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Abstract

The N2pc component is the most-used MEG/EEG signal for tracking feature-based target
selection. However, the spatial resolution of the N2pc is limited, because it is based on
activity differences between hemispheres. Here we demonstrate that multivariate analyses
of raw EEG data provide a much more fine-grained spatial profile of feature-based target
selection. Experiment 1 used a visual search task in which colour-defined targets appeared
on the horizontal or vertical midline. In Experiment 2, search displays contained a target
that appeared at one of eight possible locations among seven distractors. Using pattern
classification, we show that information from EEG signals can be used to decode target
positions on the vertical midline (above versus below fixation) as well as within the same
visual field quadrant, which cannot be achieved using standard N2pc methodology.
Classification accuracy increased rapidly from about 200 ms after display onset. To further
characterize the spatial precision of this signal, we used a forward encoding model to
construct a cortical tuning function that describes the relationship between target position
and multivariate EEG. This model is fully invertible, allowing us to construct hypothetical
topographic activation maps for targets on the horizontal/vertical midline that were never
actually shown during Experiment 2, and that were then tested against the
horizontal/vertical position data of Experiment 1. The constructed maps were statistically
indistinguishable from the real pattern of neural activity, providing independent validation.
Our findings demonstrate the power of multivariate EEG analysis to track feature-based

target selection with high spatial and temporal precision.
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Significance Statement

Feature-based attentional selection enables observers to find objects in their visual field.
The spatiotemporal profile of this process is difficult to assess with standard
electrophysiological methods, which rely on activity differences between cerebral
hemispheres. We demonstrate that multivariate analyses of EEG data can track target
selection across the visual field with high temporal and spatial resolution. Using a forward
model, we were able to capture the continuous relationship between target position and
EEG measurements, allowing us to reconstruct the distribution of cortical activity for target
locations that were never shown during the experiment. Our findings demonstrate the
existence of a temporally and spatially precise EEG signal that can be used to study the

neural basis of feature-based attentional selection.
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Introduction

Feature-based attention serves to select relevant input from competing information.
This is most prominent during visual search, when observers look for target objects among
distractors, and selective attention is guided on the basis of target-defining features (e.g.
Wolfe, 2007). Neurophysiological markers of feature-based selection have been found in
single-unit recording studies in nonhuman primates, where objects with target-matching
features triggered increased neural responses at corresponding locations in retinotopic
visual cortex (Chelazzi et al., 1998; Bichot et al., 2005). In humans, EEG and MEG measures
have provided the temporal resolution required to track feature-based selection in real
time. However, although temporal resolution is high, the spatial resolution of EEG/MEG is
typically regarded as low.

One EEG/MEG signal in particular has become the gold standard of feature-based
selection: The N2pc component of the event-related potential. The N2pc is an enhanced
negativity elicited around 200 ms post-stimulus at posterior electrodes contralateral to
candidate target objects (e.g. Luck and Hillyard, 1994; Eimer, 1996). It is generated in
extrastriate ventral visual cortex (Hopf et al., 2004), and is assumed to reflect the spatially
selective enhancement of neural activity during feature-based target selection (see Luck,
2012; Eimer, 2014 for details). Although N2pc components are widely used, their spatial
resolution is severely limited. N2pc components are computed by subtracting ipsilateral
from contralateral potentials, so the spatial information is limited to activation differences
between cortical hemispheres. Although N2pcs are generally larger for the lower versus
upper visual field (Luck et al., 1997), they are not well suited to discriminate between
attentional selection within the same hemifield or quadrant, and completely blind to the
selection of targets on the vertical meridian (above and below fixation).

