	previous	approaches	the	method	is	not	constrained	to	pathway	definitions,	which	allowed	

the	discovery	of	patterns	in	cancer	data	that	are	reflective	of	distinct	cell	types	and	epigenetic	

programs4,49.	Future	work	could	explore	patterns	of	module	activities	across	other	disease	types	such	as	

those	found	in	a	pan-cancer	analysis	of	tumor	genomes2.		

Interrogation	of	the	modules	highlights	an	epigenetic	program	regulated	by	H3K27	tri-methylation	and	

the	presence	of	various	micro-environmental	cell	types.	The	H3K27me3	module	represents	the	activity	of	

genes	involved	in	differentiation	that	are	repressed	by	the	PRC2	complex.	While	the	role	of	PRC2	activity	

in	breast	cancer	maintenance	is	largely	unknown,	it	is	possible	that	tumors	with	low	module	activity	

would	respond	to	inhibitors	of	the	PRC2/EZH2	complex39,50.	The	identification	of	603	genes	reflecting	

immune	cell	infiltration	also	represents	a	potential	avenue	for	therapeutic	targeting.	This	finding	is	

largely	concordant	with	recent	work	showing	that	immune	infiltration	is	positively	linked	with	survival	

in	ER	negative	breast	cancer13,44,51,52.	The	co-incidence	with	markers	of	T-cell	exhaustion	suggests	that	

this	module	may	predict	responsiveness	to	immune	checkpoint	blockade.	

The	development	of	biomarkers	from	cell	line	data	is	a	subject	of	intense	investigation	in	the	field14,19-

21,23,53-55.	One	powerful	aspect	of	our	approach	is	that	it	allows	for	the	placement	of	genes	into	a	putative	

molecular	network	(i.e.	the	module),	and	the	preservation	of	this	network	in	cell	lines	can	be	assessed.	

We	quantified	the	preservation	of	modules	across	a	panel	of	breast	cancer	cell	lines	and	found	that	many	
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of	the	strongest	co-expression	and	co-methylation	signals	in	the	TCGA	were	not	preserved	in	cell	lines.	

Our	results	indicate	that	the	expression	and	methylation	of	at	least	13%	of	the	genome	in	TCGA	samples	

reflect	changes	due	to	altered	biology	and	the	tumor	microenvironment.	Based	on	these	issues,	we	

propose	that	first	learning	a	set	of	robust	biomarkers	from	patient	data	and	then	evaluating	them	in	cell	

lines	could	lead	to	increased	success	in	biomarker	development.	We	provide	key	evidence	that	extant	

procedures	used	to	generate	pharmacogenomic	biomarkers	are	highly	prone	to	error,	as	the	

relationships	upon	which	they	are	built	in	cell	lines	fall	apart	when	translated	into	human	tumor	

specimens.	As	a	solution,	we	develop	a	framework	to	use	modules	as	the	basis	for	biomarker	discovery	

that	shows	comparable	performance	but	is	resistant	to	this	source	of	error.	We	expect	that	computational	

data	integration	at	two	levels,	the	first	between	-omics	platforms	and	the	second	between	in	vivo	and	in	

vitro	samples,	will	ultimately	aid	in	the	translation	of	the	cancer	genome	into	clinical	practice.		
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FIGURE	LEGENDS	

Figure	1:	Pathway	relationships	are	embedded	in	integrated	molecular	profiling	data.	(a)	

Interaction	network	of	ubiquitin	specific	peptidases	USP6	and	USP32	from	the	STRING	database	and	

Pearson	correlation	between	molecular	features	of	USP6	and	USP32	across	TCGA	breast	cancers.	P-value	

of	association	in	parentheses	and	those	that	are	significant	after	correction	for	multiple	testing	are	

highlighted	(p≤0.05).	(b)	Scatter	of	normalized	USP32	copy-number	and	USP6	expression	across	the	

