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Abstract:	Energy	conservation	is	widely	used	as	a	measure	of	accuracy	for	molecular	

simulations.		When	reporting	rates	of	energy	drift,	researchers	usually	assume	it	is	linear	in	

the	simulation	length,	temperature,	and	system	size.		We	study	these	assumptions	and	find	

that	all	three	are	incorrect.		Energy	drift	is	too	complicated	to	characterize	with	a	single	

number,	and	a	more	sophisticated	analysis	is	needed	to	identify	the	effects	of	systematic	

versus	random	drift,	and	of	integration	error	versus	numerical	error.		We	further	argue	

that	energy	conservation	is	not	a	reliable	measure	of	accuracy.		Having	small	overall	drift	

on	long	time	scales	is	not	a	sufficient	condition,	and	in	some	cases	not	a	necessary	

condition,	for	a	simulation	to	produce	meaningful	results.	

	

1.	Introduction	

	

Energy	conservation	is	widely	used	as	a	way	to	assess	the	accuracy	of	molecular	

simulations.		The	idea	is	that,	if	all	sources	of	error	have	been	sufficiently	minimized,	there	

should	be	negligible	change	in	the	total	energy	of	a	system	over	the	course	of	a	simulation.		

Measuring	how	much	the	energy	actually	changes	therefore	serves	as	a	test	of	how	much	

error	is	present	in	the	simulation.	

	

We	emphasize	that	our	concern	is	primarily	with	energy	conservation	used	as	a	measure	of	

simulation	accuracy.		There	are	many	situations	where	energy	conservation	is	important	

for	its	own	sake,	but	those	are	not	the	focus	of	this	paper.		The	majority	of	molecular	

simulations	are	performed	at	constant	temperature,	so	they	do	not	even	attempt	to	

conserve	energy.		However,	researchers	often	use	energy	conservation	in	the	absence	of	a	
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thermostat	to	assess	the	accuracy	of	their	production	simulations,	even	if	the	production	

simulations	do	include	a	thermostat.		That	is	the	subject	we	wish	to	study.	

	

Given	its	importance	and	prevalence	in	the	literature,	it	is	surprising	how	little	agreement	

there	is	on	how	to	measure	energy	conservation.	We	have	reviewed	a	number	of	papers	

that	report	energy	drift	values	for	different	simulation	codes,	and	find	an	enormous	

variation	in	their	methods.[1-5]		They	differ	widely	in	the	systems	they	simulate,	the	

trajectory	lengths,	and	the	methods	used	to	calculate	energy	drift.	

	

	For	example,	the	simulation	lengths	reported	in	these	papers	cover	two	orders	of	

magnitude,	from	1	ns	up	to	100	ns.		They	universally	normalize	the	energy	drift	by	

simulation	length,	reporting	it	in	units	of	energy	per	time.		This	normalization	assumes	that	

energy	drift	is	linear	in	time.		Indeed,	most	authors	appear	to	explicitly	assume	this.		

Results	from	simulations	of	different	lengths	are	often	presented	side	by	side	in	a	single	

table,	indicating	to	the	reader	they	can	be	directly	compared.		In	some	cases,[1,	2]	the	

simulation	length	is	never	even	stated;	it	is	simply	assumed	that	the	normalization	makes	

this	information	irrelevant.	

	

Surprisingly,	there	seems	to	have	been	very	little	discussion	of	this	assumption	in	the	

literature.			We	are	aware	of	no	justification,	either	theoretical	or	empirical,	that	has	been	

offered	for	why	it	should	be	expected	to	hold.		On	the	contrary,	some	theoretical	work	has	

suggested	energy	drift	should	be	primarily	diffusive	rather	than	linear	in	time.[6,	7]		But	if	

this	assumption	is	wrong,	then	results	from	simulations	of	different	length	are	not	

equivalent	and	cannot	be	directly	compared	to	each	other.	

	

Similar	considerations	apply	to	system	size	and	temperature.		The	systems	reported	in	

these	papers	cover	a	huge	range,	from	as	few	as	304	atoms	to	as	many	as	92,224.		

Temperatures	of	300K	and	394K	are	used	in	different	cases,	while	some	papers[2,	4]	do	not	

even	report	the	temperatures	of	their	simulations.		In	all	cases,	the	results	are	normalized	

by	temperature	and	number	of	degrees	of	freedom,	or	equivalently,	by	the	average	kinetic	

energy.		This	normalization	assumes	that	energy	drift	should	be	linear	in	temperature	and	
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number	of	degrees	of	freedom,	and	once	again,	this	assumption	seems	to	be	explicitly	made	

by	most	authors.		For	example,	results	for	systems	of	different	size	are	often	presented	side	

by	side	and	directly	compared	to	each	other.		But	here	again,	we	are	aware	of	no	

justification	for	why	these	assumptions	should	be	expected	to	hold.	

	

Even	the	simple	question	of	how	to	compute	a	single	“energy	drift”	value	from	simulation	

data	is	usually	left	unspecified.[1,	2,	4,	5]		Most	authors	appear	to	have	felt	this	was	obvious	

and	did	not	need	to	be	stated,	yet	one	can	easily	think	of	several	different	ways	to	do	it:	

	

1.	Compute	the	energy	difference	between	the	first	and	last	frames	in	the	trajectory,	then	

divide	by	the	length	of	the	trajectory.	

	

2.	Perform	a	linear	regression	to	fit	a	straight	line	to	the	curve	of	energy	vs.	time	and	report	

its	slope.	

	

3.	Perform	either	1	or	2	for	multiple	simulation	trajectories,	then	report	the	mean	energy	

drift	across	all	trajectories;	or	the	mean	absolute	value	of	the	energy	drift;	or	the	root-

mean-squared	energy	drift.	

	

Clearly	these	methods	will	produce	different	results,	and	values	calculated	with	different	

methods	cannot	be	directly	compared	to	each	other.	

	

We	encountered	these	issues	while	benchmarking	OpenMM.[8]		Our	goal	was	to	study	its	

accuracy	when	using	different	program	options	and	simulation	parameters,	then	compare	

to	the	published	numbers	for	other	simulation	codes.		We	soon	realized	the	impossibility	of	

that	comparison,	which	led	us	to	conduct	a	deeper	study	of	the	nature	and	significance	of	

energy	drift.			All	simulations	described	in	this	paper	were	conducted	with	OpenMM,	but	

most	of	the	conclusions	are	generally	applicable	to	a	wide	range	of	molecular	simulation	

codes.	
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The	rest	of	this	paper	is	organized	as	follows.		In	sections	2	and	3	we	consider	various	

issues	involved	in	measuring	and	analyzing	energy	drift.		Sections	4,	5,	and	6	consider	each	

of	the	assumptions	(linearity	in	time,	temperature,	and	system	size)	in	turn	to	assess	their	

validity.		In	section	7,	we	turn	to	an	even	more	fundamental	question:	to	what	extent	is	

energy	conservation	actually	a	useful	measure	for	evaluating	simulation	accuracy?		The	

following	are	our	major	conclusions:	

	

1.	All	of	the	assumptions	discussed	above	are	incorrect.		Therefore,	energy	drift	values	

calculated	for	different	sized	systems,	from	different	length	trajectories,	or	at	different	

temperatures	cannot	be	directly	compared	to	each	other.	

