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Abstract 
Deep brain stimulation (DBS) for Parkinson’s disease is a highly effective treatment in controlling 

otherwise debilitating symptoms yet the underlying brain mechanisms are currently not well 

understood. We used whole-brain computational modeling to disclose the effects of DBS ON and 

OFF during collection of resting state fMRI in ten Parkinson’s Disease patients. Specifically, we 

explored the local and global impact of DBS in creating asynchronous, stable or critical oscillatory 

conditions using a supercritical bifurcation model. We found that DBS shifts the global brain 

dynamics of patients nearer to that of healthy people by significantly changing the bifurcation 

parameters in brain regions implicated in Parkinson’s Disease. We also found higher 

communicability and coherence brain measures during DBS ON compared to DBS OFF. Finally, by 

modeling stimulation we identified possible novel DBS targets. These results offer important 

insights into the underlying effects of DBS, which may in time offer a route to more efficacious 

treatments. 
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Introduction 
Deep Brain Stimulation (DBS) is a remarkably effective treatment for a number of otherwise 

treatment-resistant disorders including tremor, dystonia, and Parkinson’s disease (Bronstein et al. 

2011; Kringelbach and Aziz 2011; Little et al. 2013; Lozano and Lipsman 2013; Miocinovic et al. 

2013). Initially, targets for Parkinson’s Disease were discovered using the highly successful 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model in higher primates (Langston et al. 

1983), which helped identify a number of efficacious DBS targets and most importantly the 

subthalamic nucleus STN (Bergman et al. 1990; Aziz et al. 1991). Perhaps surprisingly, though, the 

underlying mechanisms of DBS are not yet resolved despite the fact that DBS in the STN has now 

helped over 150,000 patients. Initially it was thought that, similar to surgical lesions, DBS acted on 

local circuitry but careful analysis of the biophysical properties of the brain (Kringelbach, 

Jenkinson, Owen, et al. 2007) has shown the most likely mechanism of DBS is through stimulation-

induced modulation of the activity of macroscopic brain networks (Vitek 2002; Kringelbach et al. 

2011). Corroborating evidence has come from rodent optogenetic experiments which have shown 

that the therapeutic effects within the STN can be accounted for by direct selective stimulation of 

afferent axons projecting to this region (Gradinaru et al. 2009). Still, these studies have not resolved 

the nature of the whole-brain dynamics arising from DBS. 

 

A principled approach to understanding DBS mechanisms will need to take into account the 

structural and functional connectivity of a given DBS target within the diseased brain and to map 

the ensuing changes caused by this continuous perturbation. Recent advances in computational 

connectomics have now produced the necessary tools to allow for careful, causal exploration of 

whole-brain dynamics within the underlying structural connectivity (Honey et al. 2007; Deco and 

Kringelbach 2014; Sporns 2014; Deco et al. 2015). Using these tools, research has demonstrated 

that there are specific structural “fingerprints” of structural connectivity associated with successful 

versus unsuccessful outcomes of DBS (Fernandes et al. 2015). In addition, the connectomic 

analysis of a unique dataset of pre and post-DBS diffusion tensor imaging (DTI) for Parkinson’s 

Disease found significant localized structural changes as a result of long-term deep brain 

stimulation (Van Hartevelt et al. 2014). Further, using whole-brain computational modeling on the 

dataset to track the ensuing changes in functional connectivity of STN DBS found Hebbian-like 

learning in specific STN projections (van Hartevelt et al. 2015).  

 

Functional connectivity changes following DBS across the whole human brain were first explored 

using MEG in patients with DBS for chronic pain which found specific functional changes in brain 
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activity associated with pain relief (Kringelbach, Jenkinson, Green, et al. 2007) as well as the 

ensuing long term changes in functional connectivity after 12 months (Mohseni et al. 2012). 

Subsequent studies have started to use functional MRI, having significantly reduced the risks to the 

patient (Boertien et al. 2011) using established safe imaging conditions (Carmichael et al. 2007; 

Kahan et al. 2015). A first study demonstrated a reversal in cortico-thalamic coupling during 

voluntary movements in Parkinson’s Disease patients with STN DBS (Kahan et al. 2012), while a 

follow-up study used dynamic causal modeling (DCM) of the STN network to further characterize 

the effective connectivity of resting state motor networks (Kahan et al. 2014). In another study, 

fMRI and EEG were used to track the changes following DBS of the nucleus accumbens (NAc) in 

patients with obsessive-compulsive disorder which was found to reduce excessive connectivity 

between the NAc and prefrontal cortex, with decreased frontal low-frequency oscillations during 

symptom provocation (Figee et al. 2013). 

 

Taken together these studies lend strong support to the idea that therapeutic DBS works by re-

balancing the brain activity of the functional and structural networks in the diseased brain 

(Kringelbach et al. 2011). Still, we are missing a mechanistic understanding of how these whole-

brain networks change with DBS. In traditional thermodynamical theory, criticality refers to a state 

in which two phases are indistinguishable from one another (Mora and Bialek 2011). From this 

viewpoint, it has been shown that the resting brain optimally operates in a similar critical manner, at 

the edge of a bifurcation that represents a transition between states (Deco and Jirsa 2012). Here, we 

used the tools from computational connectomics to investigate the fMRI responses in ten 

Parkinson’s Disease patients with DBS ON and OFF compared to 16 healthy participants. This 

allowed us to explore the local and global impact that DBS has on resting state brain dynamics 

(Kringelbach et al. 2015). The advantage of using this model is that it estimates a bifurcation 

parameter, which locally (region-by-region) and globally describes whether a system presents 

asynchronous, critical or synchronous oscillations. Further, to address if turning the stimulation on 

immediately improves and restores global coherence and diffusion of information and helps 

restoring global dynamics back to a healthy state, we used several metrics that allowed the 

identification of global enhancements in communicability and synchrony of the network as well 

producing artificial local oscillatory conditions as a proxy for stimulation.  In the light of earlier 

findings addressing large-scale changes caused by Parkinson’s Disease (van Eimeren et al. 2009; 