TCGA.	(c)	Enrichment	of	protein	interactions	among	gene	pairs	at	a	given	correlation	cutoff.	Enrichment	

is	calculated	by	comparison	of	the	fraction	of	gene	pairs	at	a	given	correlation	cutoff	that	interact	in	

HumanNet	versus	a	random	background	(see	Methods).	For	gene	pairs	that	correlate	≥0.729,	there	is	a	9-

fold	enrichment	for	known	interactions	(dot).	Shaded	areas	reflect	the	95%	confidence	interval.	(d)	The	

interaction	network	of	the	kinase	LCK	and	its	substrate	LAT	and	relationships	between	their	molecular	

profiles	across	platforms.	(e)	Scatter	of	LCK	expression	and	LAT	methylation.	(f)	Enrichment	over	

random	of	gene	expression	and	methylation	correlations	for	gene	pairs	that	interact	in	HumanNet.	For	

gene	pairs	with	a	correlation	of	≤-0.677	there	is	a	21-fold	enrichment.		

Figure	2:	The	MAGNETIC	workflow.	We	begin	with	normalized	DNA	copy-number,	methylation,	

somatic	mutations,	mRNA	expression	and	protein	abundance	data	from	a	collection	of	tumor	samples.	

We	compute	a	multi-layer	gene	similarity	network	by	computing	the	correlation	between	all	pairs	of	gene	

features	both	within	and	between	profiling	platforms.	Each	linkage	in	this	correlation	network	is	

normalized	through	comparison	against	a	benchmark	of	known	protein	pathways.	Scored	edges	are	then	

merged	into	an	integrated	network	in	which	nodes	represent	genes	and	multiple	edges	between	nodes	

represent	co-incidence	of	different	types	of	linkages.	Clustering	of	this	network	using	a	random	walk	

algorithm	reveals	gene	modules	whose	components	are	closely	related	in	multiple	data	types.	

Figure	3:	Gene	modules	recover	known	breast	cancer	biomarkers.	(a)	Circos	plot	representation	of	

the	module	network	containing	HER2.	Colors	represent	different	data	sources	selected	in	the	final	
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integrated	network	for	each	gene	and	edge	thickness	is	proportional	to	edge	score.	Top	central	genes	are	

labeled.	(b)	TCGA	samples	sorted	by	HER2	module	score.	PAM50	subtype	and	molecular	receptor	status	

as	determined	by	IHC	are	shown.	(c)	The	module	network	containing	the	estrogen	receptor,	ESR1.	Direct	

transcriptional	targets	of	ER	as	assessed	through	ChIP	analysis	are	marked	with	a	star.	(d)	TCGA	samples	

sorted	by	ESR1	module	score.	(e)	Consensus	clustering	of	219	modules	scored	across	TCGA	breast	

cancers.	Three	subtypes	and	their	association	with	subtype,	IHC	status	for	ER,	PR,	and	HER2,	and	p53	

mutational	status	are	shown.	(f)	Consensus	clustering	of	module	scores	in	the	METABRIC	dataset	

identifies	three	clusters.	Association	between	clusters	and	PAM50,	IntClust	subtypes,	IHC	markers	and	

TP53	mutation	are	shown.	P-values	based	on	chi-squared	test.	TN=triple	negative.	

Figure	4:	Modules	that	reflect	coordination	of	gene	expression	by	Histone	3	Lys27	tri-methylation	

and	report	on	the	tumor	immune	microenvironment.	(a)	Heatmap	of	molecular	features	associated	

with	module	27	(r2>0.1).	(b)	Gene	Set	Enrichment	Analysis	of	module	genes.	(c)	Relative	expression	of	

module	genes	in	SUM159PT,	T47D,	and	MCF7	cell	lines.	(d)	The	number	of	reads	in	H3K27me3	ChIP-Seq	

samples	within	promoters	of	module	genes	compared	to	background	in	SUM159PT,	T47D,	and	MCF7	cell	

lines.	(e)	Repression	of	module	genes	in	EZH2	driven	lung	tumors	as	compared	to	EZH2	over-expressing	

lungs	and	wild-type	lungs	in	an	EZH2	genetic	mouse	model.	(f)	Heatmap	of	molecular	features	associated	

with	the	overall	activity	of	the	immune	module	(r2>0.1).	For	clarity,	the	CNV	of	one	gene	is	not	shown.	(g)	