The present study tested the idea that the distribution of EEG activity across the
scalp contains more precise spatial information than what is shown using the N2pc. To
investigate this, we employed two types of multivariate analyses. Backward decoding
models (BDMs) predict which stimulus condition (e.g., an attended target at a particular
location) was present on the basis of EEG activity patterns. Above-chance classification
accuracy then shows that the relevant information is represented in EEG signals, and the

time course of classification performance indicates at which post-stimulus latency this
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information becomes available. BDM classifier outputs can also be used to construct maps
showing the topography of the neural activity underlying successful classifications (Haufe et
al., 2014). Forward encoding models (FEMs) reverse this direction of inference by describing
the relationship between multivariate neural activity and an experimental variable that is
hypothesized to be continuous in nature (here the attended location). The relationship
between this variable and the multivariate signal can be described using a Cortical Tuning
Function (CTF; Brouwer and Heeger, 2009; Garcia et al., 2013). For example, multivariate
analyses of alpha-band EEG activity have recently been employed to track the coding of
spatial locations in working memory (Foster et al.,, 2016) and during endogenously cued
spatial attention shifts (Samaha et al., 2016). Here, we applied both BDMs and FEMs to raw
EEG signals to extract and reconstruct feature-based target selection processes in space and
in time.

In Experiment 1, colour-defined targets appeared on the horizontal or vertical
midline in two successive displays (Figure 1). Both horizontal and vertical target positions
were successfully classified using BDMs from around 200 ms after display onset, and with
topographies consistent with the retinotopic architecture of early visual cortex. In
Experiment 2, targets could appear at eight locations, but never on the vertical or horizontal
midline (Figure 2). Forward modelling yielded Gaussian-shaped cortical tuning functions
(CTFs), which we used to construct hypothetical channel responses and activation maps for
targets placed on the horizontal and vertical midline. The resulting maps were then
validated through the topographies observed in Experiment 1 (where these targets were
actually presented). These results demonstrate the power of backward and forward
modelling of multivariate EEG data in tracking attentional selection across both time and

space.
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Figure 1. Example trial time lines of experiment 1. There were two types of trials: the
first display contained items on the horizontal axis and the second display items on
the vertical (A), or the first display contained items on the vertical axis and the
second display items on the horizontal axis (B). Subjects were required to
determine whether a color-defined target was a digit or letter. The target color
remained constant within a session (red in this example). Potential target colors
were red, green, blue or yellow (counterbalanced across subjects). Within blocks,
subjects either had to detect a target in the first display (D1 blocks) or they had to
detect a target in the second display (D2 blocks). We only analyzed task relevant
displays.

Methods

Participants

Fifteen subjects were paid to participate in Experiment 1. Three showed excessive eye
movement activity (containing blinks and/or eye-movements on more than 60% of all trials) and
were therefore excluded from further analysis. The remaining twelve participants were aged
between 25 and 37 years (mean age 28.8 years); five of them were female; two were left-handed.
Non-overlapping analyses of data from these subjects have been published elsewhere (Grubert et
al., 2016). Fifteen paid subjects participated in Experiment 2 (aged 25 to 42 years; mean age 31.2
years). Ten were female; four were left-handed. All participants in both experiments had normal or
corrected-to-normal vision, including normal colour vision, which was substantiated by means of the

Ishihara colour vision test (Ishihara, 1972).
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Equipment

All stimuli were presented on a 22-inch Samsung wide SyncMaster 2233 LCD monitor
(1280x1024 pixel resolution, 100 Hz refresh rate) against a black background. Participants were
seated in a dimly illuminated, soundproof and electrically shielded testing booth and viewed the
screen at a distance of 100 cm. Manual responses were collected by means of two purpose-built
response keys which were vertically aligned and centred in front of the participants. Stimulus
presentation, timing, and response recording were controlled by a LG Pentium PC running under
Windows XP, using the Cogent 2000 toolbox (www.vislab.ucl.ac.uk/Cogent) for MATLAB
(Mathworks, Inc., USA).

