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ABSTRACT 49 

 50 

The Nurses’ Health Study (NHS), Nurses’ Health Study II (NHSII), Health Professionals Follow Up 51 

Study (HPFS) and the Physicians Health Study (PHS) have collected detailed longitudinal data on 52 

multiple exposures and traits for approximately 310,000 study participants over the last 35 53 

years. Over 160,000 study participants across the cohorts have donated a DNA sample and to 54 

date, 20,691 subjects have been genotyped as part of genome-wide association studies (GWAS) 55 

of twelve primary outcomes. However, these studies utilized six different GWAS arrays making it 56 

difficult to conduct analyses of secondary phenotypes or share controls across studies. To allow 57 

for secondary analyses of these data, we have created three new datasets merged by platform 58 

family and performed imputation using a common reference panel, the 1,000 Genomes Phase I 59 

release. Here, we describe the methodology behind the data merging and imputation and 60 

present imputation quality statistics and association results from two GWAS of secondary 61 

phenotypes (body mass index (BMI) and venous thromboembolism (VTE)).  62 

 63 

We observed the strongest BMI association for the FTO SNP rs55872725 (=0.45, p=3.48x10-22), 64 

and using a significance level of p=0.05, we replicated 19 out of 32 known BMI SNPs. For VTE, 65 

we observed the strongest association for the rs2040445 SNP (OR=2.17, 95% CI: 1.79-2.63, 66 

p=2.70x10-15), located downstream of F5 and also observed significant associations for the 67 

known ABO and F11 regions. This pooled resource can be used to maximize power in GWAS of 68 

phenotypes collected across the cohorts and for studying gene-environment interactions as well 69 

as rare phenotypes and genotypes.  70 

 71 

72 
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INTRODUCTION 73 

Large, well-phenotyped cohort studies have constituted the backbone of epidemiology for 74 

several decades. Prospectively collected longitudinal information on exposures and outcomes 75 

enables a broad spectrum of analyses and has led to novel insights into disease etiology, such as 76 

the link between smoking and lung cancer [1,2] as well as the link between both high cholesterol 77 

levels and trans fatty acids with coronary heart disease [3,4] Many existing cohorts collect 78 

biological specimens from their participants, allowing for studies of inherited genetic variation 79 

as well as prospectively measured biomarkers such as metabolomic profiles [5] and circulating 80 

hormone levels [6]. Genome-wide association studies (GWAS) are currently a main engine of 81 

genetic epidemiology and have led to the identification of thousands of loci for hundreds of 82 

traits (for an overview and its clinical applications, see Manolio [7]). When designing a GWAS, 83 

cost is still the determining factor and consequently, GWAS within cohorts are often conducted 84 

within nested case-control studies or sub-cohorts. In contrast, the Women’s Genome Health 85 

Study (WGHS) [8] genotyped the entire cohort of 27,000 women and the Genetic Epidemiology 86 

Research on Adult Health and Aging (GERA) Cohort has generated GWAS data on almost 87 

100,000 individuals [9]. However, in many instances, GWAS are tied to specific funding sources 88 

acquired for studying a pre-defined outcome and only a small fraction of the cohort is 89 

genotyped at a specific time.  90 

 91 

Within the Nurses’ Health Study (NHS) [10], Nurses’ Health Study II (NHSII) [11], Health 92 

Professional Follow Up Study (HPFS) [12] and the Physicians’ Health Study (PHS) [13], since 2007, 93 

we have, conducted twelve GWAS of different traits including type 2 diabetes [14], coronary 94 

heart disease [15], several cancer types [16-19] and mammographic density [20,21]. In total, we 95 

have assembled GWAS data for 20,769 individuals across the cohorts, creating unprecedented 96 
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opportunities to conduct secondary analyses on other collected outcomes. Indeed, we have 97 

used one or many of these GWAS to analyze secondary phenotypes including but not limited to 98 

body anthropometrics [22-24], hair color [25], reproductive aging [26], smoking behavior [27], 99 

telomere length [28], mammographic density [29], cutaneous nevi [30], melanoma [30], 100 

depressive symptoms [31], coffee consumption [32] as well as circulating levels of B12 [33], 101 

folate [34], hormones [35], vitamins [36,37], retinol [38] and e-selectin [39]. However, GWAS of 102 

secondary traits face practical issues in terms of different genotyping arrays, low variability in 103 

the phenotype of interest within a single GWAS (e.g. rare diseases where only a handful of cases 104 

may occur in the original GWAS), and theoretical issues including ascertainment bias due to 105 

oversampling of cases [40] or differential genotype/imputation quality between studies [41] (e.g. 106 

if controls are “utilized” from GWAS data generated on a different genotype platform).  107 