Enrichment	for	high	expression	of	module	genes	from	normalized	RNA-seq	data	in	227	purified	immune	

cell	type	datasets.	Cell	types	are	categorized	into	15	groups	and	enrichment	based	on	a	t-test.	(h)	

Comparison	of	module	scores	with	annotated	lymphocytic	infiltration	values	in	TCGA	and	METABRIC	

datasets.	(i)	Kaplan-Meier	disease-specific	survival	curves	of	METABRIC	samples	stratified	by	median	

module	score	in	Basal	and	HER2	tumors.	Log-rank	p-value	shown.	(j)	Correlation	of	module	score	with	

expression	of	CTLA4	and	PD1	in	the	TCGA.		

Figure	5:	TCGA	modules	not	preserved	in	breast	cancer	cell	lines	are	associated	with	tumor	

impurity	and	necrosis.	(a)	Sorted	preservation	scores	for	219	breast	cancer	modules	evaluated	in	cell	
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lines.	Lower	preserved	modules	have	a	score	less	than	5	(dotted	line).	(b)	For	each	module	in	(a),	the	

percent	of	the	LLR>1	network	that	corresponds	to	each	edge	type	are	shown.	(c)	Percent	of	each	edge	

type	for	lowly	(L)	and	highly	(H)	preserved	modules	in	the	LLR>1	network.	(d)	Correlation	of	module	

scores	with	pathologic	assessments	of	necrosis	and	normal	cell	infiltration	for	lowly	and	highly	preserved	

modules.	Top	and	bottom	refer	to	different	physical	locations	within	the	tumor.	(e)	Comparison	of	

module	types	with	computational	assessment	of	tumor	purity.	P-values	based	on	Mann-Whitney	test	in	

parenthesis.	

Figure	6:	A	Module-drug	network	identifies	high	performance	biomarkers	that	are	preserved	

between	patients	and	cell	lines.	(a)	Network	of	97	module-drug	associations	based	on	breast	cancer	

cell	line	modeling.	Modules	significantly	associated	with	drug	response	are	shown	(FDR≤5%).	Drugs	are	

limited	to	those	that	are	not	associated	with	molecular	subtype	based	on	an	FDR	threshold	of	5%.	The	

size	of	each	module	is	proportional	to	the	number	of	genes	within	it.	(b)	Scatter	plot	of	cell	line	

association	of	Lapatinib	response	with	module	#92	(HER2)	and	(c)	Oxaliplatin	with	module	#139	

(chr11q14#1).	Cell	lines	colored	by	subtype.	P-values	based	on	Pearson	correlation.	(d)	Comparison	of	

median	absolute	error	of	cross-validated	predictions	of	drug	sensitivity	using	single	gene	features	or	

modules	as	input	to	elastic	net,	random	forest	or	SVM	based	predictors.	P-values	based	on	Mann-Whitney	

Test.	(e)	Cross-correlation	for	all	pairs	of	molecular	features	that	are	the	most	predictive	of	response	to	

Imatinib	in	cell	lines	at	an	FDR	of	1%	and	cross-correlation	of	the	same	features	in	the	TCGA.	(f)	The	

average	cross-correlation	(r2)	of	features	selected	by	various	statistical	methods	(FDR,	elastic	net)	using	

single	genes	or	modules	in	cell	lines	and	evaluation	of	cross-correlation	of	the	same	features	in	the	TCGA.	

