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ABSTRACT  

Detection of important functional and/or structural elements and identifying their positions in a large eukaryotic 

genome is an active research area. Gene is an important functional and structural unit of DNA. The computation of 

gene prediction is essential for detailed genome annotation. In this paper, we propose a new gene prediction 

technique based on Genetic Algorithm (GA) for determining the optimal positions of exons of a gene in a 

chromosome or genome. The correct identification of the coding and non-coding regions are difficult and 

computationally demanding. The proposed genetic-based method, named Gene Prediction with Genetic Algorithm 

(GPGA), reduces this problem by searching only one exon at a time instead of all exons along with its introns. The 

advantage of this representation is that it can break the entire gene-finding problem into a number of smaller 

subspaces and thereby reducing the computational complexity. We tested the performance of the GPGA with some 

benchmark datasets and compared the results with the well-known and relevant techniques. The comparison shows 

the better or comparable performance of the proposed method (GPGA). We also used GPGA for annotating the 

human chromosome 21 (HS21) using cross species comparison with the mouse orthologs. 

 

INTRODUCTION 

Biological sequences are primarily useful computational data in molecular biology. Sequences represent symbolic 

descriptions of the biological macromolecules like DNA, RNA, and Proteins. A sequence can provide a vital insight 

into the biological, functional, and/or structural data about a molecule encoded in it. Therefore, the molecular 

information can be easily deciphered by analyzing several biological sequences. Over the past decade a major boost 

in sequencing, especially after the advent of next-generation sequencing (NGS) technologies (Liu et al. 2012) led to 
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an enormous amount of nucleotide sequence data. Hence, the amount of raw, unannotated nucleotide sequence data 

in the databases is expanding exponentially. Understanding the functional significance of these data is the primary 

problem in comparative genomics. The use of computational approaches to accurately predict the functional and 

structural information of these DNA sequence data is an urgent requirement. Gene is the most important functional 

and structural unit of DNA. Hence, the computation of gene prediction is an essential part of the detailed genome 

annotation. 

      In an organism, DNA works as a medium to transfer information from one generation to another. A gene is a 

distinct stretch of DNA that determines amino acid residues of a protein or polypeptide, which are responsible for 

the biological functions in an organism. A gene undergoes transcription and translation process along with splicing 

to form a functional molecule. Most of the non-coding parts of DNA are spliced out during the process of 

transcription to form mature RNA from DNA. Three consecutive nucleotides or codon of a gene represents a single 

amino acid of a protein. A complete gene length is, therefore, always the multiplier of three. The prokaryotic gene 

structure contains long stretches of coding regions where intermediate non-coding regions are absent. On the other 

hand, the eukaryotic gene structure is more complex as it breaks into several coding regions or exons separated by 

long stretches of non-coding regions i.e. introns. Introns are spliced out from the transcribed RNA. Further, the 

coding region comprises only 2 – 3 % of the entire genomic sequence that adds a second level of complexity to 

identify a gene in eukaryotes. As a consequence, the gene prediction in a eukaryotic genome is more challenging. 

Researchers are attempting to get an efficient prediction tool that can accurately predict the location of genes in an 

unknown genomic sequence. However, the research towards the development of eukaryotic gene prediction 

algorithms is still yet to reach satisfactory results. 

      Computational gene finders have been able to predict genes precisely for single gene sequences, but for multi 

gene sequences, it lowers the accuracy with the increase of complexity that results false predictions. Research is still 

in progress to predict all exons correctly and subsequently to reduce the false predictions substantially (Guigó et al. 

2000). Some of the well-known techniques available for gene prediction are GenScan (Burge and Karlin 1997), 

Genie (Reese et al. 2000), FGENESH (Salamov and Solovyev 2000), GeneId (Parra et al. 2000), GeneParser 

(Snyder and Stormo 1995), GRAIL II (Xu et al. 1994) and HMMgene (Krogh A 1997). Most of these prediction 

tools are based on classical approaches of gene identification such as Hidden Markov Models (HMM) (Kulp et al. 

1996), Dynamic Programing (DP) (Jiang and Jacob 1998; Mott R 1997), and Bayesian methods (Pavlovic et al. 
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2002). Other than these, some of the approaches based on neural network (Zhou et al. 2008), wavelet transform 

(Abbasi et al. 2011), Genetic Algorithm (GA) (Sree and Babu 2013; Hwang et al. 2013) have been applied for 

accurate detection of a gene.  

       The ab-initio based method predicts the genes directly from the genomic sequences relying on two significant 

features like gene signals and gene content. Several ab-intio programs have been extensively used in genome 

annotation, such as GENSCAN, FGENESH, and GeneID. However, the ab-intio based approaches normally predict 

a higher rate of false positive results while annotating large multi genomic sequences (Dunham et al. 1999). In 

particular, ab-initio gene identifiers determine the intergenic splice sites poorly in the prediction process. 