Delaveau et al. 2010; Van Hartevelt et al. 2014) and previous research on DBS mechanisms 

(Kringelbach et al. 2010), we predicted that therapeutic DBS for Parkinson’s Disease would create 

both global and local changes in the whole-brain dynamics. 
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Materials and Methods 

 
Data acquisition summary 

A detailed data acquisition and preprocessing description can be found in the Supplementary 

Material. Here we present a short description only. We studied a total of 10 patients suffering from 

Parkinson’s Disease (Supplementary Table 1), which received bilateral DBS in the STN for about 6 

months. All patients were scanned both during active therapeutic (ON condition) and inactivated 

stimulation (OFF condition) to extract and compute their corresponding resting state BOLD time 

series. These resting state fluctuations were used to further compute their corresponding functional 

connectivity (FC) matrices parcellated into 90 nodes in total using the AAL template (Tzourio-

Mazoyer et al. 2002) from which only the right hemisphere (Table 1) was used for the analysis to 

avoid artifacts arising from the connection between the electrode lead and the extension cable in the 

left hemisphere of the patients. Additionally, a set 16 healthy participants were recruited and 

scanned during rest and served as a baseline control. 

 

Phase consistency 

To assess fluctuations of functional connectivity, we evaluated the phase dispersion 𝜑! 𝑡  in the 

following manner.  By filtering the time series with a band-pass of 0.04–0.07Hz and further using a 

Hilbert transform, we evaluated the instantaneous phase of every node at every time point.  This 

allowed us to construct a matrix of phase differences, using a three-step sliding window over 

time. The ensuing array of phase differences was then summarized in terms of its mean and 

standard deviation over time.  The latter characterizes fluctuations in phase synchronization and 

furnishes a measure of metastability (Tognoli and Kelso 2014). We repeated this process in each of 

the 10 participants for both the ON and OFF condition as well as in each of the 16 Healthy 

participants. Metrics between the ON and OFF condition were compared with a two-tailed paired t-

test, while between the ON and Healthy with a two-tailed unpaired t-test. 

 

Integration and semi-random walker algorithm 

The integrative features of the network were measured using two different metrics. The first one is a 

simple but rather powerful way to address how integrated or coupled a network is. First, a 

connectivity threshold c (goes from 0 to 1 in steps of 0.01) is gradually applied for any given FC 

until the matrix is fully disconnected. Then, the size of the largest component L in which all pair of 

nodes are connected is calculated for every thresholded matrix. Finally, we defined integration I as: 
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𝐼 = (0.01)
1
𝑁 𝐿!

!

!

 

where N is the number of nodes in the network and Lc is the thresholded largest component. This 

was applied for all participants in both the ON and OFF conditions and compared the values with a 

paired t-test. We further calculated this same metric in the healthy set as a way to quantify a 

baseline control integration value and compared it to the ON condition with an unpaired t-test. 

 

As a second way to measure integration under a diffusion of information flow perspective, we 

created a semi-random walker algorithm that measures the ability of a random walker to diffuse or 

explore the network. Inspired by the work done by Rosvall and Bergstrom (2007), we created a 

semi-random walker algorithm and measure its ability to diffuse through any FC. First, a walker is 

set at a random initial node in the network choosing its next node based on a probabilistic approach 

such that links with higher weights or correlation values are chosen more frequently. To do this, the 

original functional weights of each of the nodes in a given network matrix M need to be 

transformed in such a way that weights corresponds to out-probabilities of the random walker and 

the sum of all probabilities on every node is always 1. For a given weight in a node i, this 

probability is simply given by: 

 

𝑝(𝑤!") =
𝑤!"
𝑤!"!

!!!
 

 

where 𝑤!" is the weight j of node i and n is the total number of nodes in the network. The 

probability matrix p(M) is then constructed: 

 

𝑝(M) =
𝑝(𝑤!") ⋯ 𝑝(𝑤!")
⋮ ⋱ ⋮

𝑝(𝑤!") ⋯ 𝑝(𝑤!!)
 

 

We then let the random walker explore or diffuse over p(M) without imposing restrictions in 

directionality until it has visited all nodes in the network at least one time. Then, we calculate the 

amount of steps S the walker required to diffuse over 90% of the network. This simulation is 

repeated 10,000 times and the mean S is then computed. To avoid that the random walker gets 

trapped too long inside a highly connected cluster, we added a fixed random teleportation 

probability (Brin and Page 1998) of 0.1. To check if diffusion or flow of information is affected by 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 25, 2016. ; https://doi.org/10.1101/083162doi: bioRxiv preprint 

https://doi.org/10.1101/083162


 

 7 

turning the stimulation on, this process was applied for each participant in both conditions. 

Diffusion of information was also calculated for the Healthy control group. 

 

Whole-brain Modeling 

The dynamic whole-brain model uses a DTI-based structural backbone network (Van Hartevelt et 

al. 2014) of 45 brain regions (Table 1). A detailed methodological description can be found in a 

recently published study (Deco et al. 2016) and in the Supplementary Material. In short, this model 

has two sorts of parameters: a bifurcation parameter that is local to each node and a free parameter, 

which scales the global connectivity (coupling). Heuristically, we can consider the bifurcation 

parameters a as mediating intrinsic (or within node) dynamics, while the extrinsic (between-node) 

connectivity is parameterized by the global coupling G. In what follows, we optimized the local 

(bifurcation or intrinsic) parameters to ensure the relative power around each intrinsic frequency 

band matched the relative power observed in empirical data. This was repeated for several levels 

(60) of the global (extrinsic) coupling G. Having fit the parameters to empirical data, we then 

inferred the most likely global coupling by seeing how well it predicted a variety of functional 

integration measures (see below) based upon the empirical data. We then examined the intrinsic 

bifurcation parameters and tested for differences in their distribution over nodes (and global 

coupling) between the three conditions (ON, OFF and healthy). We will first describe the three 

metrics used to find the global coupling that best explained empirical dynamics. We then describe 

how their distributions were compared over conditions.  