	

2.	Energy	conservation	is	too	complicated	to	fully	characterize	with	a	single	number.		A	

more	detailed	analysis	is	required	to	measure	it	in	a	meaningful	way.	

	

3.	Energy	conservation	is	a	singularly	bad	proxy	for	accuracy.		Just	because	a	simulation	has	

low	energy	drift	on	long	time	scales,	one	cannot	conclude	the	equations	of	motion	are	being	

integrated	accurately.	

	

2.	Computation	of	Energy	

	

How	should	one	compute	the	energy	at	a	given	instant	in	a	simulation?		This	seemingly	

trivial	question	turns	out	to	be	somewhat	subtle,	and	is	often	done	in	unnecessarily	

inaccurate	ways.	

	

Most	constant-energy	molecular	simulations	use	some	variation	on	the	Verlet	

integrator:[9]	

	

𝑥(𝑡 + 𝑑𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − 𝑑𝑡) + 𝑥(𝑡)𝑑𝑡*	 	 	 	 	 (1)	

	

where	x	is	the	vector	of	particle	coordinates,	t	is	the	current	time,	and	dt	is	the	step	size.		

There	are	two	important	things	to	note	about	this	integration	method.		First,	it	has	a	local	
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error	that	scales	as	O(dt4)	and	a	global	error	that	scales	as	O(dt2).		Second,	it	is	formulated	

entirely	in	terms	of	the	positions.		No	velocities	appear	explicitly	in	it.		This	is	important,	

because	we	must	somehow	determine	velocities	in	order	to	calculate	the	kinetic	(and	

hence	total)	energy.	

	

The	Verlet	integrator	is	commonly	reformulated	in	one	of	two	ways	to	introduce	a	velocity-

like	variable	into	it.		The	“velocity	Verlet”	algorithm	defines	

	

𝑣,(𝑡) =
- ./0. 1- .10.

*0.
	 	 	 	 	 	 	 (2)	

	

Equation	1	can	then	be	rewritten	as	a	series	of	three	steps:	

	

𝑣, 𝑡 +
𝑑𝑡
2 = 𝑣, 𝑡 +

1
2 𝑥 𝑡 𝑑𝑡	

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑣,(𝑡 + 𝑑𝑡/2)𝑑𝑡		 	 	 	 	 (3)	

𝑣, 𝑡 + 𝑑𝑡 = 𝑣, 𝑡 +
𝑑𝑡
2 +

1
2 𝑥 𝑡 + 𝑑𝑡 𝑑𝑡	

	

vV(t)	is	a	finite	difference	approximation	for	velocity	that	is	accurate	to	second	order.		It	is	

best	not	to	think	of	it	actually	being	the	velocity,	however.		It	is	an	internal	parameter	of	the	

integrator	that	is	exactly	defined	by	equation	2.		It	happens	to	equal	a	low	order	

approximation	to	the	velocity,	but	the	trajectory	(and	hence	the	“true”	velocity)	has	a	local	

error	of	O(dt4),	not	O(dt2).	

	

The	“leapfrog	Verlet”	algorithm	defines	

	 	

𝑣4(𝑡 + 𝑑𝑡/2) =
-(./0.)1-(.)

0.
	 	 	 	 	 	 (4)	

	

Equation	1	can	then	be	rewritten	as	
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𝑣4(𝑡 + 𝑑𝑡/2) = 𝑣4(𝑡 − 𝑑𝑡/2) + 𝑥(𝑡)𝑑𝑡	 	 	 	 	 	 (5)	

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑣4(𝑡 + 𝑑𝑡/2)𝑑𝑡	

	

vL(t+dt/2)	is	a	second	order	approximation	to	the	velocity	at	time	t+dt/2.		It	also	is	a	first	

order	approximation	to	the	velocity	at	time	t.		As	with	velocity	Verlet,	however,	these	

identifications	can	easily	be	misleading.		vL	is	simply	an	internal	parameter	of	the	algorithm	

that	is	exactly	defined	by	equation	4.	

	

Higher	order	approximations	to	the	velocity	can	be	formed	by	combining	the	positions	at	

more	points	in	time.[10]		The	“five	point	stencil”	is	given	by:	

	

𝑣5(𝑡) =
1-(./*0.)/6-(./0.)16-(.10.)/-(.1*0.)

7*0.
		 	 (6)	

	

This	is	accurate	to	fourth	order,	the	same	as	the	local	error	in	the	Verlet	algorithm.		The	

integration	is	still	performed	with	one	of	the	Verlet	integrators	given	above,	but	equation	6	

is	used	in	place	of	vV	or	vL	when	computing	the	kinetic	energy.		Still	higher	order	

approximations	exist,	but	there	is	no	value	in	using	them:	because	the	positions	are	only	

accurate	to	fourth	order,	no	combination	of	them	can	produce	a	velocity	more	accurate	

than	that.		We	therefore	recommend	equation	6	for	calculating	velocities,	and	hence	

energies.		It	is	used	throughout	this	paper.	

	

3.	Types	of	Error	

	

The	errors	discussed	in	the	previous	section	are	inherent	in	the	integration	method.		They	

come	from	using	a	finite	sized	time	step,	and	are	present	even	when	all	calculations	are	

done	to	infinite	precision.		We	refer	to	this	as	“integration	error”.		(It	is	also	sometimes	

referred	to	as	“truncation	error”,	since	it	is	caused	by	omitting	higher	order	terms	in	the	

integration	method.)	
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In	practice,	the	calculations	are	never	done	to	infinite	precision.		This	introduces	other	

types	of	errors	into	the	simulation,	which	we	refer	to	as	“numerical	error”.		Many	types	of	

approximations	can	lead	to	numerical	error.		Some	common	examples	include:	

	

1.	Numeric	representations	that	only	use	a	finite	number	of	bits	of	precision.	

	

2.	Cutoffs	on	nonbonded	interactions	(in	real	space,	and	possibly	also	in	reciprocal	space)	

that	create	discontinuities	in	the	energy.	

	

3.	Neighbor	lists	that	are	not	updated	every	time	step,	allowing	interactions	to	occasionally	

be	missed.	