Conversely, a homology search on the databases of already established and experimentally verified coding 

sequences have performed well and proved a good approach in decoding the structure of the genes having known 

homologs. At present, a large number of known protein coding genes, cDNA, proteins, and ESTs are available in the 

databases. Therefore, sequence similarity based gene prediction methods are becoming increasingly useful in finding 

the putative genes in genomic sequences and thereby provide an evolutionary relationship between the raw genomic 

data and known cDNA, proteins or gene databases. 

      To date, many different techniques are available for solving gene location detection and its structure prediction 

in the large eukaryotic genome. Acencio and Lemke (2009) introduced a decision tree-based classifier and trained 

that with different attributes like network topological features, cellular compartments, and biological processes to 

generate various predictors for finding essential genes in S. cerevisiae. EVidenceModeler (EVM) (Haas et al. 2008) 

was presented as a tool for automated eukaryotic gene structure annotation that computed weighted consensus gene 

structures based on both type and abundance of available evidence. SCGPred (Li et al. 2008) was another score 

based gene-finding program that combines multiple sources of evidence. Logeswaran et al. (2006) had developed a 

WAM-CpG algorithm based on the weight array method (WAM) and CpG islands. Nasiri et al. (2011) analyzed the 

performance of different ab-initio gene finders on orthologous genes of human and mouse. Genome Annotation 

based on Species Similarity (GASS) (wang et al. 2015) is a shortest path model with DP based tool. It annotated a 

eukaryotic genome by aligning the exon sequences of the annotated similar species. 

       DNA numerical representation is another approach that was utilized in several algorithms where residues were 

converted to numerical values. Akhtar et al. (2008) had presented DNA symbolic-to-numeric representations and 

compared it with the existing techniques in terms of accuracy for both the gene and the exon prediction. Abbasi et 
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al. (2011) showed a significant improvement in accuracy of exonic region identification using a signal-processing 

algorithm that was based on Discrete Wavelet Transform (DWT) and cross-correlation method. Saberkari et al. 

(2013) predicted the locations of exons in DNA strand using a Variable Length Window approach based on z-curve. 

It was a 3-D curve used to illustrate DNA sequences and to present a complete description of DNAs’ biological 

behavior. A Digital Signal Processing (DSP) based method was used by Inbamalar and Sivakumar (2015) to detect 

the protein coding regions where the DNA sequences were converted into numeric sequences using Electron Ion 

Interaction Potential (EIIP).  

       Evolutionary algorithms like GA based techniques have also been used in solving the gene prediction problem. 

Perez-Rodriguez and Garcia-Pedrajas (2011) developed a method based on genetic algorithm for gene prediction. 

Another GA approach (GA_PAUC) was used by Hwang et al. (2013) to maximize the partial Area Under the Curve 

(AUC). This technique used features of sequence information, protein-protein interaction network topology, and 

gene expression profiles to maximize the AUC of Receiver Operating Characteristic (ROC) plot. Amouda et al. 

(2010) proposed a web based tool Intron Multiple Aligner by Genetic Algorithm (iMAGA) for aligning the intron 

sequences to find their pattern. A model called feature-based weighted Naive Bayes model (FWM) which was based 

on Naïve Bayes classifiers, logistic regression, and genetic algorithm, was developed by J. Cheng et al. (Cheng et al. 

2013). 

      In this paper, we propose a GA based optimized gene prediction method named as Gene Prediction with Genetic 

Algorithm (GPGA). It is used in the analysis of large, unknown eukaryotic genomic sequences by mapping with 

known genes. The advantage of this algorithm is that it can be utilized as a tool for identifying a gene optimally in a 

large genomic sequence. The GPGA is a novel evolutionary process with significant accuracy that can be utilized in 

mapping of a genome with genes present in several well-known repositories like Ensemble 

(http://www.ensembl.org), UCSC (http://www.genome.ucsc.edu) browser and others. We observe the performance 

of GPGA, which is very promising in terms of sensitivity and specificity on different benchmark datasets. 

RESULTS AND DISCUSSION 
  

The performance of the GPGA was tested on two benchmark datasets, HMR195 (Rogic et al. 2001), and SAG 

(Guigó et al. 2000). In the experiment, we statistically evaluated the sensitivity and specificity of the proposed 

method at exon level and also compared the results with other well-known and relevant techniques. Further, we 

annotated human chromosome 21 with GPGA for large-scale evaluation.  
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The proposed algorithm has been written in C and implemented on an IBM Power 6 system with 8 GB RAM per 

core.  

Test datasets  

 

To test the performance of GPGA, we considered two benchmark datasets of different categories having well-

annotated genomic sequences. One dataset (HMR195) comprises the real genomic sequences where each sequence 

contains only one gene. Whereas, another dataset (SAG) consists of a set of annotated gene sequences which are 

arbitrarily placed in the background of random intergenic DNAs and each sequence contains more than one gene. 