Stimuli and procedure Experiment 1

Each trial contained two successively presented stimulus displays (Figure 1), each of which
was shown for 20 ms. The two consecutive stimulus arrays were separated by a 100 ms SOA (80 ms
blank screen between displays). Each display contained two items on opposite sides, one in the
target colour (e.g., red in Figure 1), and another one in a nontarget colour. Four possible stimulus
colours were used: red (CIE colour coordinates .616/.338), green (.261/.558), blue (.183/.178), and
yellow (.399/.476). All colours were equiluminant (~¥11.8 cd/m2). Target colour was counterbalanced
across participants so that always three participants searched for targets in one of the four possible
colours. In each trial, two different nontarget colours were randomly chosen from the set of the
three remaining nontarget colours. One of the two displays on each trial contained a target-
nontarget colour pair on the horizontal midline (to the left and right of fixation), and the other
display contained a target-nontarget colour pair on the vertical midline (above and below of
fixation). Presentation sequence (vertical stimulus pair preceded by horizontal pair or vice versa) was
randomised across trials. Stimuli were uppercase letters (B, H, S, or T) and digits (1, 2, 3, or 4),
subtending 0.9° x 0.9° of visual angle, and presented at an eccentricity of 2.4° from central fixation
(with respect to the centre of each stimulus). The identities of the four stimuli shown on each trial
were randomly selected from the set of all letters and digits. A central grey (.324/.348) fixation cross

(0.2° x 0.2°) was present throughout each block.

In different blocks, participants were instructed to report the category of the target colour

item (digit or letter) in the first display and ignore the target colour item in the second display (D1
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blocks), or report the target in the second display and ignore the first display (D2 blocks). Subjects
indicated the category of the target by pressing the corresponding response key (e.g. digit on top
key, letter on bottom key). The hand-to-key mapping (left or right hand on top or bottom key) was

counterbalanced across participants, but remained constant for each participant.

The experiment contained 12 blocks with six successive blocks in which either the target-
colour item in the first display (D1 blocks) or in the second display (D2 blocks) was task relevant. Six
participants completed the D1 blocks before the D2 blocks, and this order was reversed for the other
six participants. Each block comprised 64 trials, resulting in a total of 768 experimental trials. On 32
trials of each block, the horizontally arranged stimulus set preceded the vertically arranged stimulus
set and vice versa on the other 32 trials. Target location (left/right/top/bottom) was always

unpredictable in both displays. One practice block was run prior to the first experimental block.

A B

8 1
5 4
target display 100 ms response display 1900 ms Potential target positions

Figure 2. Task and conditions in experiment 2. A. Trial time line experiment 2. Subjects were asked to
determine the identity of a coloured target (letter or digit), target colour could be red, green or blue
(counterbalanced across subjects). B. Positions used in experiment 2, counted clockwise, one
position contained the target, the other positions were occupied by distractors.

Experiment 2

In each trial, participants viewed a search display containing eight items in eight different
colours that were located on an imaginary circle with an eccentricity of 2.4° of visual angle from
fixation (with respect to each object’s centre; Figure 2A). Four items appeared in the left and four in
the right visual field (represented as positions 1-8, in a clockwise fashion, starting from the upper
right position; Figure 2B). Search displays were presented for 100 ms, and were followed by a blank
1900 ms interstimulus interval. A central grey fixation cross (0.2° x 0.2°) was continuously presented
throughout each experimental block. Display items (0.6° x 0.6° each) were capital letters (A, K, G, H,
N, F, X, and Y) and digits (2, 3, 4, 5, 6, 7, 8, and 9). For each trial, eight of these items were randomly
chosen (without replacement). The location and colour of each item was randomly assigned, with

colours chosen from the set of red (CIE colour coordinates .612/.327), green (.286/.594), blue
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(.174/.148), yellow (.389/.519), cyan (.211/.309), magenta (.217/.109), brown (.505/.412), and grey
(.288/.316). All colours were equiluminant (~10.4 cd/m?). Participants’ task was to find the item in a
pre-specified target colour and report its category (letter or digit) by pressing the corresponding
upper or lower response key. Category-to-key and hand-to-key mappings were counterbalanced
across participants. Red, green or blue each served as target colour for 5 participants, and this target
colour remained constant for each participant throughout the experiment. Target position (1 to 8)

varied randomly and unpredictably across trials.

The experiment comprised 12 blocks of 64 trials, resulting in a total of 768 experimental
trials. Each block contained 4 trials for each combination of target position (1 to 8) and target

identity (digit, letter). A practice block was run prior to the first experimental block.