Each	point	represents	a	model	for	a	single	drug.	P-values	based	on	Mann-Whitney	Test.	
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Figure	1	
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Figure	5	

	 	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083410doi: bioRxiv preprint 

https://doi.org/10.1101/083410
http://creativecommons.org/licenses/by/4.0/


Figure	6	

	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083410doi: bioRxiv preprint 

https://doi.org/10.1101/083410
http://creativecommons.org/licenses/by/4.0/


	

REFERENCES	

1	 Cancer	Genome	Atlas	Research,	N.	et	al.	The	Cancer	Genome	Atlas	Pan-Cancer	analysis	project.	Nat	
Genet	45,	1113-1120,	doi:10.1038/ng.2764	(2013).	

2	 Hoadley,	K.	A.	et	al.	Multiplatform	analysis	of	12	cancer	types	reveals	molecular	classification	
within	and	across	tissues	of	origin.	Cell	158,	929-944,	doi:10.1016/j.cell.2014.06.049	(2014).	

3	 Network,	C.	G.	A.	Comprehensive	molecular	portraits	of	human	breast	tumours.	Nature	490,	61-
70,	doi:10.1038/nature11412	(2012).	

4	 Vaske,	C.	J.	et	al.	Inference	of	patient-specific	pathway	activities	from	multi-dimensional	cancer	
genomics	data	using	PARADIGM.	Bioinformatics	(Oxford,	England)	26,	i237-245,	
doi:10.1093/bioinformatics/btq182	(2010).	

5	 Cancer	Genome	Atlas	Research,	N.	Comprehensive	genomic	characterization	defines	human	
glioblastoma	genes	and	core	pathways.	Nature	455,	1061-1068,	doi:10.1038/nature07385	
(2008).	

6	 Efroni,	S.,	Schaefer,	C.	F.	&	Buetow,	K.	H.	Identification	of	key	processes	underlying	cancer	
phenotypes	using	biologic	pathway	analysis.	PLoS	One	2,	e425,	doi:10.1371/journal.pone.0000425	
(2007).	

7	 Duan,	Q.,	Kou,	Y.,	Clark,	N.	R.,	Gordonov,	S.	&	Ma'ayan,	A.	Metasignatures	identify	two	major	
subtypes	of	breast	cancer.	CPT	Pharmacometrics	Syst	Pharmacol	2,	e35,	doi:10.1038/psp.2013.11	
(2013).	

8	 Domcke,	S.,	Sinha,	R.,	Levine,	D.	A.,	Sander,	C.	&	Schultz,	N.	Evaluating	cell	lines	as	tumour	models	
by	comparison	of	genomic	profiles.	Nat	Commun	4,	2126,	doi:10.1038/ncomms3126	(2013).	

9	 Parker,	J.	S.	et	al.	Supervised	Risk	Predictor	of	Breast	Cancer	Based	on	Intrinsic	Subtypes.	Journal	
of	Clinical	Oncology	27,	1160-1167,	doi:10.1200/JCO.2008.18.1370	(2009).	

10	 Wang,	B.	et	al.	Similarity	network	fusion	for	aggregating	data	types	on	a	genomic	scale.	Nature	
Methods	11,	333-337,	doi:10.1038/nmeth.2810	(2014).	

11	 Mo,	Q.	et	al.	Pattern	discovery	and	cancer	gene	identification	in	integrated	cancer	genomic	data.	
Proceedings	of	the	National	Academy	of	Sciences	110,	4245-4250,	doi:10.1073/pnas.1208949110	
(2013).	

12	 Hofree,	M.,	Shen,	J.	P.,	Carter,	H.,	Gross,	A.	&	Ideker,	T.	Network-based	stratification	of	tumor	
mutations.	Nat	Methods	10,	1108-1115,	doi:10.1038/nmeth.2651	(2013).	

13	 Curtis,	C.	et	al.	The	genomic	and	transcriptomic	architecture	of	2,000	breast	tumours	reveals	novel	
subgroups.	Nature	486,	346-352,	doi:10.1038/nature10983	(2012).	

14	 Heiser,	L.	M.	et	al.	Subtype	and	Pathway	Specific	Responses	to	Anticancer	Compounds	in	Breast	
Cancer.	Proceedings	of	the	National	Academy	of	Sciences,	doi:10.1073/pnas.1018854108	(2011).	