The datasets were taken from the GeneBench suite (http://www.imtech.res.in/raghava/genebench). Brief descriptions 

of these datasets are given below. 

 HMR195 dataset comprises real genomic sequences of H. sapiens, M.musculus, and R. norvegicus in the 

sequence ratio of 103:82:10. Each sequence contains exactly one gene. The mean length of total 195 sequences is 

7096 bp. The total number of single exon genes and multi-exon genes are 43, and 152, respectively. The number of 

exons in the dataset is 948 in total.  

       SAG dataset is the second one tested in the experiment. It consists of a semi-artificial set of genomic sequences 

with 43 simulated intergenic sequences. The dataset was developed by arbitrarily embedding a typical set of 

annotated 178 real human genomic sequences (h178) in those 43 sequences. Each of h178 sequences codes for a 

single complete gene. The SAG sequences have an average length of 177160 bp with 4.1 genes per sequence. The 

dataset contains total 900 exons. 

Data preprocessing (selection of homolog sets)  

The GPGA is a GA-based homology technique, which determines the presence of a gene by identifying the 

position(s) of exons in a large unannotated eukaryotic DNA sequence. In the experiment, we compared the positions 

of exons found by the GPGA in the corresponding genomic sequence with the actual positions mentioned in the 

annotation file provided with the test datasets. For such test, we generated a customize dataset of homologous genes 

consulting both the test datasets (HMR195 and SAG).   

        We considered top three species, namely, human, mouse, and rat in searching the homologs for the test datasets 

since they are phylogenetically very close and the test datasets also consist of the genomic sequences of those three 

species. To construct a dataset of homologous genes for the sequences of test datasets, we used Blast Like 

Alignment Tool (BLAT) (Kent WJ 2002) of UCSC genome browser using the default nucleotide alignment 
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parameters. We considered BLAT as the target database of BLAT is not a set of sequences, but instead an index 

derived from the assembly of the entire genome. First, we extracted the genes from the genomic sequences of both 

test datasets based on the positions of exons, mentioned in their respective annotation files and then make each of 

them as a query to the BLAT run. For HMR dataset, all 195 genes and for SAG dataset, 178 genes were searched 

against human, mouse, and rat genome separately using their latest assembly (Human: hg38; mouse: mm10; and rat: 

rn6). For human origin of the test genomic sequence, we searched homologous sequences in mouse and rat, for 

mouse origin, we searched homologs in human and rat, and for rat origin we searched in human and mouse. We 

included the highest scored homologous sequence from the BLAT search. Thus, we chose two homologous 

sequences of the other two species for each query gene and the sequence of the query itself. The execution of GPGA  
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Figure 1: The flow chart representing the process of homologs dataset construction                              
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had not been performed directly with the extracted exons from the genomic sequences of test datasets based on the 

mentioned positions in the annotation file. Because position comparison of GPGA by extracting exons based on the 

actual position with the given annotated position reduces the real genomic level complexity. In BLAT run, although 

we had always considered the top homologs, some of them are of poor quality in terms of similarity. It is also noted 

that some of the homologous sequences did not contain the same number of exons of the query and/or precise exon 

boundary presumably because the BLAT results contain newly assembled genome with respect to our benchmark 

datasets. However, we included those sequences to our new homolog sets to increase the noise in gene data and to 

test the efficiency of GPGA by excluding them as falsely verified sequences. Duplicate inclusion of a same 

homologous sequence for different query (gene) was eliminated from the sets. Thus, we prepared two homolog sets, 

one for HMR dataset and another for SAG dataset and finally we combined them to prepare one customized 

homolog set. The process flow for generating the final homolog dataset is shown diagrammatically in Figure 1.   

      The proposed method extracted each of the exons separately from the homolog sets and searched for the 

presence of them to 195 genomic sequences of HMR and 43 sequences of SAG considering both plus (Watson) and 

minus (Crick) strands.    

Performance assessment 

The predicted exon positions by GPGA were compared with the actual exon positions present in their corresponding 

annotation file. In the post-processing of matched result, we had considered a filtering criterion to identify a gene as 

true prediction where minimum 60 percent similarity at the gene level along with at least 60 bp sequence length was 

found. We performed statistical analysis of the experimental results to determine the performance accuracy of 

GPGA (see Methods for details). The results were also compared with other well-known and relevant annotation 

tools. 