 

Agreement between empirical and simulated data 

In order to find the best agreement between the empirical and simulated FC’s, three different 

metrics that capture the static as well as the dynamic organization of brain oscillations were 

computed across G (from 0 to 6 in steps of 0.1) for the mean ON, OFF and Healthy FC’s. The first 

one is the static fitting between the empirical and simulated FC matrices(Nakagawa et al. 2013) 

computed as Pearson correlation coefficient of the connectivity values and captures the static 

agreement of the underlying activity. The second metric that we used is the Kolmogorov-Smirnov 

distance (ks-d) between the empirical and simulated distribution of phase differences (see previous 

paragraphs) across time, which reflects dynamic instead of static properties of the network. The 

third and final one is the metastability (Deco et al. 2016), which reflects the overall variability of a 

system’s oscillations across time here derived from the standard deviation of the Kuramoto order 

parameter (Cabral et al. 2011): 
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𝑅(𝑡)= 𝑒!!!(!)
!

!!!
𝑛 

 

where φk(t) represents the phase of all BOLD signals in a given node k and n is the number of nodes 

in the network. When R = 1 all phases are fully synchronized whereas R = 0 means that all phases 

are complete desynchronized. To do this, it is required to filter the BOLD signals with a band-pass 

of 0.04–0.07Hz and further compute the instantaneous phase of each narrowband signal k by 

applying a Hilbert transform in which the phase is analytically represented in: 

 

𝑠 𝑡 = 𝐴(𝑡)cos 𝜑 𝑡 . 

 

where s(t) is the analytic representation of a narrowband signal with an instantaneous phase  

𝜑 𝑡  and amplitude A(t). These two elements are represented as the argument and modulus 

respectively in a complex signal 𝑧 𝑡 = 𝑠 𝑡 + 𝑖.H 𝑠(𝑡) , where i is the imaginary part and H[s(t)] 

is the Hilbert transform of s(t).  

  

Comparison of parameter distribution over conditions 

To generate a distribution of bifurcation parameters for each node, we selected the optimized 

parameters over 20 global coupling strengths G in all three groups. Because we want to investigate 

what is the impact of DBS on global instead of local bifurcation dynamics, we explored and 

compared the shapes of both distributions by measuring in each condition the kurtosis k, which 

describes the shape of the distribution and the second order raw moment µ2, which captures data 

dispersion from zero. A third distribution computed from the Healthy group was also used as 

baseline control to see weather the overall shape is restored by the stimulation.  

 

We used a permutation test for k and µ2 to assess recovery and a possible shift to the healthy 

regime. For this, we created a joint distribution from the original ON and OFF bifurcation 

parameter distributions. We first calculated the observed k and µ2 absolute difference between the 

ON and OFF groups which are given by: 

 

 ∆𝑘!"# = |𝑘!" − 𝑘!""| 

∆µ!"# = |µ!!" − µ!!""| 
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Both observed differences were compared to those of 10,000 randomized surrogate samples 

extracted from the joint distribution. Then, the corresponding observed differences extracted from 

the Healthy control and ON groups where then generated: 

 

∆𝑘!" = |𝑘! − 𝑘!"| 

   ∆µ!" = |µ!! − µ!!"| 

 

To further apply the same permutation analysis with the randomized k and µ2 versions from the 

joint distribution of the ON and Healthy groups.  

 

Next, we computed the ks-d between conditions to estimate the distance between distributions. 

Also, for each node in the ON and OFF conditions, we computed the mean bifurcation parameter 

value to understand the local behaviour with respect to the global. Finally, the same semi-random 

walker algorithm described in previous paragraphs was applied to the modelled ON, modelled OFF 

and modelled Healthy networks to corroborate if diffusion of information (Rosvall and Bergstrom 

2007) is also enhanced in modelled data.  

 

Recreating in silico local stimulation 

 

To find which regions contribute more in shifting whole-brain dynamics to that of the healthy 

regime, instead of estimating all local bifurcation parameter values (see modeling paragraphs), we 

fixed the a parameter to a positive value of 0.25 (stable oscillatory regime), one node at a time in 

DBS OFF and repeated the modeling procedure 1000 times creating evoked bifurcation patterns 

from DBS OFF for each node. This method allowed, under the context of the current model, 

recreating stable local oscillatory conditions representative of an in silico stimulation. Finally, we 

estimated the Euclidean distance of the evoked a parameter vector (one value per node) from DBS 

OFF to that of the Healthy regime given by: 

 

𝐷 =  (𝑎𝐻𝑒! −  𝑎𝐸𝑣!)!
!

!!!

   

 

The distance D portrays which in silico stimulation site in DBS OFF brings large-scale dynamics 

closer to those observed in the Healthy brain. Here, aHe represents the Healthy bifurcation 
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reference vector computed as the mean bifurcation parameter per node while aEv the evoked DBS 

OFF vector and n is the number of nodes (45 in this case). The node with a fixed parameter value 

was not included for all Euclidean distance estimations. 

 

Statistical analysis 

For all analyses, a fixed p-value of 0.05 was used to determine significance. Mean metrics are 

always described with the mean ± standard deviation. In the case of the empirical data, the 

following criteria were followed. Given that DBS ON and OFF represents a paired sample, we 

compared the integration, phase consistency and information flow with a two-tailed paired t-test. To 

compare ON with the Healthy data set, we used a two-tailed unpaired t-test. Given that the 

distribution of modeled bifurcation parameters (Fig. 3) presented a skewed distribution not 

appropriate for a simple t-test, we employed a permutation test using 10,000 random surrogates to 

address statistical differences between the parameters of the distributions (see methods above). For 

diffusion of information, we launched the algorithm 10,000 per network to have a sufficiently large 

sample to compute the mean number of steps S and further compare these distributions with a t-test. 