	

4.	Lookup	tables	used	to	approximate	expensive	functions.	

	

These	sources	of	error	are	very	different	in	their	origins,	but	for	simplicity	we	group	them	

all	into	the	single	category	of	“numerical	error”.		They	are	all	ways	in	which	the	integration	

algorithm	is	not	computed	exactly,	to	infinite	precision.		They	therefore	introduce	error	

into	the	trajectory,	above	and	beyond	the	error	that	is	inherent	in	the	integration	

algorithm.	

	

There	are	some	important	differences	between	integration	error	and	numerical	error.		The	

magnitude	of	integration	error	depends	strongly	on	the	time	step:	the	global	error	scales	as	

O(dt2)	for	all	Verlet	integrators.		Numerical	error	usually	scales	as	a	lower	power:	it	may	be	

independent	of	dt,	or	in	some	cases	actually	increase	with	decreasing	step	size.		For	

example,	if	an	approximation	introduces	a	constant	level	of	error	in	every	time	step,	the	

total	error	during	a	time	interval	will	scale	with	the	total	number	of	time	steps,	or	1/dt.		

This	means	that	for	sufficiently	large	step	size,	numerical	error	is	negligible	compared	to	

integration	error,	while	for	sufficiently	small	step	size,	integration	error	is	negligible	

compared	to	numerical	error.	
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Another	important	difference	is	that,	because	integration	error	is	inherent	in	the	Verlet	

algorithm,	it	is	identical	for	all	simulation	codes	so	long	as	they	use	the	same	step	size	and	

simulate	the	same	system.		Numerical	error,	on	the	other	hand,	depends	very	sensitively	on	

the	implementation	details.		It	comes	from	the	fact	that	forces	are	not	computed	exactly	

and	the	integration	algorithm	is	not	performed	to	infinite	precision.		This	means	that	our	

measurements	of	integration	error	in	the	following	sections	should	be	universal	and	widely	

applicable,	whereas	our	measurements	of	numerical	error	are	specific	to	OpenMM.	

	

We	also	distinguish	between	systematic	errors	and	random	errors.		Systematic	errors	are	

the	same	for	every	time	step,	whereas	random	errors	are	uncorrelated	between	time	steps	

(at	least	if	those	steps	are	sufficiently	separated	in	time).		They	lead	to	very	different	

behaviors.		Systematic	errors	add	together,	leading	to	a	linear	change	in	energy	with	time,	

while	random	errors	produce	a	diffusive	drift	whose	magnitude	grows	as	the	square	root	of	

time.	

	

It	is	tempting	to	conclude	that	systematic	errors	are	“more	important”	than	random	ones,	

since	they	produce	a	much	larger	drift	over	sufficiently	long	time	periods.		That	conclusion	

is	not	justified	however.		Random	errors	are	still	errors,	no	less	for	being	uncorrelated,	and	

they	can	still	affect	simulation	results.	

	

It	is	important	to	remember	that	many	molecular	simulations	are	performed	at	constant	

temperature,	not	constant	energy.		When	using	a	stochastic	thermostat,	errors	cannot	

produce	an	energy	drift	over	long	time	periods,	because	it	is	counteracted	by	the	

thermostat.		In	this	case,	when	one	measures	the	energy	drift	in	a	constant	energy	

simulation,	the	primary	goal	is	to	show	that	the	equations	of	motion	are	being	integrated	

accurately,	and	numerical	and	integration	errors	are	not	cause	for	concern.		A	large	random	

error	clearly	shows	that	they	are	not	being	integrated	correctly,	and	the	accuracy	of	the	

simulation	cannot	be	assumed.	

	

The	question	of	exactly	how	errors	impact	one’s	results	is	beyond	the	scope	of	this	article.		

It	might	depend	in	complicated	ways	on	the	type	of	errors,	the	type	of	results	one	is	
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interested	in,	and	many	other	details	of	the	simulation.		A	particular	type	of	error	might	

have	a	large	effect	on	some	results,	but	no	effect	at	all	on	other	results.		Regardless	of	these	

details,	all	results	must	be	treated	as	suspect	if	the	equations	of	motion	are	not	being	

integrated	accurately.		They	might	still	be	correct,	but	that	cannot	be	assumed	until	the	

researcher	presents	convincing	evidence.		Systematic	and	random	energy	drift	are	both	

signs	of	inaccurate	integration.		Any	analysis	of	energy	conservation	therefore	needs	to	

consider	both	systematic	and	random	errors	and	evaluate	their	importance	independently.	

	

The	above	discussion	applies	to	system	size	as	well	as	to	simulation	length.		Errors	may	be	

the	same	for	every	degree	of	freedom,	or	uncorrelated	between	degrees	of	freedom.		The	

former	case	produces	a	total	error	in	the	energy	that	scales	with	the	number	of	degrees	of	

freedom	as	O(n),	while	the	latter	(being	a	sum	of	uncorrelated	random	variables)	produces	

a	total	error	that	scales	as	O(√n).	

	

4.	Scaling	With	Simulation	Length	

	

We	now	turn	to	the	first	widely	made	assumption:	that	energy	drift	is	linear	in	the	

simulation	length.		Figure	1	shows	the	energy	as	a	function	of	time	for	a	5	ns	simulation	of	

ubiquitin[11],	a	1231	atom	protein	in	GBSA-OBC	implicit	solvent[12].		This	simulation	used	

the	Amber	99SB	force	field[13],	a	1	fs	time	step,	a	leapfrog	Verlet	integrator,	and	no	cutoff	

on	the	nonbonded	interactions.		No	degrees	of	freedom	were	constrained.		(The	choice	to	

use	implicit	solvent	with	no	cutoff	was	made	to	eliminate	any	source	of	error	coming	from	

nonbonded	cutoffs,	and	thus	let	us	more	clearly	see	the	effect	of	other	types	of	error.		When	

using	PME,	the	error	depends	in	a	complicated	way	on	many	different	parameters,	and	that	

would	unnecessarily	complicate	the	analysis.)		The	energy	was	recorded	every	1	ps.	
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Figure	1.	Total	energy	versus	time	for	a	5	ns	simulation	of	ubiquitin	in	implicit	solvent.		

This	simulation	used	double	precision	and	a	1	fs	time	step.	

	

It	is	immediately	clear	that	the	energy	drift	is	primarily	diffusive,	not	linear.		It	fluctuates	

irregularly	on	both	short	and	long	time	scales,	but	the	net	effect	is	to	change	very	little	over	

the	course	of	the	simulation.		This	is	our	first	indication	that	the	assumption	of	linear	drift	

is	wrong.	