EEG recording and preprocessing

In Experiment 1, EEG was DC-recorded from 23 scalp sites at Fpz, F7, F3, Fz, F4, F8, FC5, FC6,
T7, C3, Cz, C4, T8, CP5, CP6, P7, P3, Pz, P4, P8, PO7, POS, Oz. In Experiment 2, four additional
posterior recording sites were included (P9/P10 and PO9/P010). The continuous EEG was sampled
at 500 Hz and digitally low-pass filtered at 40 Hz during acquisition. All electrodes were online

referenced to the left earlobe. Impedances were kept below 5kQ.

EEG was re-referenced offline to the average of both earlobes and highpass-filtered using a
0.1 Hz cutoff to remove slow drifts from the signal. Trials containing incorrect responses or
responses occurring after 1500 ms were removed. On average 5.58% (SD 4.26) of all trials were
removed in Experiment 1, and 2.66% (SD 1.54) of trials were removed in Experiment 2. In
Experiment 1, epochs were extracted only for the task-relevant display (the first display in D1 blocks
and the second display in D2 blocks), from -200 ms to 400 ms relative to the onset of the target
display, corrected relative to a -200 to -100 ms pre-stimulus baseline. This baseline window was
chosen to ensure that baseline periods for epochs from D2 blocks would not overlap with the
presentation of the first display. For Experiment 2, data was segmented into -100 to 1000 ms
windows, using the -100 ms to 0 ms period for baseline correction. All EEG was downsampled to 250

Hz and no further pre-processing was applied.

N2pc analyses
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For each subject in Experiment 1, event-related potentials (ERPs) to task-relevant target
items (first display targets in D1 blocks, and second display targets in D2 blocks) were computed
separately for targets to the right and to the left of fixation, collapsing over target identity (digit or
letter) and display position (first or second display). ERP averages were balanced to contain an equal
number of digit and letter targets as well as an equal number of targets from the first and second
display. N2pc components were computed for ERPs at lateral posterior electrode sites PO7 and PO8
by subtracting ERPs recorded at the electrode ipsilateral to the target location from contralateral
ERPs. Statistical tests were performed on the resulting contralateral-ipsilateral N2pc difference
waveforms, using two-sided t-tests against zero for each time sample, and were corrected for
multiple comparisons using cluster-based permutation testing on contiguously significant samples
using 1000 iterations (Maris and Oostenveld, 2007). Because the N2pc is defined as the difference
between contralateral and ipsilateral posterior ERPs triggered by attended objects in the left versus
right visual field, no N2pc could be computed for target objects on the vertical midline (at the top
versus bottom positions) in Experiment 1. For Experiment 2, N2pc components were computed for
targets in the left versus right visual field, averaged across all four possible target positions on either

side.

Backward Decoding Model (BDM)

For each participant in both experiments, we applied a backward decoding classification
algorithm, using a 10-fold cross validation scheme. First, we removed information about the order in
which trials were acquired during the experiment by randomizing the order in which trials were
stored on disk. Next, we split up the dataset into 10 equally sized subsets. Subsequently, a linear
discriminant classifier was trained to discriminate between stimulus classes using 90% of the data,
and was tested on the remaining 10% of the data, thereby ensuring independence of training and
testing sets. This procedure was repeated 10 times until all data had been tested once. The EEG
amplitudes at individual electrodes were used as features for classification, resulting in 23 features
per stimulus class in Experiment 1 and 27 features in Experiment 2. Classification accuracy for each
subject was computed as the average number of correct class assignments, first separately for each
condition, then averaged across conditions, and finally averaged across the 10 folds. This cross-
validation procedure was executed for every time sample in a trial, yielding the evolution of

classification accuracy over time.
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For Experiment 1, separate classifications were performed for trials with horizontal targets
(computing accuracy for discriminating between left versus right targets) and for trials with vertical
targets (computing discrimination accuracy for top versus bottom targets). The same trial sets as in
the N2pc analysis were used. For Experiment 2, we performed two BDM analyses. In the first
analysis, we entered the eight target positions into the classifier as eight separate stimulus classes.
This 8-way classification was performed to determine whether the classifier could discriminate
between target positions across the visual field. In the second analysis, we conducted four separate
sets of classifications for trials with target objects within each of the four quadrants (positions 1
versus 2; 3 versus 4; 5 versus 6; 7 versus 8), to test whether target positions could be also be reliably

discriminated within quadrants.