 108 

Here, we describe our pipeline for merging and imputing the individual GWAS datasets within 109 

NHS, NHSII, HPFS and PHS. Datasets were merged based on genotype platform family and all 110 

data were subsequently imputed to a common reference panel (the 1,000 Genomes Phase I 111 

release [42]). We present proof-of-principle results from genome-wide analysis of body mass 112 

index (BMI) and venous thromboembolism (VTE).  113 

 114 

115 
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METHODS 116 

Description of NHS, NHSII, HPFS and PHS 117 

In 1976, the Nurses’ Health Study (NHS) was launched with the goal of studying women’s health 118 

[10]. Since that time, 121,700 nurse participants have answered biennial questionnaires 119 

(response rate >90% over time) about personal and physical characteristics, physical activity and 120 

ability, reproductive history, family history of disease, environmental/personal exposures, diet 121 

and dietary supplements, screening, disease and health conditions, prescription and over-the-122 

counter medications, and psychosocial history. In addition, 32,826 blood and 29,684 cheek cell 123 

samples have been collected since the late 1980s. An additional 116,430 nurses were recruited 124 

in 1989 as a part of Nurses’ Health Study II (NHSII) and have returned biennial questionnaires 125 

similar to those used for NHS [11]. For NHSII, we have collected blood samples for 29,612 126 

women and cheek cell samples for an additional 29,859 women. The Health Professional Follow-127 

Up Study (HPFS) began in 1986 with the aim of studying men's health [12]. A total of 51,529 men 128 

in health professions were recruited, and every two years, members of the study receive 129 

questionnaires similar to the ones used in NHS. In HPFS, we have collected blood samples from 130 

18,159 participants and cheek cell samples from an additional 13,956 men. The Physicians’ 131 

Health Study (PHS) is a randomized primary prevention trial of aspirin and supplements among 132 

29,067 United States physicians followed with annual questionnaires since 1982 [13]. A total of 133 

14,916 men provided a baseline blood sample. 134 

Ethics Statement 135 

Each GWAS study was approved by the Brigham and Women’s Hospital Institutional Review 136 

Board. Return of the mailed self-administered questionnaires was voluntary. Thus, receipt of a 137 

completed questionnaire was considered as evidence of a desire to participate in the study and 138 

was taken as a formal indication of consent. 139 
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 140 

Description of GWAS studies and genotyping 141 

Since 2007, twelve separate GWAS have been conducted within these four cohorts (Table 1). 142 

The primary traits are breast cancer [16], pancreatic cancer [43], glaucoma [44], endometrial 143 

cancer [17], colon cancer [19], glioma [45], prostate cancer [18], type 2 diabetes [14], coronary 144 

heart disease [15], kidney stones, gout and mammographic density [20]. These studies were 145 

genotyped on six different arrays (Table 1) at four different genotyping centers (National Cancer 146 

Institute, Broad Institute, University of Southern California and Rosetta/Merck). Standard quality 147 

control filters for call rate, Hardy-Weinberg equilibrium, and other measures were applied to the 148 

genotyped SNPs and/or samples. In total, these GWAS data sets comprise 20,769 participants 149 

including 11,522 from NHS, 934 subjects from NHSII, 7,018 subjects from HPFS and 1,305 150 

subjects from PHS. 151 

 152 

  153 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083030doi: bioRxiv preprint 

https://doi.org/10.1101/083030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

Table 1: GWAS datasets in HPFS, NHS, NHSII and PHS 154 
 155 

Cohort Outcome 
Subjects 

(cases/controls) 
Platform GWAS dataset 

HPFS Coronary Heart Disease 435/878 Affymetrix 6.0 AffyMetrix 

HPFS Type 2 Diabetes 1,189/1,298 Affymetrix 6.0 AffyMetrix 

HPFS Pancreatic Cancer 54/52 Illumina 550k Illumina HumanHap 

HPFS Kidney Stone 315/238 Illumina 610k Illumina HumanHap 

HPFS Prostate Cancer 218/205 Illumina 610k Illumina HumanHap 

HPFS Glaucoma 178/299 Illumina 660W Illumina HumanHap 

HPFS Glioma 26/0 Illumina 660W Illumina HumanHap 

HPFS Colon Cancer 229/230 Illumina OmniExpress Illumina OmniExpress 

HPFS Gout 717/699 Illumina OmniExpress Illumina OmniExpress 

 
SUBTOTAL   

7,018 (1,511 Illumina Human 

Hapmap, 3,634 Affymetrix, 

1,873 Illumina OmniExpress) 