 

 

Results 
The differences in both empirical and simulated functional connectivity data for DBS OFF and 

DBS ON in patients and Healthy participants were measured using a number of sensitive methods. 

For the empirical data of each participant we measured the 1) integration, 2) mean phase 

consistency and 3) the standard deviation of the phase consistency (see Methods). Overall, these 

measurements showed significant differences between the DBS OFF, DBS ON and Healthy group, 

where, as expected, the highest values were found for the Healthy participants followed by lower 

values in patients with the DBS ON and lowest in DBS OFF (see Fig. 1). The mean phase 

consistency as well as the standard deviation of the phase consistency are significantly higher 

(p<0.0001) in the ON condition (0.267±0.027 and 0.257±0.011 respectively) compared to the OFF 

condition (0.191±0.041 and 0.227±0.001 respectively) suggesting that turning the stimulation ON 

creates more variable states, resembling that of the healthy brain (Fig. 1). Compare this to the 

significantly (p<0.0001) higher mean (0.402±0.053) and standard deviation (0.293±0.017) of the 

Phase consistency in the Healthy participants in contrast to the ON condition. This trend was also 

supported by a higher global integration value in the ON condition (0.621±0.089) compared to the 

OFF condition (0.594±0.073) (p=0.11) and even higher (0.770±0.077) and significantly different in 

the control Healthy group (Fig. 1). 
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We also measured the global agreement between the empirical data and the simulated data both in a 

static and dynamic manner for all three groups. As shown in Fig. 2, the fitting between the 

simulated and empirical FC rapidly increased as a function of the coupling strength, G, and reached 

a plateau at around 2 for both the ON and OFF groups. Here, in accordance with the previous study 

by van Hartevelt and colleagues (2014) who addressed the positive shift of the global coupling 

required to simulate a network post-DBS in patients with Parkinson’s Disease, the maximum fit is 

higher in the ON (0.6) compared to the OFF (0.5) condition and even higher in the Healthy group at 

G ~ 2. As for the ks-d, it rapidly decreased in all groups reaching values of 0.1 also for G ~ 2 (Fig. 

2), which reflects a better agreement of the dynamic properties of the network. Finally, 

metastability also showed a similar trend, reaching a plateau after values of G ~ 2 for both groups. 

At this coupling, the ON and Healthy groups showed a metastability value of around 0.18 while the 

OFF group presented a value of 0.14, suggesting that DBS enhances and restores global 

synchronization, even immediately after turning the stimulation on. 

 

Next, we extracted the optimized bifurcation parameters of each node from 20 coupling strength 

values (Fig. 2) in all groups (see Methods). Direct comparison of the distributions of bifurcation 

parameters between the Healthy, ON and OFF groups show that the shape of the distribution in the 

ON and Healthy groups is remarkably similar with a sharper peak near the bifurcation (Fig. 3). This 

is reflected by higher k and lower µ2 values from the ON condition compared to the OFF condition 

(see Fig. 3A). Investigating the Kolmogorov-Smirnov distances between parameter distributions we 

found that it was lowest between Healthy and DBS ON. We also thresholded the bifurcation 

parameter values found within the range -0.5 to 0.5 and found around 50% of the parameter values 

in the Healthy condition are within a threshold area of bifurcation (Fig. 3B), similar to that found 

for the ON condition (44%) but much lower in the OFF condition (18%). The permutation test 

shows that the observed differences in kurtosis (∆kDBS) and second order moment (∆µDBS) between 

ON and OFF conditions are higher compared to the same differences extracted from random 

surrogates falling in the 99th and 100th percentile respectively (Fig. 4). Although a similar result can 

be seen for ∆kHC, which falls in the 99th percentile compared to all surrogates, this trend is not 

significant for ∆ µHC, as it is in the 61st percentile suggesting a recovery towards the healthy regime. 

 

We also inspected the bifurcation parameter values across nodes, which allowed the identification 

of significant large changes between ON and OFF conditions (Fig. 5A). Regions such as the 

thalamus and the globus pallidus presented a big shift from highly asynchronous in the OFF 
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condition to bifurcation values nearer criticality and ranked within the top 10 nodes with the most 

pronounced bifurcation parameter change (Fig. 5B & C). Interestingly, these regions are two of the 

main targets of DBS for Parkinson’s Disease treatment (Krause et al. 2001; Follett et al. 2010; 

Odekerken et al. 2013). Other regions also ranking within the top 10 nodes with the most 

pronounced shift are the supplementary motor area, middle cingulate gyrus as well as the insula, 

and the orbital part of the middle and inferior frontal gyrus switching from asynchronous in the 

OFF condition to values of almost 0 and even oscillatory in the ON condition (Fig. 5A & C). In 

contrast, only the posterior cingulate, the orbital part of the superior frontal gyrus, the triangular 

part of the inferior frontal gyrus and Heschl’s gyrus presented the opposite switching, from less 

asynchronous in the OFF to more negative in the ON condition (Fig. 5A). On the other hand, many 

regions such as the olfactory cortex, amygdala and hippocampus showed a higher asynchronous 

oscillatory behaviour in the OFF condition and slightly decreased towards a bifurcation parameter 

value of 0 in the ON condition suggesting that the overall distribution in the ON condition is 

pushing the whole brain working point closer to a bifurcation between asynchronous and stable 

oscillations. 