Statistical tests were performed across subjects using a two-sided t-test against chance for
each time sample, correcting for multiple comparisons using cluster-based permutation testing on
contiguously significant (p<.05) time samples (Maris and Oostenveld, 2007). To achieve temporal
smoothing / remove high-frequency noise for presentation purposes only, the plotted BDM
classification time series were fitted with a 32 Hz spline that was centered on maximum classification
accuracy. All statistics and visualizations of significant time windows were however based on the

original unfiltered data.

In addition to assessing classification accuracy across time, we also computed topographical
maps based on classifier weights for individual features (electrodes). Because weights from
backward decoding models cannot be reliably interpreted as neural activity, we obtained these
maps by using a method recently described by Haufe and colleagues (2014), in which the classifier
weights are multiplied with the data covariance matrix. This operation creates activation patterns
that are interpretable as neural sources. To be able to compare maps from Experiments 1 and 2, we
spatially normalized each subjects’ activation pattern across electrodes by subtracting the mean
across electrodes and dividing by the standard deviation across electrodes. As a result, topographic
maps for which between-experiment comparisons are made represent Z-scores with average 0 and
unit standard deviation, and show the normalized spatial distribution of EEG activity that underlies

successful discrimination between stimulus classes.

Forward Encoding Model (FEM)

While the BDM analyses used a classifier on multivariate EEG data to determine class

membership for a fixed set of target positions, the FEM model reverses this direction of inference by
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capturing the continuous relationship between target positions and the multivariate EEG data. We
employed a procedure previously described by Brouwer and Heeger (2009) using the same 10-fold
cross validation scheme as the BDM. However, the linear regression performed on the training data
was now used to estimate the weights for eight hypothetical target position “channels”,
corresponding to the eight target locations in Experiment 2. This estimation was performed
separately for each electrode, describing the relationship between EEG activity in that electrode and
each of the eight possible target positions. Subsequently, we used the testing data to compute the
channel outputs associated with the multivariate activity across electrodes in response to each
target position. This resulted in estimated channel outputs for each activity pattern associated with
one of the eight target locations. Plotting the channel outputs from this testing phase thus describes
the validated and invertible one-to-one relationship between a particular attended location in the

search display and the multivariate EEG response.

A detailed mathematical description of this training-testing FEM estimation procedure has
been provided in previous articles, both for fMRI and EEG data (e.g. Brouwer and Heeger, 2009;
Serences and Saproo, 2012; Garcia et al., 2013; Foster et al., 2016; Samaha et al., 2016). Our data

structure maps onto these procedures in the following way:

B1 (m x n1 matrix): training set, m is number of electrodes, n1 number of trials in the training set

B2 (m x n2 matrix): testing set, n2 is number of trials in the test set

W (m x k): weight matrix assigned to each target position, k is number of hypothetical channels,

corresponding to target locations

C1 (k x n1): the predicted channel responses for all trials in the training set (these are generated
using a “basis set”, which is in essence the predicted model response centered around the channel

corresponding to that location)

C2 (k x n2): actual channel responses from the testing set

After the estimation procedure, the average channel responses in the testing set are
computed for each condition (each target location in the search display) by averaging across trials.
Subsequently, channel responses are re-aligned to center for each condition, and averaged across
conditions to yield a single cortical tuning function (CTF), which describes the relationship between
attended target positions in the search display and the multivariate EEG response. As in the BDM
analyses, this procedure was repeated for each time sample, so that the evolution of the target-

contingent CTF could be plotted across time. For these CTF time series plots, we applied spline
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interpolation over both channels and time to achieve smoothing for presentation purposes only. All
statistical tests and visualizations thereof were based on the original data. In addition, we
characterized the topography of estimated neural activity associated with allocating attention to
specific target locations by plotting the corresponding regression weight matrix, separately for each
of the 8 conditions. Weight maps from forward models are meaningful because regression weights

in forward models are directly interpretable in terms of neural sources (Haufe et al., 2014).