	

To	make	the	analysis	more	quantitative,	we	compute	the	difference	between	each	adjacent	

pair	of	energies.		This	yields	5000	samples	of	how	much	the	energy	changes	in	1	ps.		A	

histogram	is	shown	in	Figure	2.		It	clearly	resembles	a	symmetric	distribution	whose	center	

is	very	close	to	0.	
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Figure	2.	Histogram	of	the	change	in	total	energy	over	1	ps	intervals	for	the	simulation	

shown	in	Figure	1.	

	

Statistics	for	the	distribution	are	given	in	Table	1.		We	repeated	the	simulation	with	time	

steps	of	1.0,	0.5,	and	0.25	fs.		OpenMM	allows	calculations	to	be	done	in	three	different	

precision	modes:	nearly	all	single	precision;	all	double	precision;	and	a	mixed	precision	

mode	that	computes	forces	in	single	precision	but	does	integration	in	double	precision.		We	

therefore	ran	simulations	in	all	three	modes.		For	each	one,	we	report	the	mean	(which	

gives	a	measure	of	the	systematic	error),	standard	deviation	(which	gives	a	measure	of	the	

random	error),	and	standard	error	(which	reflects	the	uncertainty	in	our	measurement	of	

the	mean).		Note	that	the	mean	is	simply	equal	to	the	total	change	in	energy	over	the	course	

of	the	simulation,	divided	by	the	number	of	1	ps	intervals	making	up	the	simulation.		A	

more	robust	measure	of	systematic	error	is	to	perform	a	linear	regression	to	the	curve	of	

energy	versus	time.		The	slope	of	that	line,	when	measured	in	kJ/(mol·ps),	should	be	

directly	comparable	to	the	mean	of	the	1	ps	energy	change	distribution.		This	value	is	also	

shown	in	Table	1.	
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The	first	thing	to	notice	is	that	in	all	cases,	the	standard	deviation	is	orders	of	magnitude	

larger	than	the	mean.		This	means	that	for	short	simulations,	the	energy	drift	will	be	

completely	dominated	by	random	error	and	its	magnitude	will	scale	as	the	square	root	of	

the	simulation	length.		For	sufficiently	long	simulations,	on	the	other	hand,	even	a	tiny	

systematic	error	will	eventually	become	dominant.		In	either	case,	simply	dividing	by	the	

simulation	length	and	reporting	a	single	drift	rate	is	misleading.		If	the	simulations	are	

short,	all	information	about	systematic	error	will	be	lost.		If	the	simulations	are	long,	all	

information	about	random	error	will	be	lost.		In	contrast,	the	analysis	shown	in	Table	1	

allows	us	to	break	them	apart	and	measure	each	one	independently.		

	

Precision	

Time	Step	

(fs)	

1	ps	Energy	Change	Distribution	 Slope	

(kJ/(mol·ps))	
Mean	

(kJ/(mol·ps))	

Standard	Deviation	

(kJ/(mol·ps))	

Standard	

Error	

(kJ/(mol·ps))	

single	 1.0	 0.00300	 2.35	 0.0332	 0.00163	

single	 0.5	 0.00373	 0.647	 0.00914	 0.00398	

single	 0.25	 0.00767	 0.283	 0.00400	 0.00719	

mixed	 1.0	 0.00144	 2.23	 0.0315	 0.00119	

mixed	 0.5	 0.000354	 0.613	 0.00867	 0.000417	

mixed	 0.25	 -0.000249	 0.158	 0.00224	 -0.000124	

double	 1.0	 0.00191	 2.43	 0.0343	 0.00226	

double	 0.5	 -0.000231	 0.636	 0.00900	 0.00000100	

double	 0.25	 -0.0000605	 0.169	 0.00239	 -0.0000000710	

Table	1.	Statistics	for	a	set	of	5	ns	simulations	of	ubiquitin	in	implicit	solvent..		The	mean,	

standard	deviation,	and	standard	error	describe	the	distribution	of	energy	changes	over	1	

ps	intervals.		The	slope	is	from	a	linear	regression	to	the	curve	of	energy	versus	time	for	the	

whole	simulation.	
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We	can	estimate	how	well	converged	these	values	are	by	splitting	each	trajectory	in	half,	

then	computing	the	statistics	independently	for	the	first	half	and	the	second	half.		In	all	

cases,	this	produces	two	values	for	the	standard	deviation	that	agree	with	each	other	to	

within	a	few	percent.		We	conclude	that	the	measures	of	random	error	in	Table	1	are	well	

converged,	and	the	simulations	are	long	enough	to	measure	it	accurately.	

	

The	measures	of	systematic	error,	on	the	other	hand,	are	not	well	converged.		There	often	

are	significant	differences	between	the	estimates	from	the	two	halves	of	a	trajectory.		This	

should	not	be	surprising,	given	the	much	larger	magnitude	of	the	random	error.		On	any	

time	scale	short	enough	for	the	random	error	to	be	significant,	the	rate	of	energy	drift	is	not	

deterministic.		The	total	drift	in	any	one	simulation	is	just	a	sample	from	a	distribution.		

Performing	several	independent	simulations	will	produce	a	different	drift	for	every	one.		It	

is	therefore	essential	that	when	one	reports	a	“drift	rate”	for	simulations	of	a	given	length,	

the	simulation	be	repeated	several	times	and	a	distribution	be	reported	instead	of	a	single	

value.	

	

To	illustrate	this	fact,	we	performed	additional	simulations	of	three	different	lengths:	10,	

100,	and	1000	ps.		For	each	length,	10	independent	simulations	were	performed.		Before	

starting	a	simulation,	the	system	was	first	equilibrated	at	300K,	and	the	simulations	

differed	only	in	the	random	number	seed	used	for	the	equilibration.		All	simulations	used	

single	precision	and	a	1	fs	time	step.	

	

For	each	simulation,	we	performed	a	linear	regression	to	the	curve	of	energy	versus	time.		

This	yielded	10	independent	“drift	rates”	for	each	simulation	length,	allowing	us	to	study	

the	distribution	of	values.		Table	2	shows	the	mean,	minimum,	and	maximum	values	for	

each	simulation	length,	along	with	their	standard	deviation.		In	all	cases,	the	width	of	the	

distribution	is	larger	than	its	mean,	emphasizing	the	fact	that	any	one	value	taken	on	its	

own	is	meaningless.		The	width	of	the	distribution	decreases	as	the	simulation	length	

increases,	but	even	at	1	ns	the	values	are	clearly	still	dominated	by	random	error.	
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Length	

(ps)	

Mean	

(kJ/(mol·ps))	

Minimum	

(kJ/(mol·ps))	

Maximum	

(kJ/(mol·ps))	

Standard	Deviation	

(kJ/(mol·ps))	

10	 -0.0212	 -0.646	 0.495	 0.377	

100	 -0.00458	 -0.0348	 0.0214	 0.0166	

1000	 0.00353	 -0.00159	 0.00975	 0.00377	

Table	2.	Statistics	from	10	independent	simulations.		For	each	length,	10	independent	

simulations	were	run	and	a	linear	regression	to	energy	versus	time	was	performed.		This	

yields	10	independent	“drift	rates”	whose	distribution	is	characterized	by	the	statistics	

shown.	