     For both HMR and SAG datasets, we measured ESn (sensitivity at the exon level), ME (missed exon), ESp 

(specificity at the exon level), and WE (wrong exon) using human, mouse, and rat homolog sets separately. The 

average value of each parameter was calculated separately for human, mouse, and rat homolog sets and was 

considered as the final measurement (see Supplemental_file_1.pdf: Statistical analysis and Table S1). The statistical 

measure was not considered when GPGA did not find any such homologous exons of a gene in a sequence. Figures 

2 and 3 (Tables S2 and S3 in Supplemental_file_1.pdf) show the comparison of the GPGA results with other well-

known gene prediction tools on HMR and SAG datasets, respectively.  
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       Figure 2 depicts the high accuracy of the GPGA performance on HMR dataset in terms of ESn, ESp, and Eavg, 

and it consistently was above 90% for both ESn and ESp. The values of ESn, ESp, and Eavg of GPGA are 0.95, 

0.94, and 0.95, respectively. From the comparison, it is noticed that GPGA outperformed the other tools 

significantly. 

       Figure 3 also illustrates a better performance of GPGA compared to other annotation tools in terms of 

sensitivity and specificity at exon level. It was noted that GPGA performed similar to GeneWise. However, the ESn 

(93%) of GPGA is better than ESn (88%) of GeneWise and the ESp of GPGA and GeneWise are 90% and 91%, 

respectively. However, the overall consistency of GPGA (Eavg = 0.915) is higher than GeneWise (Eavg = 0.89). 

        In addition to ESn and ESp, for measuring accuracy, ME (the proportion of missing exons and actual exons) 

and WE (the proportion of predicted wrong exons and actual predicted exons) were also included in the evaluation 

process for the superiority of the tools. Here, the GPGA also performed well. The accuracy measurement parameters 

are presented in Supplemental_file_2.xls (see Table S4 and S5). Furthermore, even when a good similarity is found, 

the limits of predicted exon positions were not always very precise. Small exons were also missed by GPGA becau- 

 

 

 
Figure 2: The exon level accuracy comparison of GPGA with other gene prediction tools on HMR dataset 
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Figure 3: The exon level accuracy comparison of GPGA with other gene prediction tools on SAG dataset 
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Figure 4: Total number of wrong exon prediction by GPGA at different range of exon length 
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     Due to limited computing resources, we initially divided the target sequence into multiple (total 26 numbers) 

divisions. Each of them consists of 16-lac bp of HS21 except the last one. Each of the divisions was run against total 

comprehensive sets of MM10, MM16, and MM17. 

Results of Annotation      

In the experiment, we analyzed the results defining the stringency based on the lengths and similarities of the 

conserve sequences. We accordingly categorized the sequence length into 50, 100, and 150 bp. For each sequence 

length, we considered four types of percentage similarity, i.e., 60, 70, 80, and 90. For each category of length along 

with its similarity, we found a large number of conserved blocks. A gene is considered to be conserved between 

human and mouse if all the exons of a gene were matched significantly. For e.g., for the threshold criteria of 100 bp 

with 60% similarity, a gene is considered conserved if there is 60% similarity for all mouse exons. Even if a single 

exon satisfied the threshold criteria; we considered it as a conserved block. However, that exon might be or might 

not be a part of a gene. We found a large number of such blocks. This presumes the presence of a large number of 

potentially functional, non-genic conserve regulatory and/or structural blocks. Figures 5a and 5b, respectively, show 

the ungapped conserved blocks distribution and the total number of genes for different sequence lengths and 

similarity categories. Out of different categories, we had chosen the stringency of 100 bp with 70% identity 

(represented as 100-70) as our final criteria to find ungapped conserved blocks and genes. Below this threshold 

value, we identified a large number of conserved blocks and genes. However, a large number of exons of a gene did 

not follow GT-AG splicing rule. We also got a significant number of blocks and genes over 150 bp stringency. 

However, we considered medium length of 100 bp as our final value to balance the sensitivity as well as specificity 

(details are provided in Supplemental_file_3.pdf: Table S6). Following the stringency of 100-70, (Table 1) yielded 

2136 conserve blocks and 361 homologous genes for HS21. Those 361 genes contain total 3150 exons. Out of them, 

2185 exons are with canonical ‘GT-AG’ splicing junctions and 604 with non-canonical ‘GT-AG’ junctions. It was 

also observed that out of the 361 genes, 63 genes are overlapping genes (where both ends were not mapped by the 

mouse orthologs) and 149 are partial genes (having only one end matched). The GC percentage was 51.68, which 

was a significant one. Considering pseudogenes based on retroposen, and the genes having premature stop codon we 

found 41 genes. The distribution of blocks and genes along the length of HS 21 is shown in Figure 6 (see 

Supplemental_file_3.pdf: Table S9). From Figure 6, it was noted that the regions of conserved blocks and the 

locations of genes were close to each other and they were distributed more at the distal part (gene-rich region) of 
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HS21. When the sequences were compared with 80% identity over 100 bp (100-80), 1607 conserve blocks and 194 

genes were detected. 

      For 100-70 level, we also provided the base substitution data in Supplemental_file_3.pdf (seeTable S7, S8, and 

Figure S1) showing the highest rate of transitions (substitution between two purines and between two pyrimidines) 

than transversion (substitution between one purine and one pyrimidine) and the higher rate of substitution at third 

codon position (Wobble position) than first and second.  