NHS Type 2 Diabetes 1,532/1,754 Affymetrix 6.0 AffyMetrix 

NHS Coronary Heart Disease 342/804 Affymetrix 6.0 AffyMetrix 

NHS Ovarian Cancer 36/0 Illumina 317k Illumina HumanHap 

NHS Breast Cancer 1,145/1,142 Illumina 550k Illumina HumanHap 

NHS Pancreatic Cancer 82/84 Illumina 550k Illumina HumanHap 

NHS Kidney Stone 328/166 Illumina 610k Illumina HumanHap 

NHS Glaucoma 313/497 Illumina 660W Illumina HumanHap 

NHS Glioma 38/0 Illumina 660W Illumina HumanHap 

NHS Endometrial Cancer 396/348 Illumina OmniExpress Illumina OmniExpress 

NHS Colon Cancer 394/774 Illumina OmniExpress Illumina OmniExpress 

NHS Mammographic density 153/641 Illumina OmniExpress Illumina OmniExpress 

NHS Gout 319/392 Illumina OmniExpress Illumina OmniExpress 

 
SUBTOTAL   

11,522 (3,711 Illumina Human 

Hapmap, 4,413 Affymetrix, 

3,380 Illumina OmniExpress) 

NHSII Breast Cancer 289/0 Illumina 610k Illumina HumanHap 

NHSII Kidney Stone 341/294 Illumina 610k Illumina HumanHap 

 
SUBTOTAL   

924 (924 Illumina Human 

Hapmap, 0 Affymetrix, 0 

Illumina OmniExpress) 

PHS Pancreatic Cancer 49/54 Illumina 550k Illumina HumanHap 

PHS Prostate Cancer 312/363 Illumina 610k Illumina HumanHap 

PHS Colon Cancer 331/333 Illumina OmniExpress Illumina OmniExpress 

 SUBTOTAL  

 

1,305 (641 Illumina Human 

Hapmap, 0 Affymetrix, 664 

Illumina OmniExpress) 

 TOTAL  

 

20,769 (6,787 Illumina Human 

Hapmap, 8,065 Affymetrix, 

5,917 Illumina OmniExpress) 
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Dataset merging 156 

Successfully merging genotype data for different individuals requires complete overlap in SNPs. 157 

SNPs that are missing by design (due to different genotyping platforms) from some studies will 158 

be correlated with the primary phenotype for that dataset. This might cause spurious results in 159 

any secondary analysis on related traits. Although a missing SNP can be imputed, it will have a 160 

higher degree of inaccuracy in imputed compared with genotyped SNPs, potentially creating 161 

differential measurement error that could also lead to bias [41,46,47]. Therefore, we first looked 162 

at the overlap of SNPs between different genotyping arrays and identified three broad platform 163 

families with high degree of overlap within category but low overlap across categories – the 164 

earlier generation of Illumina arrays (HumanHap), the Illumina OmniExpress array and 165 

Affymetrix 6.0 array. The HumanHap platform had a total of 459,999 SNPs compared with 166 

565,810 SNPs for OmniExpress and 668,283 SNPs for Affymetrix 6.0. However, the intersection 167 

among all three platform families was only 75,285 SNPs (Figure 1). To achieve the largest GWAS 168 

datasets as possible without losing SNP information, we created three datasets – HumanHap 169 

comprising six GWAS datasets, OmniExpress comprising four GWAS datasets and Affymetrix 6.0 170 

comprising two GWAS datasets. In the merging process, we removed any SNPs that were not in 171 

all studies for a specific platform or had a missing call rate>5%. We flipped strands where 172 

appropriate and removed A/T and C/G SNPs to create the final compiled datasets.  173 