15	 Perou,	C.	M.	et	al.	Molecular	portraits	of	human	breast	tumours.	Nature	406,	747-752,	
doi:10.1038/35021093	(2000).	

16	 Lehmann,	B.	D.	et	al.	Identification	of	human	triple-negative	breast	cancer	subtypes	and	preclinical	
models	for	selection	of	targeted	therapies.	J	Clin	Invest	121,	2750-2767,	doi:10.1172/JCI45014	
(2011).	

17	 Slamon,	D.	J.	et	al.	Use	of	chemotherapy	plus	a	monoclonal	antibody	against	HER2	for	metastatic	
breast	cancer	that	overexpresses	HER2.	N	Engl	J	Med	344,	783-792,	
doi:10.1056/NEJM200103153441101	(2001).	

18	 Turner,	N.	C.	et	al.	Palbociclib	in	Hormone-Receptor-Positive	Advanced	Breast	Cancer.	N	Engl	J	
Med	373,	209-219,	doi:10.1056/NEJMoa1505270	(2015).	

19	 Daemen,	A.	et	al.	Modeling	precision	treatment	of	breast	cancer.	Genome	Biology	14,	R110,	
doi:10.1186/gb-2013-14-10-r110	(2013).	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083410doi: bioRxiv preprint 

https://doi.org/10.1101/083410
http://creativecommons.org/licenses/by/4.0/


20	 Garnett,	M.	J.	et	al.	Systematic	identification	of	genomic	markers	of	drug	sensitivity	in	cancer	cells.	
Nature	483,	570-575,	doi:10.1038/nature11005	(2012).	

21	 Barretina,	J.	et	al.	The	Cancer	Cell	Line	Encyclopedia	enables	predictive	modelling	of	anticancer	
drug	sensitivity.	Nature	483,	603-607,	doi:10.1038/nature11003	(2012).	

22	 Neve,	R.	M.	et	al.	A	collection	of	breast	cancer	cell	lines	for	the	study	of	functionally	distinct	cancer	
subtypes.	Cancer	Cell	10,	515-527,	doi:10.1016/j.ccr.2006.10.008	(2006).	

23	 Basu,	A.	et	al.	An	Interactive	Resource	to	Identify	Cancer	Genetic	and	Lineage	Dependencies	
Targeted	by	Small	Molecules.	Cell	154,	1151-1161,	doi:10.1016/j.cell.2013.08.003	(2013).	

24	 Costello,	J.	C.	et	al.	A	community	effort	to	assess	and	improve	drug	sensitivity	prediction	
algorithms.	Nature	Biotechnology	advance	online	publication,	doi:10.1038/nbt.2877	(2014).	

25	 Borst,	P.	&	Wessels,	L.	Do	predictive	signatures	really	predict	response	to	cancer	chemotherapy?	
Cell	Cycle	9,	4836-4840,	doi:10.4161/cc.9.24.14326	(2010).	

26	 Wang,	W.	et	al.	Independent	validation	of	a	model	using	cell	line	chemosensitivity	to	predict	
response	to	therapy.	J	Natl	Cancer	Inst	105,	1284-1291,	doi:10.1093/jnci/djt202	(2013).	

27	 Gillet,	J.-P.,	Varma,	S.	&	Gottesman,	M.	M.	The	clinical	relevance	of	cancer	cell	lines.	Journal	of	the	
National	Cancer	Institute	105,	452-458,	doi:10.1093/jnci/djt007	(2013).	

28	 Lee,	I.,	Blom,	U.	M.,	Wang,	P.	I.,	Shim,	J.	E.	&	Marcotte,	E.	M.	Prioritizing	candidate	disease	genes	by	
network-based	boosting	of	genome-wide	association	data.	Genome	Research	21,	1109-1121,	
doi:10.1101/gr.118992.110	(2011).	