     To compare the GPGA result with others, we considered only those genes that have either unique start or end 

positions. We excluded alternate transcripts having the same start and end positions. Out of the 361 genes predicted 

by GPGA for HS21, we found 283 genes share unique start and/or end positions. Table 2 shows the comparative 

results of GPGA with Refseq and Gencode assembly. Refseq found 411 genes, of which 271 contain unique start 

and/or end positions. Out of 271 genes, 158 genes were partially (either of the both ends of a gene) predicted by the 

GPGA. The partial prediction is because, GPGA performed ungapped mapping for finding the conserved genes, 

whereas, the results of other methods showed alignment including gaps. Gencode basic assembly got 309 unique 

genes, of which 162 genes were partially predicted by the GPGA. On the other hand, Gencode comprehensive set 

got more genes than Gencode basic as it contained more novel exons. It predicted 509 unique genes, out of which 

174 genes were partially predicted by GPGA. Table 3 contains the comparative results of GPGA along with other 

gene prediction tools. From the table, it is noticed that the GPGA predicted more genes than other gene prediction 

tools. 

Table 1. Results of GPGA for Human Chromosome 21. 

Stringency at 100 bp length with 70% similarity HS21 

1. Total number of conserve blocks 

2. Total number of genes (including partial, overlapping, and retroposen) 

 

2.1. Total number of exons in all genes 

2.2. Number of GT-AG junctions 

2.3. Number of non GT-AG junctions 

2.4. Total number of residues comprising all the genes 

2.5. Total number of partial genes that have 5’ end matched 

2.6. Total number of partial genes that have 3’ end matched 

2.7. Total number of overlapping genes  

2.8. Total number of retroposen (may include partial or overlap genes) 

2.9. GC percentage 

2136 

361 

 

3150 

2185 

604 

412168 

77 

72 

63 

41 

51.68 
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Figure 5: Results of Conservation identified by GPGA based on different threshold criteria a) Number of ungapped conserved 

blocks b) Number of genes. 

 
Figure 6: Distribution of conserved blocks and genes all along the human chromosome 21 

 

Table 2. Comparative results are showing the different assembly along with matching genes with GPGA prediction. 

Assembly 

 

Total genes Total genes crossed 100-70 
threshold level 

Total genes with either 
unique start/end position 

Number of genes matched 
with  GPGA prediction 

Refseq 479 411 271 158 

All_GencodeV22_Basic 609 515 309 162 
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All_GencodeV22_Comprehe
nsive 

896 739 509 174 

All_GencodeV23_Basic 607 515 309 162 

All_GencodeV23_Comprehe
nsive 

896 740 511 174 

GencodeV20_basic 
(Ensemble76) 

602 502 302 163 

GencodeV20_comprehensive 
(Ensemble76) 

883 721 499 176 

GPGA Genes 361 361 283 . 

 
Table 3. Comparative results are showing the different annotation tools along with matching genes with GPGA 
prediction. 
 

    

     The results proved the performance superiority of GPGA compared with other well-known ab-initio or 

homology based approaches. Nevertheless, due to limited computational resources, we split the entire HS21 into 

several segments. This approach increased the computation time. 

CONCLUSION 

The proposed approach (GPGA) is an integer based evolutionary process which simplifies the gene prediction 

technique. The GPGA was tested with two well-known benchmark datasets HMR195 and SAG to evaluate the 

performance in terms of sensitivity and specificity at the exon level. However, one of the datasets HMR195 consists 

of real genomic sequences and the other one SAG contains semi-artificial set of genomic sequences. Such choice of 

datasets helps to truly measure the performance of an approach in a noisy environment. Finally, it was noted that the 

GPGA truly predicted the gene better than other well-known approaches and its accuracy is more than 90%.  

Gene prediction 
tools 

 

Total 
genes 

Total genes crossed 100-70 
threshold level 

Total genes with either unique 
start/end position 

Number of genes matched with  GPGA 
prediction 

CCDS 339 287 238 149 

AUGUSTUS 248 181 126 82 

GeneID 271 122 122 85 

GENSCAN 420 77 77 43 

SGP Genes 271 203 203 123 

GPGA Genes 361 361 283 . 
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      The limitation of GPGA is that it often fails to predict the correct position of a short length exon since same 

sequence is frequently repeated in a genomic sequence. Another shortfall of GPGA is that it can perform well on an 

unannotated raw sequence, only when there is a well coverage of annotated information of orthologous genes.  

     In future research work, we want to introduce further the information of content sensors and signal sensors like 

GC-content value, TATA box, promoters and other compositional parameters along with the sequence homology to 

improve the sensitivity of the GPGA. We also wish to perform parallel computing for large-scale annotation without 

splitting the query length. In addition, we would like to observe the performance of the GPGA after introducing gaps 

in it. 