 174 

Figure 1: Overlap in SNPs across genotype platforms 175 

 176 

We ran a pairwise identity by descent (IBD) analysis within and across the combined dataset to 177 

detect duplicate and related individuals based on resulting IBD probabilities Z0, Z1 and Z2 (Zk is 178 

probability that a pair of subjects share k alleles identical by descent, estimated from genome-179 
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wide SNP data). If 0≤Z0≤0.1 and 0≤Z1≤0.1 and 0.9≤Z2≤1.1 then a pair was flagged as being 180 

identical twins or duplicates. Pairs were considered full siblings if 0.17≤Z0≤0.33 and 0.4≤Z1≤0.6 181 

and 0.17≤Z2≤0.33. Half siblings or avunculars were defined as having 0.4≤Z1≤0.6 and 0≤Z2≤0.1. 182 

Some of the duplicates flagged were expected, having been genotyped in multiple datasets and 183 

hence having the same cohort identifiers. In this case, one of each pair was randomly chosen for 184 

removal from the dataset. In instances where pairs showed pairwise genotype concordance 185 

rate>0.999 but were not expected duplicates, both individuals were removed. Related 186 

individuals (full siblings, half siblings/avunculars) were not removed from the final datasets. In 187 

the HumanHap dataset, 107 individuals were removed because they were duplicates or flagged 188 

for removal in the genotyping step, leaving 6,787 subjects. In addition, 8 pairs of individuals 189 

were flagged as related. In the OmniExpress dataset, we removed 39 subjects leaving 5,917 IDs 190 

and 5 pairs of related subjects. In the Affymetrix dataset, 167 individuals were removed because 191 

they were duplicates or were flagged for removal from secondary genotype data cleaning, 192 

leaving a total of 8,065 individuals. Across all three datasets, we identified 444 duplicate pairs 193 

(406 expected) and thus removed additional 482 individuals from analysis across all three 194 

platform families.  195 

 196 

After removing duplicate and related pairs of IDs, we used EIGENSTRAT [48] to run principal 197 

component analysis (PCA) on each dataset, removing one member from each flagged pair of 198 

related individuals. For Affymetrix and HumanHap, we used approximately 12,000 SNPs from Yu 199 

et al [49] that were filtered to ensure low pairwise linkage disequilibrium (LD). For the 200 

OmniExpress dataset we used approximately 33,000 SNPs that were similarly filtered. The top 201 

principal components were manually checked for outliers. 202 

 203 
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To identify any SNPs that created spurious associations, we ran several logistic regression 204 

analyses among subjects that were selected as controls in the initial GWAS (i.e. excluding all 205 

case subjects). For each regression, we used cohort-specific controls from one original GWAS as 206 

cases and the rest of the controls in that dataset as controls. For example, in the OmniExpress 207 

dataset, we considered NHS controls from the gout GWAS as “cases” while treating controls 208 

from the gout (HPFS), endometrial cancer (NHS), colon cancer (NHS, HPFS and PHS), and 209 

mammographic density (NHS) as “controls”. We repeated this, treating each cohort-specific 210 

“controls set” as “cases” and all other controls as “controls”. For each GWAS, we extracted 211 

genome-wide significant SNPs (p<10-8) and examined QQ plots. In the Affymetrix dataset, 100 212 

SNPs were flagged and removed. In the HumanHap dataset, 8 SNPs had p<10-8 in at least one of 213 

the QC regressions and were removed. No SNPs in the OmniExpress dataset had p<10-8 and 214 

hence, no SNP was removed.  215 

 216 

Imputation 217 

After the datasets were combined and appropriate SNP and subjects filters applied, the 218 

compiled datasets were separately imputed. We used the 1000 Genomes Project ALL Phase I 219 

Integrated Release Version 3 Haplotypes excluding monomorphic and singleton sites (2010-11 220 

data freeze, 2012-03-14 haplotypes) as the reference panel. SNP and indel genotypes were 221 

imputed in three steps. First, genotypes on each chromosome were split into chunks to facilitate 222 

windowed imputation in parallel using ChunkChromosome (v.2011-08-05). Then each chunk of 223 

chromosome was phased using MACH [50,51] (v.1.0.18.c). In the final step, Minimac (v.2012-08-224 

15) was used to impute the phased genotypes to approximately 31 million markers in the 1000 225 