	

	

Returning	to	Table	1,	we	next	compare	the	mean	to	the	standard	error,	which	reflects	the	

uncertainty	in	our	measurement	of	the	mean.		We	immediately	notice	something	odd:	in	all	

of	the	mixed	and	double	precision	cases,	as	well	as	single	precision	with	a	1	fs	time	step,	the	

mean	is	at	least	an	order	of	magnitude	smaller	than	the	standard	error.		This	is	surprising.		

If	the	data	really	consisted	of	independent	samples	from	a	normal	distribution,	we	would	

expect	the	mean	to	be	similar	to	the	standard	error,	since	it	is	only	being	measured	to	that	

level	of	accuracy.		Instead	we	find	that	in	the	majority	of	cases,	it	is	much	smaller	than	we	

have	any	right	to	expect.	

	

This	is	not	a	coincidence.		It	reflects	the	fact	that	Verlet	integrators	are	symplectic,	and	

hence	conserve	energy	over	long	time	scales	much	better	than	one	would	expect	given	the	

magnitude	of	integration	error.		We	will	discuss	this	issue	further	in	section	7.	

	

The	above	assumes	the	samples	really	are	independent.		That	assumption	is	not	guaranteed	

to	be	true.		On	sufficiently	short	time	scales,	we	expect	the	changes	in	energy	to	contain	

correlations.		This	is	clearly	seen	in	Figure	3,	which	shows	the	evolution	in	energy	over	a	

very	short	piece	of	a	simulation.		It	contains	clear	oscillations	at	high	frequencies,	reflecting	

the	presence	of	oscillatory	motions	within	the	system	being	simulated.		On	any	time	scale	
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short	enough	for	the	motion	to	contain	correlations,	it	is	possible	for	the	changes	in	energy	

to	also	contain	correlations.	

	

	
Figure	3.	Total	energy	versus	time	for	a	short	segment	of	a	simulation	of	ubiquitin	in	

implicit	solvent.		This	simulation	used	double	precision	and	a	1	fs	time	step.	

	

An	analysis	of	characteristic	time	scales	in	protein	simulations	shows	that	the	lowest	

frequency	oscillatory	motions	in	proteins	have	periods	less	than	100	fs[14].		This	fact	

motivated	our	choice	of	1	ps	as	the	sampling	interval:	it	was	chosen	to	be	as	short	as	

possible,	while	still	being	much	longer	than	the	slowest	oscillatory	motions,	and	hence	

unlikely	to	contain	significant	correlations.		Even	if	residual	correlations	are	still	present	at	

1	ps,	this	will	have	no	effect	on	the	measures	of	random	and	systematic	drift	calculated	in	

Table	1.		The	only	numbers	that	would	be	affected	are	the	standard	errors,	which	would	be	

based	on	an	overestimate	of	the	number	of	independent	measurements.		They	would	

therefore	underestimate	the	true	uncertainty	in	the	mean,	and	the	argument	given	above	

would	then	become	even	stronger.	
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Next	consider	how	the	error	varies	with	step	size,	as	shown	in	Figure	4.		This	lets	us	

distinguish	between	numerical	error	and	integration	error,	since	the	latter	should	scale	as	

O(dt2),	and	hence	should	decrease	by	approximately	a	factor	of	4	when	the	step	size	is	cut	

in	half.		First	we	look	at	the	double	precision	simulations.		When	the	step	size	is	decreased	

from	1	fs	to	0.5	fs,	the	random	error	decreases	by	a	factor	of	3.8.		When	it	is	further	

decreased	to	0.25	fs,	the	error	decreases	by	another	factor	of	3.8.		This	is	good	agreement	

with	the	expected	scaling,	and	suggests	that	even	at	a	time	step	of	0.25	fs,	the	error	

primarily	consists	of	integration	error	while	numerical	error	makes	little	contribution	to	

the	energy	drift.		The	results	for	mixed	precision	are	similar:	the	random	error	decreases	

by	3.6	when	going	from	1	to	0.5	fs,	and	by	3.9	when	going	from	0.5	to	0.25	fs.	

	

	
Figure	4.	Standard	deviation	of	the	1	ps	energy	change	distribution	versus	step	size.		The	

values	are	for	single	precision	(crosses)	and	double	precision	(circles).		The	dotted	line	is	

proportional	to	dt2	and	is	shown	only	for	reference.	

	

Now	look	at	the	single	precision	simulations.		For	1	fs	and	0.5	fs	time	steps,	the	random	

error	is	very	close	to	the	corresponding	values	for	double	precision.		With	a	0.25	fs	time	

step,	however,	it	decreases	less	than	expected	and	is	significantly	larger	than	for	double	
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precision.		This	suggests	that	numerical	error	is	starting	to	become	significant.		We	also	

note	that	for	both	0.5	fs	and	0.25	fs	time	steps,	the	distribution	mean	is	much	larger	than	

for	double	precision,	and	becomes	comparable	to	the	standard	error.		This	is	another	

indication	that	numerical	error	is	significant,	since	the	symplectic	property	of	the	

integrator	only	affects	the	energy	drift	from	integration	error,	not	from	numerical	error.	

	

5.	Scaling	With	Temperature	

	

Now	we	consider	how	energy	drift	varies	with	temperature.		Some	care	is	required	in	

defining	what	we	mean	by	this.		When	referring	to	the	“temperature”	of	a	simulation,	one	

usually	means	that	it	is	coupled	to	a	heat	bath	by	a	thermostat,	and	one	is	specifying	the	

temperature	of	that	heat	bath.		A	constant	energy	simulation	is,	by	definition,	not	a	constant	

temperature	simulation.		It	is	not	coupled	to	a	heat	bath,	and	does	not	have	a	uniquely	

defined	temperature.	

	

Before	starting	a	simulation,	one	usually	first	equilibrates	it	by	simulating	it	at	constant	

temperature	for	some	amount	of	time.		The	temperature	of	that	equilibration	could	be	used	

as	a	measure	of	the	“temperature”	of	the	following	constant	energy	simulation,	but	that	is	

not	reliable.		The	equilibration	temperature	does	not	guarantee	anything	about	the	energy	

of	any	one	frame	of	the	simulation:	it	merely	sets	a	probability	distribution	for	it.		The	last	

frame	of	the	equilibration,	which	is	then	used	as	the	first	frame	of	the	constant	energy	

simulation,	could	easily	happen	to	be	an	unusually	high	or	low	energy	state	for	that	

temperature.	