 

Remarkably, our random walker algorithm showed that turning the stimulation ON creates small 

but highly significant improvements in diffusion of information over the network (Fig. 6), reflecting 

a more efficient state. In the empirical data set, the mean amount of steps S required for the walker 

to diffuse over 90% of the network is significantly (p<0.0001) lower in the DBS ON condition 

(117±24) compared to the DBS OFF (125±31) condition closely resembling the amount required in 

the Healthy group, suggesting that turning the stimulation on has a positive impact on global 

communicability. This effect is also present and significantly different (p<0.0001) between the 

modelled ON and OFF networks with mean values of 113 (±21) and 118 (±23) respectively. 

 

Finally, our artificial in silico representation of local stimulation showed that some regions 

contribute more in shifting global dynamics of DBS OFF to that of Healthy participants as depicted 

by the mean Euclidean distance between the evoked (see Methods) and the Healthy reference 

bifurcation vector (Fig. 7). These regions are among others the putamen, caudate nucleus and the 

supplementary motor area (Fig. 7B), all three involved in Parkinson’s Disease therapy (Spencer et 

al. 1992; Montgomery et al. 2011; Niethammer et al. 2013; Shirota et al. 2013). 
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Discussion 

The research presented here has led to novel insights into the mechanisms of DBS, using 

computational connectomics to model the whole-brain changes elicited by therapeutic DBS in 

Parkinson’s Disease. We studied the neuroimaging data from ten Parkinson’s Disease patients and 

found that the overall working point of the brain is shifted towards a critical, healthy state by 

turning DBS ON in patients with Parkinson’s Disease. More specifically, this effect is global and 

immediate as evidenced by better model fitting, lower Kolmogorov-Smirnov distances, higher 

metastability (Fig. 2) as well as higher mean phase consistency (Fig. 1) and a more efficient 

diffusion of the random walker in the ON condition (Fig. 5). This modeling of direct empirical 

observations using fMRI significantly improves on our understanding of the underlying DBS 

mechanisms. Among other things, this provides a better mechanistic understanding of the putative 

long-lasting functional impact of deep brain stimulation, previously demonstrated in a unique study 

of a Parkinson’s Disease patient with measurements of structural (DTI) presurgical brain changes 

compared to after six months of treatment (Van Hartevelt et al. 2014; van Hartevelt et al. 2015), 

which also showed that the working point of the brain can be partially restored by DBS.  

 

These global changes in the working point of the brain are mirrored by specific local changes as 

shown by our results. We found, for example, that therapeutic DBS led to shifting of bifurcation 

parameter values of the thalamus and the globus pallidus from negative asynchronous to values 

nearer zero. It is well known that the severe degradation of the dopaminergic system causes 

hyperactivity in the globus pallidus, which strongly affects motor function (Dostrovsky et al. 2002). 

These regions are also common targets of DBS for Parkinson’s Disease and essential tremor 

(Odekerken et al. 2013) and have been shown to have significant therapeutic impact on alleviating 

motor symptoms (Krause et al. 2001; Okun et al. 2009). Further, unilateral pallidotomy studies 

have also shown alleviation of motor symptoms and metabolic increase measured by Position 

Emission Tomography in the primary motor, lateral premotor and dorsolateral prefrontal cortex 

(Grafton et al. 1995; Eidelberg et al. 1996). Our results suggests that one possible explanation of 

this important change is that Parkinson’s Disease is linked to a deleterious global asynchronous 

working point of the brain (see Fig. 3) and that therapeutic DBS can shift this state towards a more 

critical and efficient state with better potential for maximal exploration of the dynamic potential of 

the brain (Kringelbach et al. 2015).  

 

Our results also show significant local changes in bifurcation parameters in other regions known to 

be affected by Parkinson’s Disease. The olfactory bulb and the temporal pole of the middle 
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temporal gyrus were recently linked with higher structural node efficiency post-DBS (Van 

Hartevelt et al. 2014). Here, both regions presented the same trend as the thalamus and globus 

pallidus with less negative bifurcation values, supporting the idea of both local and global shifting 

from asynchronous to stable oscillations by DBS ON. Following the same tendency, the 

supplementary motor area changed from asynchronous to a near critical behavior, while the 

precentral gyrus completely switched from asynchronous to stable and both ranked within the top 

10 nodes displaying the largest bifurcation parameter shift (Fig. 5C). This is potentially of interest, 

given that a study found that Transcranial Magnetic Stimulation (TMS) of the supplementary motor 

area helps alleviating motor symptoms in patients with Parkinson’s Disease (Shirota et al. 2013). 

Although a different region, in line with these findings a recent study showed that DBS successfully 

reduces excessive neuronal phase-locking interactions during resting state throughout the motor 

cortex (de Hemptinne et al. 2015). Further, the insula also presented an evident shift from 

asynchronous to critical behavior, which is noteworthy given its tight link with non-motor 

symptoms in Parkinson’s Disease (Christopher et al. 2014), as well as the previously reported 

BOLD signal increases seen in the insula during voluntary movements under STN DBS (Kahan et 

al. 2012). 

 

Previous studies have confirmed local synchronized oscillatory behavior in the beta frequency in 

the subthalamic nucleus of patients with Parkinson’s Disease that is ameliorated by therapeutic 

replacement of L-dopa or in the presence of therapeutic STN DBS (Eusebio et al. 2011; Litvak et al. 