Genomes Project.  226 

 227 
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 11 

 “Proof of Principle” GWAS– BMI and VTE 228 

To validate our merged GWAS datasets, we conducted two proof-of principle GWAS of one 229 

quantitative trait (BMI) and one binary trait (VTE). We defined BMI as weight (kg)/height2 (cm) 230 

and obtained it by extracting information on weight from the accompanying questionnaire 231 

collected at time of blood draw. If weight information was missing, we extracted it from the 232 

questionnaire closest in time to time of blood draw. Height was extracted from the baseline 233 

questionnaire. We obtained data on BMI for 20,283 participants. VTE is a spectrum of disease 234 

that includes pulmonary embolism (PE) and deep vein thromboembolism (DVT). Physician-235 

diagnosed PE has been asked on every biennial NHS questionnaire since 1982, and every NHSII 236 

and HPFS questionnaire since cohort inception. In the NHS, DVT without PE is captured when a 237 

nurse answers that she has had phlebitis or thrombophlebitis (ICD-9=453.x). In NHS, NHSII and 238 

HPFS cohorts through 2010 (we did not have VTE data for PHS), we identified 6,041 individuals 239 

who reported VTE. Self-reported PE was verified through medical records review by a trained 240 

physician (CK). DVT cases are based on self-report, though a validation study of 100 DVT cases 241 

found self-reports to be highly consistent (>96%) with medical record review.  In total, we 242 

identified 1,364 VTE cases with GWAS data. We treated all non-VTE cases with GWAS data as 243 

controls (n=17,628). Since we did not have data on VTE in PHS, we excluded PHS from this 244 

analysis.  245 

 246 

Statistical analysis – GWAS 247 

SNPs and indels with an imputation quality score <0.3 (as defined by the RSQR_HAT value in 248 

MACH) or a minor allele frequency (MAF) <0.01 were excluded. Primary association analysis was 249 

performed separately within each platform family (HumanHap, OmniExpress and Affymetrix). 250 

For imputed SNPs, the estimated number of effect alleles (ranging from 0 to 2) was used as a 251 
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 12 

covariate. For BMI, we conducted linear regression adjusting for study (indicator variables 252 

including cohort as well as primary GWAS outcome), age at blood draw and the top four 253 

principal components. For VTE, we conducted logistic regression adjusting for study as above 254 

and the top four principal components. For both BMI and VTE, we combined platform family-255 

specific results with fixed-effects meta-analysis using the METAL [52] software. We used the 256 

Cochran’s Q statistic to test for heterogeneity across studies. 257 

 258 

  259 
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RESULTS 260 

Imputation statistics 261 

We imputed a total of 31,326,389 markers (29,890,747 SNPs and 1,435,642 indels) and the 262 

majority (69%) of these had a MAF<0.01. The average imputation quality score by minor 263 

frequency for each platform family is shown in Figure 2.  The imputation quality was very similar 264 

across all three datasets (Suppl Figures 1-3) with 49-51% of markers having an imputation 265 

quality score 0.3. When restricting to markers with MAF>0.01 (~10 million), 92-94% of the 266 

markers had a quality score 0.3. After filtering markers based on MAF (>0.01) and imputation r-267 

sq (0.3), approximately 9.8 million markers were available for analysis. 268 

 269 

Figure 2: Imputation quality score by minor allele frequency for the three platform families 270 

 271 

BMI results 272 

We had BMI and GWAS data for 20,283 individuals (n=6,762 for HumanHap, n=5,844 for 273 

OmniExpress, n=7,677 for AffyMetrix) within NHS, NHSII, HPFS and PHS. Platform-specific QQ-274 

plots (Suppl Figures 4a-c) showed no indication of systematic bias (genomic inflation factor 275 

=1.00-1.02). The results from the meta-analysis are shown in Figures 3 and 4. We observed a 276 

tail of strongly associated SNPs with the top SNPs located in the known BMI FTO locus (strongest 277 

associated SNP: rs55872725, =0.45, p=3.48x10-22). We also observed genome-wide significant 278 

associations for the previously identified TMEM18 (strongest associated SNP: rs7563362, =-279 

0.36, p=1.76x10-8) and FANCL loci (strongest associated SNP: rs980183, =-0.26, p=2.73x10-8). 280 

Using a significance level of p=0.05, 59% (19/32) known BMI SNPs [53], showed association with 281 

BMI in our data. In addition, 31 out of the 32 known SNPs showed associations in the same 282 

direction as the original BMI study (Figure 5). 283 
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Figure 3: QQ-plot for GWAS analysis of body mass index based on 20,283 individuals.  284 

Figure 4: Manhattan plot for GWAS analysis of body mass index based on 20,283 individuals. 285 