	

Another	way	to	measure	temperature	is	to	compute	the	kinetic	energy	of	the	system.		Since	

this	is	expected	to	have	an	average	of	kT/2	per	degree	of	freedom,	it	can	be	used	to	

compute	an	instantaneous	effective	temperature.		Of	course,	it	will	not	remain	constant	

over	the	simulation,	but	as	long	as	it	does	not	fluctuate	too	much,	the	average	

instantaneous	temperature	over	the	simulation	can	serve	as	a	reasonable	measurement	of	

the	“temperature”	of	the	simulation.		This	is	what	we	do	here.	
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The	simulations	described	in	section	4	were	all	equilibrated	at	300K.		To	test	the	

temperature	dependence,	we	performed	three	additional	simulations	using	mixed	

precision	and	a	1	fs	time	step.		They	were	equilibrated	at	100K,	200K,	and	400K	

respectively.		Table	3	lists	the	mean	and	standard	deviation	of	the	1	ps	energy	change	

distribution	for	each	one,	along	with	the	average	temperature	of	the	simulation	and	the	

slope	of	the	linear	fit	to	energy	versus	time.	

	

Temperature	

(K)	

1	ps	Energy	Change	Distribution	 Slope	

(kJ/(mol·ps))	Mean	

(kJ/(mol·ps))	

Standard	Deviation	

(kJ/(mol·ps))	

101.6	 0.000768	 0.676	 0.000835	

205.2	 0.000279	 1.45	 0.000303	

293.3	 0.00144	 2.23	 0.00119	

405.8	 0.00109	 3.19	 0.00256	

Table	3.	Statistics	for	a	set	of	simulations	of	ubiquitin	in	implicit	solvent	at	different	

temperatures.		The	mean	and	standard	deviation	describe	the	distribution	of	energy	

changes	over	1	ps	intervals.		The	slope	is	from	a	linear	regression	to	the	curve	of	energy	

versus	time	for	the	whole	simulation.		All	simulations	used	mixed	precision,	a	1	fs	time	step,	

and	5	ns	simulation	length.	

	

	

The	standard	deviation	shows	clear	linear	scaling	with	temperature,	as	shown	in	Figure	5.		

For	short	simulations	that	are	dominated	by	random	drift	from	integration	error,	the	

assumption	that	drift	is	proportional	to	temperature	seems	to	be	justified.		On	the	other	

hand,	the	systematic	error	(as	measured	either	by	the	mean	or	the	slope)	shows	a	very	

irregular	variation	with	temperature,	and	is	not	even	monotonic.		For	all	simulations,	the	

standard	error	(not	shown)	is	much	larger	than	the	mean,	so	there	is	significant	

uncertainly	is	our	estimates	of	the	systematic	error.		It	is	possible	that	if	we	ran	much	

longer	simulations,	a	linear	dependence	on	temperature	would	become	apparent.		But	at	
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the	very	least,	our	data	does	not	support	the	assumption	that	energy	drift	is	proportional	to	

temperature	for	long	simulations	dominated	by	systematic	drift.	

	

	
Figure	5.	Standard	deviation	of	the	1	ps	energy	change	distribution	versus	temperature.	

	

The	above	conclusions	only	apply	to	integration	error.		As	we	saw	in	section	4,	numerical	

error	is	negligible	compared	to	integration	error	at	this	step	size.		There	can	be	many	

sources	of	numerical	error,	and	different	ones	may	scale	differently	with	temperature.		It	is	

impossible	to	make	any	universal	statements	about	how	the	energy	drift	will	scale	in	

situations	where	numerical	error	is	significant.	

	

6.	Scaling	With	System	Size	

	

Next	we	consider	how	energy	drift	scales	with	the	number	of	degrees	of	freedom	in	the	

system.		To	test	this,	we	simulated	two	additional	proteins:	the	villin	headpiece[15]	(582	

atoms)	and	α-spectrin[16]	(5078	atoms).		All	simulations	used	mixed	precision	and	a	1	fs	

time	step.		No	constraints	were	used,	so	the	number	of	degrees	of	freedom	is	simply	three	

times	the	number	of	atoms.		The	results	are	shown	in	Table	4.	
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Protein	 Atoms	 1	ps	Energy	Change	Distribution	 Slope	

(kJ/(mol·ps))	Mean	

(kJ/(mol·ps))	

Standard	Deviation	

(kJ/(mol·ps))	

villin	 582	 -0.000828	 1.50	 0.000116	

ubiquitin	 1231	 0.00144	 2.23	 0.00119	

α-spectrin	 5078	 0.0154	 4.67	 0.0179	

Table	4.	Statistics	for	simulations	of	proteins	of	varying	sizes.		The	mean	and	standard	

deviation	describe	the	distribution	of	energy	changes	over	1	ps	intervals.		The	slope	is	from	

a	linear	regression	to	the	curve	of	energy	versus	time	for	the	whole	simulation.		All	

simulations	used	mixed	precision,	a	1	fs	time	step,	and	5	ns	simulation	length.	

	

	

The	standard	deviation	shows	a	very	clear	O(√n)	dependence	on	the	system	size:	dividing	

it	by	the	square	root	of	the	number	of	atoms	gives	0.062,	0.064,	and	0.066	for	villin,	

ubiquitin,	and	α-spectrin	respectively.		Unsurprisingly,	values	that	are	uncorrelated	

between	degrees	of	freedom	also	are	uncorrelated	between	time	steps.		At	least	on	short	

time	scales,	the	assumption	that	energy	drift	is	proportional	to	system	size	clearly	is	

incorrect.	

	

The	systematic	drift	is	harder	to	evaluate,	given	the	larger	uncertainties	in	it,	but	it	clearly	

grows	faster	than	the	random	drift.		If	anything,	it	appears	to	be	growing	quadratically	in	

the	system	size:	dividing	the	slope	by	the	square	of	the	number	of	atoms	yields	3.4·10-10,	

7.8·10-10,	and	6.9·10-10	for	villin,	ubiquitin,	and	α-spectrin	respectively.		Possibly	this	

reflects	the	fact	that	no	cutoffs	were	used	in	these	simulations,	so	the	total	number	of	

interactions	grows	as	the	square	of	the	number	of	atoms.		If	so,	the	scaling	might	be	

different	when	simulating	a	periodic	system	with	Particle	Mesh	Ewald,	but	it	would	still	

presumably	be	at	least	linear.	
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A	consequence	is	that	the	relative	magnitudes	of	random	and	systematic	drift	depend	on	

system	size,	and	for	a	sufficiently	large	system	the	energy	drift	will	be	primarily	linear	even	

on	short	time	scales.		We	emphasize	again	that	this	does	not	make	systematic	error	“more	

important”	than	random	error.		Both	types	of	error	indicate	that	the	equations	of	motion	

are	not	being	integrated	accurately.		Just	because	errors	produce	energy	changes	that	are	

uncorrelated	between	time	steps	or	degrees	of	freedom,	that	does	not	mean	they	cannot	

still	distort	one’s	results.	