Most studies applying a forward modelling approach use a basis set that assumes a
particular shape of the CTF by adopting a hypothetical model for the relationship between variations
in stimulus space and the multivariate response. However, because the width and shape of this basis
set cannot be known beforehand, such assumptions can impact on the weights that are obtained
from the training data, and may even overestimate the Gaussian nature of the underlying CTFs. The
alternative approach that we employed here is to not make any assumption about the shape of the
CTF, and simply set the channel response to 1 for each target position, while setting all the other
channel response to 0 (delta function; e.g. also see Garcia et al., 2013). This makes it possible to
characterize the ‘real’ shape of the CTF using the testing data without making any a priori
assumptions. Observing a continuous (i.e., Gaussian-shaped) CTF profile under these conditions
guarantees that this shape is a dominant feature of the underlying dataset. Importantly, such a
continuous response profile would imply that a CTF accurately describes the relationship between
neural activity and a continuous stimulus property (target position in the present study). In this case,
it should even be possible to predict the multivariate response pattern for target positions that were
not actually presented in a particular experiment. Based on this logic, we tested whether the CTFs
observed in Experiment 2 where targets were never presented on the vertical or horizontal midline
could be used to reconstruct the pattern of neural activity that was observed in Experiment 1 for

targets that appeared at these positions (see Results section for details).
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Analysis software

All data were analyzed in Matlab (the Mathworks, Inc., USA). Preprocessing was done using
the EEGLAB toolbox (Delorme and Makeig, 2004). All BDM and FEM analyses and visualizations were
performed using a custom written toolbox that uses EEGLAB as input format. This custom written
toolbox contains a general-purpose set of functions for BDM and FEM analyses, statistics and

visualizations on group EEG data that is available on request from the corresponding author.

Results

Experiment 1: Behavioral results

Trials with slow (> 1500 ms) reaction times (RTs) were excluded from analysis (fewer than
1% of all trials). Mean correct RTs as well as error rates were very similar for trials in which
participants responded to a horizontally (604 ms; 5.0 %) or vertically aligned target (613 ms; 5.9 %),
both t(11) < 1.9, p > .097.

Experiment 1: N2pc and BDM results

As expected, a reliable N2pc component was elicited for task-relevant stimulus displays
where the colour-defined target object was presented on the left or right side (Figure 3). This N2pc
first reached significance at 164 ms after stimulus onset, and remained significant for about 100 ms
(two-tailed cluster p-value = .003). The later contralateral negativity that followed the N2pc at
around 300 ms after stimulus onset (see Figure 3, two-tailed cluster p-value = .003) has also been
observed in previous ERP studies of visual attention (Mazza et al., 2007; Jolicoeur et al., 2008). This
sustained posterior contralateral negativity (SPCN) component is assumed to reflect the encoding of
target stimuli in visual working memory that follows their initial selection (see Eimer, 2014; Grubert

et al., 2016 for details).
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Figure 3. Average N2pc for left and right targets
in experiment 1, computed using PO7 and PO8
(see methods). Black lines are p<.01 using
cluster based permutation testing, see main text
for exact p-values. Shaded areas show +/-
s.e.m. Peak at 240 ms.

Because the N2pc is computed by subtracting ipsilateral from contralateral ERPs, it can only
be measured for horizontally lateralized targets in the left versus right hemifield, but not for target
objects that are presented on the vertical meridian (above versus below fixation). The central aim of
Experiment 1 was to find out whether neural signals associated with the attentional selection of
these target objects can be uncovered using multivariate pattern analysis. We trained a linear
discriminant classifier to either discriminate whether targets appeared on the left or on the right (for
targets on the horizontal axis), or at the top or the bottom (for targets on the vertical axis), based on
the EEG responses across the scalp (see Methods for details). The classification accuracy results in
Figure 4 show that this backward decoding model was not only able to discriminate left versus right
targets (Figure 4A, two-tailed cluster p-value < 10 after 1000 iterations), but also successfully
classified targets at the top versus bottom position (Figure 4B, two-tailed cluster p-value < 10~ after
1000 iterations). The time course of classification accuracy was very similar for these two types of
discriminations, and closely matched the time course of the N2pc plus SPCN components to lateral
targets shown in Figure 3. From approximately 200 ms after the onset of a stimulus display, the