Figure 5: Associations for known body mass index. 286 

 287 

VTE results 288 

We had information on VTE status and GWAS data for 1,364 cases and 17,628 controls within 289 

NHS, NHSII and HPFS. The median number of case subjects by dataset was 87.5 and ranged from 290 

16 in the NHSII breast cancer GWAS dataset (total of 289 individuals) to 417 in the type 2 291 

diabetes GWAS dataset (total of 5,773 individuals). The small number of cases in many 292 

individual GWAS data sets led to unstable study-specific association statistics. Restricting to 293 

studies with an expected case minor allele count >10 for SNPs with a MAF of 0.05 (i.e. studies 294 

with at least 200 cases) reduced the sample size to 417 cases and 5,356 controls. However, 295 

within each compiled imputed GWAS dataset, VTE case numbers ranged from 406 296 

(OmniExpress) to 532 (Affymetrix). Thus, combining the individual GWAS datasets into three 297 

main datasets enabled association analysis of hundreds of cases rather than tens, leading to 298 

more stable estimates in the regression analysis. Platform-specific QQ-plots (Suppl Figures 5a-c) 299 

showed no indication of systematic bias (genomic inflation factor =1.00-1.01). The results from 300 

the meta-analysis are shown in Figures 6 and 7 (genomic inflation factor =1.00). We observed a 301 

strong association located downstream of the F5 gene (strongest associated SNP: rs2040445, 302 

OR=2.17, 95% CI: 1.79-2.63, p=2.70x10-15). We also observed genome-wide significant 303 

associations for the ABO locus (strongest associated SNP: rs2519093, OR=1.36, 95% CI: 1.23-1.49, 304 

p=1.51x10-10) and a nominal association (P=0.007) with the previously VTE-associated F11 locus. 305 

 306 
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Figure 6: QQ-plot for GWAS analysis of venous thromboembolism based on 1,364 cases and 307 

17,628 controls. 308 

Figure 7: Manhattan plot for GWAS analysis of venous thromboembolism based on 1,364 cases 309 

and 17,628 controls. 310 

  311 
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DISCUSSION 312 

Thousands of genetic loci associated with hundreds of complex traits have been identified 313 

through GWAS and as sample sizes continue to increase, more loci will be discovered. Although 314 

the cost of GWAS has dropped, lack of financial resources is still the limiting factor for 315 

generating new data. Most GWAS have been conducted in case-control studies, and this has led 316 

to the creation of disease-specific consortia in which power can be maximized.  However, there 317 

is usually only one disease phenotype available from these cases, and little capacity to follow 318 

cases or controls to collect information on additional phenotypes that develop over time.  319 

Cohort studies are designed to collect multiple endpoints on individuals, but often suffer from 320 

limited power for a specific disease. To maximize the utility of existing cohort data resources, it 321 

is important to explore associations with additional traits and outcomes that have been 322 

collected for individuals in multiple cohorts. In particular, the accumulation of GWAS data within 323 

large cohorts with rich environmental and outcome data creates new opportunities to assess 324 

novel hypotheses. In addition, cohort studies provide unique opportunities to prospectively 325 

assess biomarker-disease associations, thereby minimizing bias due to reverse causation or 326 

treatment effects. However, “borrowing” GWAS data between traits is not straightforward. 327 

Known issues that can cause bias include technical artifacts due to different genotyping 328 

platforms, differences in imputation accuracy and ascertainment bias. Thus, careful data 329 

management, imputation procedures and quality checks are needed. Furthermore, if the 330 

secondary trait is rare, there will be low phenotypic variability within each GWAS dataset. For 331 

example, we observed fewer than 100 VTE cases within the majority of individual GWAS, 332 

compared to more than 400 cases within each combined dataset.  333 

 334 
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Our pipeline for combining and imputing twelve different GWAS datasets can overcome both 335 

technical and methodological issues. We chose to create three different datasets defined by 336 

platform family (in our case, Illumina HumanHap, Illumina OmniExpress and AffyMetrix) since 337 

the SNP overlap across platforms was low on a genome-wide scale (75,285 SNPs). An attempt to 338 

impute a genome-wide dataset comprising only 75,000 SNPs as starting point would have 339 

resulted in decreased imputation accuracy in regions of the genome with sparse genotype data. 340 