METHODS  

Genetic algorithm 

One of the most commonly used evolutionary techniques for optimization is GA, which is stochastic in nature. It 

iteratively executes a set of individuals called a population. Each individual is referred to as a chromosome that 

encodes a possible solution to the given problem. Each solution is assigned a problem specific fitness score. After 

every iteration (generation), the fittest individuals are carried on to the next generation, and this process continues 

until a termination criterion is fulfilled. The three genetic operators – selection, crossover, and mutation help to 

modify a population in each generation. The conventional GA normally represents a chromosome by a binary string. 

Binary representation, however, can be problematic for solving some problems as it is sometime difficult to encode 

a real problem with binary window. Another problem in binary coding is the increased length of the string for 

representing a large and complex optimization problem, which increases the computational complexity and the 

memory space. So, the problem specific GAs have been necessary to develop with other types of representations in 

mind, apart from binary notation. 

      One of the most used GAs is the Real coded GA (RGA), whose significance is justified in several theoretical 

studies (Goldberg DE 1991; Radcliffe NJ 1991). In RGA, chromosomes are represented by the real (floating) 

numbers instead of binary numbers. Moreover, the researchers have suggested several modifications to the GA 

operators other than conventional one point crossover, two point crossover, bitwise flip mutation (Goldberg DE 

1991). Among them, few examples of the crossover operation in GA are flat crossover (Radcliffe NJ 1991), 

arithmetical crossover (Michalewicz Z 1996), BLX-α (Eshelman and Schaffer 1993), Laplace crossover (Deep and 

Thakur 2007a), Simulated Binary Crossover (SBX) (Deb and Agrawal 1995), aligned block crossover (Garai and 
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Chowdhury 2015). Similarly, the modifications in mutation operator like polynomial mutation (Deb and Agrawal 

1999), uniform and non-uniform mutation (Michalewicz et al. 1994), power mutation (Deep and Thakur 2007b), 

controlled mutation (Garai and Chowdhury 2015) have been used to improve the GA process depending on the 

application problem.   

      Here, we have modified the conventional GA with the integer coding. The changes in crossover and mutation 

have also been performed for solving the problem efficiently. Such modification improves the performance of the 

proposed GPGA. 

Gene Prediction with Genetic Algorithm  

The objective of the proposed method (GPGA) is to map a well-annotated known sequence onto an unknown large 

genomic sequence. The mapping determines the homologous relationship between the known sequence (with the 

known genes) and the unknown genomic sequence by identifying the homologous gene(s) in the unknown sequence. 

Eukaryotic gene contains long stretches of introns that intervenes the coding parts or exons. CDS is composed of 

exons, which actually the translated portion of a gene. CDSs are the important parts of genes and are structurally 

more conserved in homologous sequences. However, to find the small and discrete portions of CDS in a large 

genomic sequence is an exhaustive search procedure and requires a significant amount of computational time and 

memory space. We have incorporated an integer based GA (IGA) approach in GPGA to overcome such problems.  

Gene representation by GPGA 

In the proposed method, the individuals of the GA population are represented by integer values. These values signify 

different possible positions of an exon in a large unknown genomic sequence. In GPGA, the searching process 

iteratively reaches the optimum position to define the actual position of the exon. As a result, instead of searching 

the entire gene (comprising a number of exons) in an unknown genome, the GPGA separately looks for each exon of 

the corresponding gene. Thus, the execution of GPGA is dependent on the number of exons present in a gene. The 

advantage of such representation is that it breaks up the search space of the gene-finding problem to a number of 

smaller subspaces and thereby reducing the computational complexity. It eventually reduces the possibility to be 

stuck up in a local optimum. 

Population Initialization 
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In the initialization step, an integer based initial population of size N is randomly generated within a lower and an 

upper limit. Each individual or a chromosome Pi, ∀ i ∈ {1, 2,…, N} is an integer value that represents a probable 

starting location of an exon (E ) in the query genomic sequence (Q ). The lower and the upper limits define the 

lowest and the highest positions in Q, which are two constant starting positions of an exon. The lower limit (l ) 

defines the starting position of Q  i.e., 1. The upper limit (u) is the difference between the length of Q and the exon 

(E ) length, i.e., if the length of Q is q and the length of E is e, the upper limit u is (q – e). 

Fitness Function 

The fitness score of a chromosome represents the alignment score. The alignment finds the presence of a conserve 

region (exon) in the query sequence. In the score calculation, we have considered that an identical match gets +1, 

and a mismatch gets a 0. Thus, the score is computed by the following fitness function,  

                                                F = Σ wi, ∀ i ∈ (1, 2,…, n)                                                           (1)                        

where, wi defines a local alignment score and n is the total number of local alignments. wi > 0, if any locally 

matched portion is found, otherwise, wi = 0. 