2011). Interestingly, our results suggest that at the local level DBS is also pushing the system 

towards a more asynchronous local state as seen in, for example, the posterior cingulate, Heschl’s 

and the orbital part of the superior frontal gyrus where the bifurcation parameters fluctuated from 

less to more asynchronous states. Again, this functional result fits well with structural findings, e.g. 

by van Hartevelt and colleagues (2014) who found that all three regions present higher nodal 

efficiency post-DBS. The fact that many other regions such as the precuneus, angular and middle 

frontal gyrus presented slightly more positive values in the OFF compared to the ON condition, but 

that global metrics were more positive and centered around the bifurcation (~0) suggests that 

whether it is changing the system from asynchronous to stable or vice-versa, DBS might enhance 

communicability and efficiency by pushing the system towards the bifurcation. This is supported by 

the random walker behavior as it diffused with greater efficiency in the ON condition (Fig. 6). The 

results also show that the mean and the standard deviation of the phase consistency are higher for 

DBS ON than DBS OFF, suggesting that activity in Parkinson’s Disease is more rigid and less 

variable while DBS helps creating a more flexible state (also evidenced by higher metastability), 
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which is at the same time more similar to the healthy state. Yet, the exact mechanisms of how local 

bifurcation dynamics affect the global working point remain unclear and future studies should help 

to clarify this. 

 

Taken together, the overall distribution shape of the local regional values of bifurcation parameters 

across conditions are more centered around the bifurcation in the DBS ON condition, which in turn 

is more similar to the Healthy regime rather than the DBS OFF (Fig. 4). Extending this finding, we 

also found that large-scale dynamic properties such as integration, and mean phase consistency also 

tend to become larger in both the empirical and simulated data sets by turning the stimulation on, 

suggesting that DBS has a positive effect on large-scale communicability of the network which 

helps rebalance the brain nearer the healthy regime (Kringelbach et al. 2011).  

 

As mentioned earlier, not many studies have analyzed the impact that DBS has on the global brain 

activity in patients suffering from Parkinson’s Disease. Recently Kahan et al (2014) found that the 

overall effective connectivity of motor cortico-striatal and thalamo-cortical pathways is increased 

by DBS. Interestingly, this enhancement of connectivity strength was accompanied by reduction of 

clinical impairment. This fits well with the results of van Hartevelt and colleagues (2015) who 

found that the overall integration and segregation is improved after six months of DBS treatment in 

patients with Parkinson’s Disease, supporting the idea that communicability and information flow 

should be enhanced by the stimulation. Our random walker algorithm backs this idea, as turning the 

stimulation on immediately eased and restored the overall communicability of the network 

(measured as faster diffusion of the random walker), which was observed in both the empirical and 

simulated data. Owing that functional connectivity patterns are disrupted in the default mode 

network in patients with Parkinson’s Disease (van Eimeren et al. 2009; Yao et al. 2014) and that 

resting state effective connectivity seems to be reshaped by DBS (Kahan et al. 2012; Kahan et al. 

2014), the results of the present study point towards a large-scale rebalancing as the result of 

specific local changes.  

 

Recording methods that can capture activity at faster time scales such as electrocorticography 

(EcoG) and electroencephalography (EEG) have shown that Parkinson’s Disease is represented by 

hypersychronization on the beta band (8-35 Hz) in the sensorimotor network and the STN (Whitmer 

et al. 2012), which is interestingly restored both after DBS (Wingeier et al. 2006; Kuhn et al. 2008) 

and by dopaminergic therapy (Weinberger et al. 2006; Ray et al. 2008). Still, it is well recognized 

that DBS at the STN is able to improve motor symptoms that persists in medicated patients and that 
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the effect is long-lasting (Kleiner-Fisman et al. 2002; Lang et al. 2003) which represents a 

significant improvement in quality of life compared to medicated patients (Deuschl et al. 2006). 

Additionally, local filed potential (LFP) recordings have shown strong synchronization in the basal 

ganglia in patients with Parkinson’s Disease (Brown and Williams 2005; Kuhn et al. 2006; 

Hammond et al. 2007). Although informative on temporal aspects, all these studies offer local 

information only. At a whole-brain scale, a study that used magnetoencephalography (MEG) found 

that network organization in Parkinson’s Disease is shifted towards a random structure representing 

a less efficient state (Olde Dubbelink et al. 2014). In addition, the same study found that through 

multiple frequency bands, node efficiency is reduced in orbitofrontal parts (Olde Dubbelink et al. 

2014). This is interesting and in line with our findings as although locally Parkinson’s Disease 

seems to be represented by hypersynchrony (Brown and Williams 2005; Kuhn et al. 2006; 

Hammond et al. 2007), globally and on a large scale, brain dynamics in Parkinson’s Disease are 

less predictable and thus less efficient, also evidenced by techniques capable of recording faster 

oscillations compared to fMRI.  

 

As a first step in finding novel and more efficacious targets for DBS in Parkinson’s Disease without 

clinical intervention and directly informed by computational models, we showed that forcing local 

stable oscillatory conditions in some regions pushes the system closer to the Healthy regime. 

Interestingly, the two regions ranking at the top are the putamen and caudate nucleus, both parts of 

the basal ganglia, which are clearly involved in Parkinson’s Disease (Kish et al. 2008; Montgomery 

et al. 2011; Niethammer et al. 2013). Even so, it is not clear if DBS in these areas would be able to 

alleviate symptoms. A study found that DBS in the putamen might help improve motor symptoms 

(Montgomery et al. 2011) in Parkinson’s Disease although the accuracy of the stimulation location 

has been questioned (Hariz 2012). Another region ranking high was the supplementary motor 

cortex. Notably, stimulating this region through TMS helps relieving motor symptoms in 

Parkinson’s Disease (Shirota et al. 2013) and functional connectivity between this region and the 

putamen is higher in patients with Parkinson’s Disease compared with controls (Yu et al. 2013), 

suggesting higher communicability between these two regions in Parkinson’s Disease. Other 

regions in the top 5 were the orbital part of the middle frontal gyrus and the inferior occipital gyrus. 

Interestingly, a study found that the middle frontal gyrus and the supplementary motor area are 

functionally implicated in visual hallucinations in patients with Parkinson’s Disease (Goetz et al. 