	

7.	Accuracy	and	Energy	Drift	

	

We	now	turn	to	a	fundamental	question:	is	energy	conservation	actually	a	good	way	to	

assess	the	accuracy	of	a	simulation?		The	total	energy	is	merely	one	degree	of	freedom	out	

of	thousands	in	the	system.		It	is,	to	be	sure,	a	very	important	degree	of	freedom,	but	so	are	

many	others.		If	a	simulation	produces	little	error	in	the	total	energy,	can	we	safely	assume	

that	it	also	produces	little	error	in	all	the	other	degrees	of	freedom?		Conversely,	if	a	

simulation	is	accurate	(for	some	reasonable	definition	of	the	word),	to	what	extent	does	

that	guarantee	precise	energy	conservation	over	long	time	periods?	

	

The	Verlet	algorithm	is	symplectic,	which	means	that	it	very	precisely	conserves	a	modified	

or	“shadow”	Hamiltonian.[17]		The	shadow	Hamiltonian	is	different	from	the	true	

Hamiltonian	of	the	system,	but	the	two	are	closely	related,	so	precise	conservation	of	one	

generally	implies	reasonable	conservation	of	the	other	as	well.		The	upshot	is	that	

symplectic	integrators	have	much	better	long	term	energy	conservation	than	would	be	

expected	based	on	the	integration	error.	

	

This	provides	an	answer	to	our	first	question:	long	term	energy	conservation	does	not	

necessarily	imply	accuracy.		On	the	contrary,	it	is	virtually	guaranteed	that	the	integration	

error	in	most	degrees	of	freedom	is	larger	(possibly	much	larger)	than	that	in	the	total	

energy.		This	makes	energy	conservation	a	particularly	bad	way	of	estimating	accuracy.	
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This	applies	only	to	integration	error.		As	we	saw	earlier,	a	symplectic	integrator	does	not	

reduce	the	energy	drift	from	numerical	error.		Therefore,	if	a	simulation	has	little	long	term	

energy	drift,	it	is	plausible	to	conclude	that	there	is	minimal	numerical	error	in	other	

degrees	of	freedom.		Even	this	conclusion	needs	to	be	qualified,	however.		Long	term	

energy	drift	is	determined	primarily	by	systematic	error,	not	random	error.		Therefore	the	

only	really	reliable	conclusion	one	can	draw	is	that,	if	there	is	significant	numerical	error	in	

the	simulation,	it	is	of	a	type	that	only	produces	random	drift	in	the	energy,	not	systematic	

drift.	

	

Furthermore,	there	can	be	many	different	sources	of	error	in	a	simulation,	each	of	which	

contributes	to	both	the	random	and	systematic	energy	drifts.		There	is	no	reason	to	expect	

their	contributions	to	random	drift	to	be	correlated,	but	by	definition,	all	sources	of	

systematic	drift	are	correlated.		If	some	sources	produce	a	positive	systematic	drift	and	

others	produce	a	negative	systematic	drift,	they	will	tend	to	cancel	out,	leading	to	an	

artificially	low	drift	on	long	time	scales.		Increasing	the	error	can	actually	decrease	the	

energy	drift	and	make	the	simulation	appear	more	accurate	than	it	really	is.	

	

To	illustrate	this	effect,	we	performed	a	series	of	5	ns	simulations	of	ubiquitin	in	which	the	

SHAKE	algorithm[18]	was	used	to	constrain	the	lengths	of	bonds	involving	hydrogen	to	

their	equilibrium	values.		This	is	a	common	technique	to	eliminate	fast	motions	and	allow	a	

larger	time	step	to	be	used.		It	introduces	a	new	source	of	error,	however:	constraints	are	

implemented	with	an	iterative	algorithm,	so	the	constrained	distances	only	remain	

constant	to	within	a	user	specified	tolerance.		Table	5	shows	the	results	of	three	

simulations	with	different	combinations	of	step	size	and	constraint	error	tolerance.	
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Step	Size	(fs)	 Constraint	Tolerance	 Energy	Drift	

(kJ/(mol·ps))	

2.0	 10-6	 0.00424	

2.0	 10-4	 -0.950	

2.6	 10-4	 -0.0201	

Table	5.	The	cancelling	effects	of	step	size	and	constraint	error	tolerance	on	energy	drift.		

The	drift	values	are	calculated	from	a	linear	regression	to	the	curve	of	energy	versus	time	

for	the	whole	simulation.		All	simulations	were	5	ns	long	and	used	mixed	precision.	

	

	

The	first	simulation	uses	a	2	fs	step	size	and	constraint	error	tolerance	of	10-6.		These	are	

commonly	used	values,	and	produce	a	reasonably	small	energy	drift.		In	the	second	

simulation,	we	increase	the	constraint	error	tolerance	to	10-4.		This	introduces	large	errors	

into	the	simulation,	and	causes	the	energy	to	decrease	rapidly.		In	the	final	simulation,	we	

increase	the	step	size	to	2.6	fs.		This	introduces	additional	large	errors	into	the	simulation	

and,	on	its	own,	would	cause	a	rapid	increase	in	energy.		But	because	the	two	sources	of	

error	have	opposite	effects	on	systematic	energy	drift,	they	mostly	cancel	out	and	the	

actual	energy	drift	is	much	smaller	than	in	the	previous	case.		That	does	not	mean	they	

have	no	effect,	of	course.		This	is	a	very	inaccurate	simulation,	and	no	results	calculated	

from	it	should	be	trusted.		But	it	is	impossible	to	discover	that	inaccuracy	just	by	looking	at	

long	term	energy	drift.	

	

What	about	the	second	question:	to	what	extent	does	accurate	integration	guarantee	long	

term	energy	conservation?		The	true	equations	of	motion	conserve	energy	exactly,	so	a	

perfect	integrator	would	of	course	do	so	as	well.		In	practice,	no	integrator	is	perfect	so	we	

should	expect	errors	in	all	degrees	of	freedom,	including	the	total	energy.		A	symplectic	

integrator	makes	much	smaller	errors	in	the	energy	than	in	other	degrees	of	freedom.		This	

is	usually	presented	as	an	advantage:	given	the	same	level	of	error,	a	symplectic	integrator	

will	conserve	energy	better	than	a	non-symplectic	one.		This	comparison	can	easily	be	
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reversed,	however:	given	the	same	level	of	energy	conservation,	a	non-symplectic	

integrator	will	be	more	accurate	than	the	symplectic	one.		It	is	thus	entirely	possible	for	

one	integrator	to	be	more	accurate,	but	a	different	one	to	conserve	energy	better.	