29	 Turner,	B.	et	al.	iRefWeb:	interactive	analysis	of	consolidated	protein	interaction	data	and	their	
supporting	evidence.	Database	(Oxford)	2010,	baq023,	doi:10.1093/database/baq023	(2010).	

30	 Rosvall,	M.,	Axelsson,	D.	&	Bergstrom,	C.	T.	The	map	equation.	The	European	Physical	Journal	
Special	Topics	178,	13-23,	doi:10.1140/epjst/e2010-01179-1	(2009).	

31	 Bhat-Nakshatri,	P.	et	al.	AKT	alters	genome-wide	estrogen	receptor	alpha	binding	and	impacts	
estrogen	signaling	in	breast	cancer.	Mol	Cell	Biol	28,	7487-7503,	doi:10.1128/MCB.00799-08	
(2008).	

32	 Paik,	S.	et	al.	A	multigene	assay	to	predict	recurrence	of	tamoxifen-treated,	node-negative	breast	
cancer.	N	Engl	J	Med	351,	2817-2826,	doi:10.1056/NEJMoa041588	(2004).	

33	 Winslow,	S.,	Leandersson,	K.,	Edsjö,	A.	&	Larsson,	C.	Prognostic	stromal	gene	signatures	in	breast	
cancer.	Breast	Cancer	Research	:	BCR	17,	doi:10.1186/s13058-015-0530-2	(2015).	

34	 Ferrari,	A.	et	al.	A	whole-genome	sequence	and	transcriptome	perspective	on	HER2-positive	
breast	cancers.	Nature	Communications	7,	12222,	doi:10.1038/ncomms12222	(2016).	

35	 Margueron,	R.	&	Reinberg,	D.	The	Polycomb	complex	PRC2	and	its	mark	in	life.	Nature	469,	343-
349,	doi:10.1038/nature09784	(2011).	

36	 Kuzmichev,	A.,	Nishioka,	K.,	Erdjument-Bromage,	H.,	Tempst,	P.	&	Reinberg,	D.	Histone	
methyltransferase	activity	associated	with	a	human	multiprotein	complex	containing	the	
Enhancer	of	Zeste	protein.	Genes	Dev	16,	2893-2905,	doi:10.1101/gad.1035902	(2002).	

37	 Su,	Y.	et	al.	Somatic	Cell	Fusions	Reveal	Extensive	Heterogeneity	in	Basal-like	Breast	Cancer.	Cell	
Rep	11,	1549-1563,	doi:10.1016/j.celrep.2015.05.011	(2015).	

38	 Kim,	K.	H.	&	Roberts,	C.	W.	Targeting	EZH2	in	cancer.	Nat	Med	22,	128-134,	doi:10.1038/nm.4036	
(2016).	

39	 Zhang,	H.	et	al.	Oncogenic	Deregulation	of	EZH2	as	an	Opportunity	for	Targeted	Therapy	in	Lung	
Cancer.	Cancer	Discov	6,	1006-1021,	doi:10.1158/2159-8290.CD-16-0164	(2016).	

40	 Whiteside,	T.	L.	The	tumor	microenvironment	and	its	role	in	promoting	tumor	growth.	Oncogene	
27,	5904-5912,	doi:10.1038/onc.2008.271	(2008).	

41	 Aran,	D.,	Sirota,	M.	&	Butte,	A.	J.	Systematic	pan-cancer	analysis	of	tumour	purity.	Nature	
Communications	6,	8971,	doi:10.1038/ncomms9971	(2015).	

42	 Heng,	T.	S.	P.,	Painter,	M.	W.	&	Consortium,	I.	G.	P.	The	Immunological	Genome	Project:	networks	of	
gene	expression	in	immune	cells.	Nature	Immunology	9,	1091-1094,	doi:10.1038/ni1008-1091	
(2008).	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083410doi: bioRxiv preprint 

https://doi.org/10.1101/083410
http://creativecommons.org/licenses/by/4.0/


43	 Palacios,	E.	H.	&	Weiss,	A.	Function	of	the	Src-family	kinases,	Lck	and	Fyn,	in	T-cell	development	
and	activation.	Oncogene	23,	7990-8000,	doi:10.1038/sj.onc.1208074	(2004).	