2014) while structurally, there are differences in the middle frontal gyrus between Parkinson’s 

Disease with and without dementia (Goldman et al. 2014). Future analyses could study the impact 

of stimulating these regions in the model on restoring balance in the brain. 
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Given that improvements in information diffusion and phase consistency were immediate, it would 

be interesting to see if these effects are long-lasting and if the bifurcation shifts towards the healthy 

regime also relates with better behavioral scores. Deep brain stimulation has proven to have positive 

results after months or even years of treatment (Rodriguez-Oroz et al. 2005; Ostergaard and Aa 

Sunde 2006) reshaping the structural network architecture post-stimulation (Van Hartevelt et al. 

2014) as well as effective connectivity patterns (Kahan et al. 2014). It would be important then to 

understand if the boost in communicability is also maintained throughout the treatment both at a 

group level and participant level. We have shown here that DBS pushes the overall dynamics of 

Parkinson’s Disease patients towards the healthy regime. This is consistent with a recent study 

showing default mode network functional connectivity differences in Parkinson’s Disease patients 

compared to controls (Yao et al. 2014). It should be noted that future work should try to control the 

confound potentially introduced by the resting hand tremor in patients when DBS is turned off. 

Furthermore, it will be important to replicate the findings using control participants scanned on the 

same scanner. Equally, future studies could potentially clarify if global changes caused by DBS 

result in more similar communicability patterns compared to healthy controls which are not only 

immediate but long lasting and are accompanied with cognitive and motor improvements in patients 

without irreversible neurodegeneration such as the dopamine depletion in Parkinson’s Disease but 

e.g. patients with chronic pain or other autonomic effects (Hyam et al. 2012). As such 

computational models might be able to inform the development of novel, more efficacious DBS 

targets, although it is important to carefully consider the ethical challenges of DBS (Kringelbach 

and Aziz 2009, 2011). 

 
In this study, we have explored the impact that therapeutic deep brain stimulation has on global 

human whole-brain dynamics. More specifically, by using a neuro-dynamical model we were able 

to identify both local and large-scale changes necessary for the optimal fitting of the model to DBS 

OFF, DBS ON and Healthy participants. Remarkably, we were able to show that DBS shifts the 

overall brain dynamics towards the bifurcation (rather than towards noisy or asynchronous 

oscillatory states) and thus closer to the dynamical regime found in the healthy brain. This finding is 

further supported by our findings of an enhancement in global synchrony and communicability, as 

reflected by a higher mean phase coherence and more efficient diffusion of information in the DBS 

ON condition, again pushing the system towards the healthy regime in both empirical and simulated 

data. We also showed that forcing local stable oscillatory conditions in some regions as a proxy for 

stimulation pushes the system closer to the Healthy regime, especially at the putamen and globus 
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pallidus. Finally, we showed that global changes in extrinsic connectivity were associated with local 

changes in intrinsic connectivity (bifurcation parameters) in very specific brain regions. Future 

studies are required to further clarify the mechanisms underlying these local leading to global 

enhancement and whether there may in fact be other DBS targets that can better rebalance the brain 

dynamics back to a healthy state. 
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Table1. AAL regions and abbreviations. 

AAL Region Abbreviation 
Inferior temporal gyrus InfT 
Temporal Pole: middle temporal gyrus TPmidT 
Middle temporal gyrus midT 
Temporal Pole: superior temporal gyrus TPSupT 
Superior temporal gyrus SupT 
Heschl's gyrus Heschl 
Thalamus Thal 
Globus pallidus Pall 
Putamen Put 
Caudate nucleus Caud 
Paracentral lobule Parac 
Precuneus Precu 
Angular gyrus Ang 
Supramarginal gyrus SupraM 
Inferior parietal gyrus InfP 
Superior parietal gyrus SupP 
Postcentral gyrus Postc 
Fusiform gyrus Fus 
Inferior occipital gyrus InfO 
Middle occipital gyrus MidO 
Superior occipital gyrus SupO 
Lingual gyrus Ling 
Cuneus Cun 
Calcarine Fissure Calc 
Amygdala Amyg 
Parahippocampal gyrus ParaHG 
Hippocampus Hipp 
Posterior cingulate gyrus PostCG 
Middle cingulate gyrus MidCG 
Anterior cingulate gyrus AntCG 
Insula Ins 
Gyrus rectus GyrR 
Superior frontal gyrus, medial orbital MOSupF 
Superior frontal gyrus, medial MSupF 
Olfatory cortex Olf 
Supplementary motor area SupplM 
Rolandic operculum Rolan 
Inferior frontal gyrus, orbital OrInfF 
Inferior frontal gyrus, triangular TrInfF 
Inferior frontal gyrus, opercular OpInfF 
Middle frontal gyrus, orbital OrMidF 
Middle frontal gyrus MidF 
Superior frontal gyrus, orbital OrSupF 
Superior frontal gyrus, dorsolateral DlSupF 
Precental gyrus Precen 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 25, 2016. ; https://doi.org/10.1101/083162doi: bioRxiv preprint 

https://doi.org/10.1101/083162


 

 25 

Figures: 

 
Fig. 1: DBS induced changes in global measurements furnishing integration and metastability. 

These changes were seen in integration, mean phase consistency (coherence) and mean standard 

deviation of the phase consistency for the empirical neuroimaging datasets for the Healthy 

participants (He, light blue), DBS ON (ON, green) and DBS OFF (OFF, orange). As expected, the 

measurements are significantly highest for the Healthy group followed by the DBS ON and with 

lowest scores for the DBS OFF. Differences between ON and OFF correspond to a two-tailed 

paired t-test, while differences between ON and Healthy correspond to a two-tailed unpaired t-test. 

All significant differences are marked with a star and correspond to a p < 0.0001. 

 

 

 

 

 

 

 

 

 

 

��� �� ��
�

���

��	

��


���

���

��


���

���

���

��
��

�
��

��
�
�

��� �� ��
�

����

���

����

��	

��	�

��


��
�

���

����

���

�
�
�
��

��
�
�
��

��
�
�
��

� 
!