     Therefore, the fitness value (F ) of a chromosome denotes the summation of all local alignment scores. Now, let 

the chromosome be P1. The fitness score calculation of P1 is shown in Figure 7. 

      Figure 7 shows five local alignment scores for P1. According to the Equation 1, the fitness score of P1 will be F 

(P1) = 2+3+1+1+1=8. 

Genetic operators 

Three genetic operators namely, selection, crossover, and mutation play an important role towards the convergence 

of the problem. These operators also maintain a balance between the exploration and exploitation of the search space 

(Ortiz-Boyer et al. 2007). 

Selection operator  

In GPGA, we have considered tournament selection technique with tournament size 3 as a selection operator. In this 

approach three individuals are chosen randomly from the population pool Pi, ∀ i ∈ {1, 2,…, N} and are entered into 

the tournament. Based on the fitness value, the fittest individual among three, say, Pa will be selected to take part in 
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the crossover operation. This process is continued along with crossover and mutation until an entire new population 

P’j, ∀ j ∈ {1, 2,…, N} is generated. 

Crossover operator  

In the GPGA, we have considered a modified crossover operation named as Adaptive Position Prediction (APP) 

crossover. APP crossover is a self-controlled-crossover operation that adaptively modifies l  and u depending on the 

fitness score of parents. Let us consider two parents (say, Pa and Pb) are randomly selected from the population pool. 

By this operation, two offsprings (say, P’a and P’b) are generated from the selected parents. APP crossover depends 

on the fitness (alignment) scores of Pa and Pb. However, the maximum fitness score of a parent will never exceed e 

 

 

 

Figure 7: Fitness score calculation in GPGA 

(the length of the exon). If the score is e, then it is considered that the optimal exon region is found and the exon (E) 

is entirely overlapped. On the other hand, if the score is either significantly close to e, then the condition is called 

finding of the suboptimal exon region. Then a part of the exon (E) is overlapped and the APP crossover narrows 

down the range of limits l and u close to the parents to search for offsprings. The default cutoff score for a 

suboptimal exon region is selected as 50% of the maximum fitness score, i.e., e/2. Any fitness score less than e/2 is 

discarded. Now, let, the fitness score of Pa and Pb be Pa obj and Pb obj, respectively. If Pa obj ≥ e/2 and Pa obj > Pb obj, 

then the offsprings P’a and P’b will be produced as follows. 

                                                                P’a = Pa 

+ (e – Pa obj)                                (2) 

                                                        P’b = Pa 

– (e – Pa obj)                                 (3) 

However, if Pb obj ≥ e/2 and Pb obj > Pa obj then the offsprings P’a and P’b will be generated as below. 

                                                           P’a = Pb + (e – Pb obj)                        (4) 

                                                           P’b = Pb – (e – Pb obj)                                    (5) 

Segment of a genome sequence(Q)(Chromosome P1)      A T T G C C T C T G G T G A T G G C A G 
                                                    | |   | | |         |           |   | 

Exon (E)           A T G G C C A A A A G G T C A C G T A A  
 
Local alignment scores           2      3           1           1   1 
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On the other hand, if Pb (obj) and Pa (obj) are less than e/2, then P’a and P’b are produced by choosing a random 

number ө between Pa and Pb as follows.  

                              P’a = rnd (l, ө)                                                                 (6) 

                          P’b = rnd (ө, u)                                                               (7) 

where, rnd is the function to generate random number. Thus, the crossover operation helps to predict the correct 

exon position by adaptively narrowing down the difference between l and u. This adaptive nature helps in fine-

tuning of the operator for converging to the optimal position. 

      The APP crossover operation is represented algorithmically in the following way.      

• Randomly select two parents Pa and Pb from a population pool having fitness scores Pa
obj and Pb

obj, 

respectively.  

• Two offsprings P’a
  and P’b  are produced as follows: 

 if ((Pa
 obj 

 ≥ e/2) and Pa
 obj > Pb

 obj)) then do 

 P’a   = Pa
   + (e – Pa

 obj
 ) 

 P’b  = Pa
  – (e  – Pa

 obj) 

if (P’a  > u) then do P’a = u  endif 

if (P’b < l) then do P’b = l    endif 

 endif 

else if (Pb
 obj

  ≥ e/2) then do 

 P’a = Pb
 + (e – Pb

 obj) 

 P’b  = Pb  – (e –Pb
 obj) 

if (P’a  > u) then do  P’a  = u  endif 

if (P’b  < l) then do P’b = l  endif 

endif 

else 

         Choose a random integer number ө between Pa
  and Pb

 

 

 ө = rnd (Pa
 , Pb

 ) 

                         Then, generate two offsprings as follows 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083238doi: bioRxiv preprint 

https://doi.org/10.1101/083238
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

 P’a  =  rnd (l, ө) 

 P’b  = rnd (ө , u) 

End 

Mutation operator        

The mutation operation is performed similar to the APP crossover. It is also named as Adaptive Position Prediction 

(APP) mutation. It mutates the offspring generated from the crossover operation to another possible offspring to 

maintain the diversity in the population for faster searching of the optimal position of the given exon (E ). Let, the 

fitness score of an offspring P’a be P’a 
obj. If P’a 

obj
 ≥ e/2, then the modified new lower limit (lm ) and new upper 

limit (um ) will be defined as follows. 