44	 Gentles,	A.	J.	et	al.	The	prognostic	landscape	of	genes	and	infiltrating	immune	cells	across	human	
cancers.	Nature	Medicine	21,	938-945,	doi:10.1038/nm.3909	(2015).	

45	 Wherry,	E.	J.	T	cell	exhaustion.	Nature	Immunology	12,	492-499,	doi:10.1038/ni.2035	(2011).	
46	 Zhang,	W.	et	al.	Integrating	Genomic,	Epigenomic,	and	Transcriptomic	Features	Reveals	Modular	

Signatures	Underlying	Poor	Prognosis	in	Ovarian	Cancer.	Cell	Reports,	
doi:10.1016/j.celrep.2013.07.010.	

47	 Verhaak,	R.	G.	W.	et	al.	Integrated	Genomic	Analysis	Identifies	Clinically	Relevant	Subtypes	of	
Glioblastoma	Characterized	by	Abnormalities	in	PDGFRA,	IDH1,	EGFR,	and	NF1.	Cancer	Cell	17,	
98-110,	doi:10.1016/j.ccr.2009.12.020	(2010).	

48	 Tan,	T.	Z.	et	al.	Functional	genomics	identifies	five	distinct	molecular	subtypes	with	clinical	
relevance	and	pathways	for	growth	control	in	epithelial	ovarian	cancer.	EMBO	Mol	Med	5,	1051-
1066,	doi:10.1002/emmm.201201823	(2013).	

49	 Vandin,	F.,	Clay,	P.,	Upfal,	E.	&	Raphael,	B.	J.	Discovery	of	mutated	subnetworks	associated	with	
clinical	data	in	cancer.	Pacific	Symposium	on	Biocomputing.	Pacific	Symposium	on	Biocomputing,	
55-66	(2012).	

50	 Knutson,	S.	K.	et	al.	A	selective	inhibitor	of	EZH2	blocks	H3K27	methylation	and	kills	mutant	
lymphoma	cells.	Nat	Chem	Biol	8,	890-896,	doi:10.1038/nchembio.1084	(2012).	

51	 Amara,	D.	et	al.	Abstract	P5-08-12:	Co-expression	modules	identified	from	published	immune	
signatures	reveals	five	distinct	immune	subtypes	in	breast	cancer.	Cancer	Research	76,	P5-08-12-
P05-08-12,	doi:10.1158/1538-7445.SABCS15-P5-08-12	(2016).	

52	 Linsley,	P.	S.,	Speake,	C.,	Whalen,	E.	&	Chaussabel,	D.	Copy	number	loss	of	the	interferon	gene	
cluster	in	melanomas	is	linked	to	reduced	T	cell	infiltrate	and	poor	patient	prognosis.	PLoS	One	9,	
e109760,	doi:10.1371/journal.pone.0109760	(2014).	

53	 Haibe-Kains,	B.	et	al.	Inconsistency	in	large	pharmacogenomic	studies.	Nature	504,	389-393,	
doi:10.1038/nature12831	(2013).	

54	 Hatzis,	C.	et	al.	Enhancing	reproducibility	in	cancer	drug	screening:	how	do	we	move	forward?	
Cancer	Res	74,	4016-4023,	doi:10.1158/0008-5472.CAN-14-0725	(2014).	

55	 Papillon-Cavanagh,	S.	et	al.	Comparison	and	validation	of	genomic	predictors	for	anticancer	drug	
sensitivity.	Journal	of	the	American	Medical	Informatics	Association	20,	597-602,	
doi:10.1136/amiajnl-2012-001442	(2013).	

	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083410doi: bioRxiv preprint 

https://doi.org/10.1101/083410
http://creativecommons.org/licenses/by/4.0/