Moreover, it has been shown that different platforms might call SNPs differently and that SNP-341 

specific allele frequencies can differ between platforms (see [41] for further discussion). We 342 

conducted multiple case-control GWAS among control subjects within each dataset (i.e. running 343 

multiple “null” GWAS) and identified and excluded more than 100 SNPs that showed spurious 344 

associations. These results emphasize that although datasets are merged by platform family, 345 

problematic SNPs giving rise to spurious associations might still exist and it is important to 346 

carefully check for these.  347 

 348 

To assess the validity of our data, we conducted two proof-of-principle GWAS. The first trait we 349 

studied was BMI, and in line with what expected, we observed strong evidence of associations 350 

with known BMI loci including FTO and TMEM18 that both reached genome-wide significance 351 

(P<5x10-8). In addition, out of 32 known BMI SNPs we observed nominal significance (P<0.05) for 352 

19 of them, all in the same direction as expected from previous reports. Of note, our sample size 353 

(n=20,823) is less than 10% of the original GWAS that had a total sample size of 249,766 354 

individuals. Therefore, we would not expect to observe significant associations for all BMI SNPs 355 

due to limited power. For VTE, we observed genome-wide significant associations for the F5 and 356 

ABO loci that are both known to be associated with VTE. In addition, we also observed a nominal 357 

association (P=0.007) with the F11 region. Our BMI and VTE results confirm that GWAS analysis 358 
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of secondary traits in this data is valid and provides a platform for future studies of secondary 359 

traits. We ran the BMI and VTE analyses twice, the first time without removing duplicates 360 

between the datasets (total of 444 pairs), and the second time with the duplicates removed. 361 

Although the 444 pairs constitute less than 5% of our total sample size, including them had an 362 

impact on the genomic inflation factor (for BMI, the genomic inflation factor went from 1.09 to 363 

1.05 and for VTE, the genomic inflation factor went from 1.02 to 1.00). These results are 364 

especially interesting as it is often difficult to identify duplicates across studies when raw data 365 

from all participating studies are not available. Care should be taken to remove overlapping 366 

subjects across GWAS contributing to a meta-analysis, but any remaining cryptic overlap may 367 

inflate association statistics. In that case, statistical adjustment procedures like LD score 368 

regression [54] can be used to account for cryptic overlap. 369 

 370 

One of the main benefits with collecting comprehensive genetic information on cohort subjects 371 

is the opportunity to assess interactions between genetic factors and prospectively collected 372 

environmental data. To date, few gene-environment interactions have been identified and 373 

although their extent and clinical impact remain an open empirical question, the current lack of 374 

homogenous large datasets with both genetic and environmental data has precluded 375 

comprehensive investigation. Capitalizing on this GWAS resource, we will be able to explore 376 

gene-environment interactions for a plethora of outcomes including complex traits such as 377 

height and BMI, but also disease outcomes. It will also allow us to study the impact of 378 

environmental factors within genetic strata to identify individuals for whom a particular 379 

intervention might be especially important [55-58].  380 

 381 

Accumulation of these GWAS data is ongoing and we expect to generate new GWAS data for an 382 
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additional 15,000 participants within the next two years, almost doubling our total GWAS 383 

sample size. This growing resource will be a core component of future studies aiming to 384 

elucidate how genes and the environment impact public health. 385 

 386 
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Supplemental Figure 1: Proportion of sucessfully imputed markers on the Affymetrix platform 622 

Supplemental Figure 2: Proportion of sucessfully imputed markers on the Illumina HumanHap 623 

platform. 624 

Supplemental Figure 3: Proportion of sucessfully imputed markers on the Illumina Omniexpress 625 

platform. 626 

Supplemental Figure 4a: QQ-plot for GWAS analysis of body mass index on the Illumina 627 

Omniexpress platform (n=5,844). 628 

Supplemental Figure 4b: QQ-plot for GWAS analysis of body mass index on the Affymetrix 629 

platform (n=7,677). 630 

Supplemental Figure 4c: QQ-plot for GWAS analysis of body mass index on the Illumina 631 

HumanHap platform (n=6,762). 632 

Supplemental Figure 5a: QQ-plot for GWAS analysis of venous on the Illumina Omniexpress 633 

platform (406 cases and 4,786 controls). 634 

Supplemental Figure 5b: QQ-plot for GWAS analysis of venous on the Illumina Omniexpress 635 

platform (406 cases and 4,786 controls). 636 

Supplemental Figure 5c: QQ-plot for GWAS analysis of venous on the Affymetrix platform (532 637 

cases and 7,147 controls). 638 
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