                                                            lm = P’a – (e – P’a 
obj)                         (8) 

                                                           um = P’a + (e – P’a 
obj)                         (9) 

Thus, the modified offspring is generated as follows. 

                                                                 P’’a = rnd (lm, um)                                                                 (10) 

where, rnd is the random number generator. If P’a 
obj

 < e/2, then the offspring is modified by the APP mutation as 

follows. 

                                                             P’’a = rnd (l, u)                                                                    (11) 

where, rnd is the random number generator. 

     The algorithmic steps of the APP mutation operation are given below. 

• Select an offspring P’a . 

• Mutate P’a to P’’a as follows: 

   if (P’a 
obj

 ≥ e/2) then do 

  lm = P’a –(e – P’a 
obj) 

 um = P’a +(e – P’a 
obj) 

   if (lm < l ) then do  

lm = l  

endif 

   if (um > u) then do  

um = u 
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endif 

        P’’a = rnd (lm , um) 

   Endif 

   else do 

       P’’a = (l, u) 

   End 

       

Termination 

The process is terminated when the maximum number of iterations (generations), Gmax is reached. However, to 

reduce the computation time without compromising the accuracy level, another termination criterion based on the 

fitness score of the best individual is set. If the score of the best solution remains unchanged for 200 consecutive 

generations, then the process is stopped.  

  Now, the proposed GPGA is represented algorithmically in the following way. 

1. Read the unknown genomic sequence (Q) and the reference exon sequence (known) (E) 

which is to be mapped. 

2. Initialize the population size N, AAP crossover probability (Pcross ), AAP mutation probability (Pmut ) 

and G =1 

3. Generate an initial population Pi, ∀ i ϵ {1, 2,…,N} of N individuals(chromosomes). Where each 

chromosome represents a probable starting position of E  in Q. 

4. Evaluate the potential of each individual Pi, ∀ i ϵ {1, 2,…,N} in terms of fitness score based on the 

objective function F  (discussed in Fitness Function). 

5. Select individuals from the pool of N individuals using the tournament selection with tournament size 

3 and pick up two best individuals Pa  and Pb based on fitness value. 

6. Perform the AAP crossover operation (discussed in Crossover operator) with Pcross between the 

selected individuals Pa and Pb and mutate them (discussed in Mutation operator) with mutation 

probability, Pmut. 

7. Each pair of individual (Pa and Pb) generates two children P’a and P’b .  

8. Repeat steps 5 – 7 until a new pool of individuals P’i, ∀ i ϵ {1, 2,…,N} is formed and G = G+1. 
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9. Stop the process if the termination criterion is satisfied (discussed in Termination). Otherwise, go to 

step 4. 

GPGA parameters  

In the proposed method, we considered the values of N = 200 and Gmax  = 3000. Since, the computational time 

increases with Gmax value, we set the termination criterion based on the convergence of the best fitness score (see 

Termination). This approach always prevents the unwanted computation of GPGA upto Gmax . The optimum value of 

N was set to 200 as it produced the best results in the experiment. For GPGA, we allowed crossover and mutation 

operations to perform in every iteration or generation since it converges faster to an optimal solution. As a result, we 

set up Pcross  = 1, and Pmut  = 1. This eventually relieves the user to choose specific input values of Pmut and Pcross. 

Thus, the user with less or no prior knowledge of the GA can run GPGA very easily without concerning about the 

optimal value of pcross  and pmut. 

Evaluation of prediction accuracy 

Gene prediction accuracy of GPGA was computed at the level of exons. We followed the standard measures of 

sensitivity ( ESn, and ME  ) and specificity ( ESp, and WE  ) for evaluating the performance accuracy as described 

previously (Burset and Guigo 1996), and are formulated below. 

Sensitivity����� �
������ �	 
����
��
 �����
���  ����� ����

������ �	 �
���� �����
, �� �

������ �	 ������� �����

������ �	 �
����  �����
                            (12) 

Specificity ���	� � ������ �	 
����
��
 �����
��� ����� ����

������ �	 �����
��� �����
, 
� �

������ �	 ����� �����

������ �	 �����
���  �����
                         (13) 

Average (Eavg.) = (ESn + ESp)/2                                                                                                                                  (14) 

The predicted exon is regarded as correct only if its both sides’ boundaries are predicted correctly. 
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