�
�
�
"

��� �� ��
�

����

���

����

��	

��	�

��


��
�

�
�
�
��

��
�
�
��

��
�
�
��

� 
��

#
"

$�%�����

& &

&

&

&

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 25, 2016. ; https://doi.org/10.1101/083162doi: bioRxiv preprint 

https://doi.org/10.1101/083162


 

 26 

 
Fig. 2: Measuring whole-brain computational modeling of DBS empirical data. The Fig. shows the 

agreement metrics between simulated and empirical data for all three groups of; Healthy 

participants (He, light blue), DBS ON (ON, green) and DBS OFF (OFF, orange). The three panels 

represent the measurements of fitting, metastability and Kolmogorov-Smirnov distance (see 

Methods) for all groups as a function of the coupling strength parameter G. The gray area represents 

the 20 continuous couplings from which the bifurcation parameter values where selected to 

construct their corresponding distributions. As expected the worst values were found for DBS OFF 

and significantly improve for DBS ON, almost reaching the levels of the Healthy participants. 
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Fig. 3: Changes in local bifurcation parameters induced by DBS. Empirical data is fitted to a Hopf 

model with an optimal bifurcation parameter in each local region and the resulting histograms and 

probability distributions are plotted for the DBS ON (ON, green), DBS OFF (OFF, orange) and 

Healthy participants (He, light blue) groups. As can be seen in (A) we found that the He and ON 

distributions were very similar while different from the OFF distributions (see the kurtosis of each 

distribution, k, and the second order momentum, µ2). Equally as shown in (B) measuring 

Kolmogorov-Smirnov distances we found strong similarity between the parameter distributions of 

He and ON  (shown in the top left quadrant, with the colors representing the groups compared). The 

Healthy and DBS ON groups exhibited a larger probability than the DBS OFF of falling within the 

threshold area with the percentage of bifurcation parameter values found within the range -0.5 to 

0.5 in each condition.  

 

 

 

 

 

�� �� �� �� �� � � ��

��

���

���

���

�	
��
��	��������������

��
�
�
�
�
�

�

�� �� �� �� �� � � ��

��

���

���

���

�	
��
��	��������������
�� �� �� �� �� � � ��

��

���

���

���

�	
��
��	��������������

��������

�

����

����

����

����

���

�� �� �� �� �� � � �
�	
��
��	��������������

�
��
�

�������
��
	�
�

�
 
��
� 
�
!�
��
��
�

���"�

����� �����

�����

�����

#� $% $���������	

��������� 
�������
��

������
�

����������

&

�

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 25, 2016. ; https://doi.org/10.1101/083162doi: bioRxiv preprint 

https://doi.org/10.1101/083162


 

 28 

 

 
Fig. 4: Permutation test for global bifurcation parameter distributions. The test showed significant 

differences between DBS ON vs DBS OFF (top row) distributions and between Healthy vs DBS 

ON (bottom row). The figure shows the permutation tests for kurtosis (left column) and second 

order moment (right column). The green histograms represent the distribution of surrogate absolute 

differences between DBS ON and OFF with their corresponding observed ∆kDBS and ∆µDBS 

differences as vertical lines and matching percentile values (see methods). The blue histograms and 

vertical lines represent the same analysis, but for the difference between Healthy and ON. 

�����

�
� �
�
��
��
�
�

	
���
�
 ������

���������

���������� ������������

�����������

�
��
�
��
��
��
�

� ��� ��� ��� ��� ��� ���
�

����

����

����

����

����

����

����

����

� ��� ��� ��� ��� ���
�

����

����

����

����

����

����

����

����

� ��� ��� ��� ��� �
�

����

����

����

����

����

����

����

����

� ���� ���� ���� ���� ���
�

����

����

����

����

����

����

����

����

����

�����

�����

���

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 25, 2016. ; https://doi.org/10.1101/083162doi: bioRxiv preprint 

https://doi.org/10.1101/083162


 

 29 

 
Fig. 5: Local differences in bifurcation parameter values for Parkinson’s Disease patients. (A) Here, 

we show the full bar plot of the mean bifurcation parameter a in each of the 45 nodes from the right 

hemisphere for both the ON (green) and OFF (orange) condition. Stars and bolded regions highlight 

nodes with the most pronounced shift (B) Sagittal and axial view of a brain depicting the absolute 

bifurcation parameter shift of all nodes. Size represents shift magnitude and red nodes are those 

ranking in the top 10 with the largest shift. (C) Bifurcation parameter shift represented as the 

absolute difference between aoff and aon. Top 10 nodes are depicted in red and listed in the top-right 

insert. Table 1 shows the full names of abbreviated brain regions within the AAL parcellation 

shown. 3D brain generated with BrainNet Viewer (Xia et al. 2013). 
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Fig. 6: Integration capacity by using a random walker for empirical (left) and modeled (right) data. 

The network visit percentages of the random walker are shown for the ON (green) and, OFF 

(orange) conditions, as well as in the Healthy (He, light blue) group as a function of steps (S). We 

found that the Healthy group required the fewest steps to reach the threshold, followed by the ON 

group, which in turn required significantly less steps than the OFF group. Significance was assessed 

with a paired t-test. The horizontal dotted line represents the threshold for the number of steps S for 

which the walker has visited 90% of the network. For both data sets, bars represent the mean S ± 

standard deviation. Inserts represent zooming at threshold percentage.  
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Fig. 7: Euclidean distance to Healthy from DBS OFF after simulation of stable local oscillatory 

conditions. (A) Color map representing the Euclidean distance to Healthy from DBS OFF after 

creating stable oscillatory conditions in each of the 45 nodes. Top five regions with the lowest 

distance are bolded (B) Mean Euclidean distance ranked from lowest to highest. 
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