	

There	has	been	much	research	into	integration	methods	over	the	years,	and	many	of	the	

most	widely	used	ones	are	non-symplectic.[19]		This	includes,	for	example,	the	very	

popular	Runge-Kutta	and	Adams-Bashforth	families	of	integrators.		Much	of	the	research	in	

recent	decades	has	involved	error-controlled,	variable	time	step	integrators	that	

continuously	adjust	the	step	size	(and	sometimes	integration	order)	to	keep	the	total	error	

below	a	user-specified	limit.[20]		This	allows	them	to	be	significantly	more	efficient	than	

fixed	step	size	integrators.		It	also	makes	them	robust	against	rare	events	when,	for	

example,	two	atoms	come	unusually	close	to	each	other.		Events	of	this	sort	have	been	

shown	to	be	a	source	of	error	in	molecular	simulations[17];	variable	time	step	integrators	

eliminate	these	problems	by	simply	detecting	the	close	collision	and	reducing	the	step	size	

for	a	few	time	steps.		For	these	reasons,	they	are	now	widely	used	in	such	fields	as	

mechanical	engineering,	aerospace,	and	fluid	dynamics.	

	

The	value	of	error	controlled	integrators	can	be	illustrated	with	a	simple	example	

suggested	by	Söderlind.[20]		We	simulate	a	single	charged	particle	moving	in	an	elliptical	

orbit	around	a	fixed	charge.		The	trajectory	generated	with	a	fixed	step	size	Verlet	

integrator	is	shown	in	the	top	half	of	Figure	6.		Accumulated	error	causes	the	orbit	to	

precess	with	time.		This	has	no	effect	on	the	energy	of	the	system,	which	is	well	conserved	

over	the	simulation,	yet	the	particle	still	clearly	ends	up	in	the	wrong	location.	
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Figure	6.	The	trajectory	of	a	particle	in	an	elliptical	orbit	as	integrated	with	a	fixed	time	

step	(top)	or	variable	time	step	(bottom)	integrator.		The	average	step	size	was	the	same	in	

both	cases.	

	

OpenMM	also	provides	an	error	controlled	variable	time	step	Verlet	integrator.		We	

simulated	the	same	system,	adjusting	the	error	tolerance	so	the	average	step	size	over	the	

simulation	was	identical	to	the	previous	case.		The	trajectory	is	shown	in	the	bottom	half	of	

Figure	6.		This	time,	there	is	negligible	precession.		The	total	number	of	time	steps	is	

identical,	but	the	integrator	is	able	to	concentrate	them	in	the	parts	of	the	trajectory	where	

they	are	most	needed,	leading	to	a	substantially	more	accurate	result	at	similar	cost.		This	is	

true	despite	the	fact	that	the	variable	time	step	integrator	is	not	symplectic.	

	

This	example	is	much	simpler	than	most	molecular	simulations,	and	it	may	not	be	

representative	of	them.		Further	research	is	clearly	needed	to	understand	how	well	the	

variable	step	size	integrator	reproduces	statistical	properties.		Still,	this	example	is	valuable	

for	providing	a	clear	graphical	illustration	of	how	energy	conservation	does	not	imply	

accuracy.		The	fixed	step	size	integrator	produces	an	objectively	less	accurate	result	than	

the	variable	step	size	one,	despite	the	fact	that	it	is	symplectic	and	has	less	energy	drift	
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over	long	time	scales.		(The	energy	drift	over	this	short	time	interval	was	negligible	for	both	

simulations.)	

	

It	may	be	time	to	reconsider	the	molecular	simulation	community’s	reliance	on	fixed	step	

size	Verlet	integrators.		More	modern	algorithms	have	many	advantages	in	terms	of	both	

robustness	and	efficiency.		Many	of	them	are	not	symplectic,	which	means	they	will	appear	

inferior	as	long	as	one	only	looks	at	the	long	term	drift	in	the	total	energy,	but	this	may	be	

nothing	more	than	an	artifact	of	ignoring	most	types	of	error	in	the	simulation.	

	

8.	Conclusions	

	

We	have	performed	simulations	to	test	three	commonly	made	assumptions	about	energy	

drift	in	molecular	simulations:	that	it	is	linearly	proportional	to	simulation	length,	linearly	

proportional	to	temperature,	and	linearly	proportional	to	the	number	of	degrees	of	

freedom.		We	find	that	all	three	of	these	assumptions	are	wrong.		This	means	that	most	

published	numbers	for	energy	drift	must	be	treated	with	extreme	caution.		Values	

computed	for	different	systems	or	with	different	simulation	parameters	are	not	directly	

comparable	to	each	other.	

	

We	also	find	that	energy	drift	is	too	complicated	to	be	accurately	described	with	just	a	

single	number.		A	more	thorough	analysis	is	required	to	distinguish	between	random	drift	

versus	systematic	drift,	and	between	integration	error	versus	numerical	error.		For	

example,	by	building	a	histogram	of	energy	changes	over	short	time	intervals,	one	can	

separate	systematic	drift	from	random	drift	and	measure	each	one	independently.		By	

measuring	how	they	change	as	the	step	size	is	varied,	one	can	then	determine	whether	they	

are	primarily	caused	by	integration	error	or	numerical	error.		These	different	factors	may	

scale	in	very	different	ways	with	step	size,	simulation	length,	system	size,	and	other	

simulation	parameters.		All	of	them	are	important	and	they	need	to	be	measured	

independently.	
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We	further	argue	that	energy	conservation	is	not	a	reliable	way	to	assess	the	accuracy	of	a	

simulation.		For	example,	multiple	sources	of	drift	may	cancel	to	produce	good	energy	

conservation	even	for	an	inaccurate	simulation,	as	shown	in	Table	5.		Conversely,	a	

symplectic	integrator	can	be	objectively	less	accurate	than	a	non-symplectic	one,	as	shown	

in	Figure	6,	even	though	it	does	a	better	job	of	conserving	energy	over	long	time	scales.		In	

fact,	when	using	a	symplectic	integrator	such	as	fixed	time	step	Verlet,	it	is	virtually	

guaranteed	that	the	integration	errors	in	most	degrees	of	freedom	are	larger	than	those	in	

the	total	energy.		This	makes	energy	conservation	a	uniquely	bad	proxy	for	accuracy.		At	

best,	it	is	a	necessary	but	not	sufficient	condition	to	conclude	that	one’s	results	are	

accurate.	
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