ability of the classifier to discriminate between left/right and top/bottom targets increased rapidly,


https://doi.org/10.1101/082818

bioRxiv preprint doi: https://doi.org/10.1101/082818; this version posted October 24, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

and classification performance remained above chance for the rest of the 400 ms time window
analysed here. The successful classification of attended targets at top versus bottom positions during
this time period demonstrates that non-lateralized information about the focus of attention at these
positions was clearly present in the EEG signals, where this information remains hidden to the

classical N2pc methodology.
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Figure 4. Classification accuracy of target position over time in experiment 1.
A Classification accuracy for left versus right targets. B Classification
accuracy for top versus bottom targets. Black lines are p<10- using cluster
based permutation testing. Shaded areas are +/- s.e.m. Peaks respectively
at 244 ms (left-right) and 248 ms (top-bottom). Note the similar temporal
evolution between N2pc (figure 3) and classification accuracy here.

Next, we characterized the sources underlying these classifications by multiplying the weight
matrix obtained from the classification analysis with the covariance matrix (Haufe et al., 2014 see
Methods for details). The resulting topographical maps for left versus right and top versus bottom
discriminations shown in Figure 5 represent the distribution of the neural signals contributing to
these two types of classifications. They show a clear left-right gradient for left-right target
discrimination (Figure 5A, two-tailed cluster p-values after 1000 iterations are p = .002 and p < 10
for the positive and negative cluster respectively), and a top-bottom gradient for top-bottom target
discrimination (Figure 5B, p =.014 and p = .003 for the positive and negative cluster respectively), in

line with the known representation of these locations in retinotopic visual cortex.
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Figure 5. Activation patterns associated with peak decoding
accuracy (240-250 ms) in experiment 1, derived from the
product of the weight vectors and the covariance matrix (see
Haufe et al, 2014) normalized across space (see Methods).

A The pattern associated with left versus right decoding. Note
the clearly lateralized distribution. This lateralized pattern
shows the distribution of neural activity underlying succesful
discrimination between targets appearing on the left and the
the right of fixation. B The pattern associated with top versus
bottom decoding, now showing a posterior-anterior
distribution. Thick electrode dots belong to clusters having
p<0.05 under cluster based permutation testing, see main text
for exact p-values.

Experiment 2: Behavioral results

All responses occurred within 1500 ms after target display onset. There was a main effect of
target side on reaction times, F(1,14) = 26.3, p < .001, nf, = .65, with faster responses for targets on
the right (567 ms) as compared to the left display side (586 ms). Error rates were generally low

(2.7%), and did not differ between left versus right targets.

Experiment 2: N2pc and BDM results

All colour-defined target objects in Experiment 2 were presented in the left or right visual
field, and produced reliable N2pc components within the same time window as the N2pc observed
in Experiment 1. This is shown in Figure 6A, averaged across all target positions (two-tailed cluster p-

value < 107 after 1000 iterations). Results of the multivariate BDM analysis of the EEG data based on
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all 8 possible target locations are shown in Figure 6B. This omnibus 8-way classification yielded
results that were very similar to the time course of the N2pc component, with above-chance
classification performance from about 190 ms post-stimulus (two-tailed cluster p-value < 10~ after
1000 iterations). However, whereas the average N2pc only reflects neural response asymmetries
associated with targets being presented in the left versus right visual field, the 8-way BDM analysis
also takes variations of target position along the vertical axis into account. To further underline this
point, we assessed whether target locations can be successfully discriminated even when they are in
the same visual quadrant. Figure 7 shows four additional BDM classifications, one for each quadrant.
The comparisons were conducted for targets in the top right (positions 1 versus 2), bottom right
(positions 3 versus 4), bottom left (positions 5 versus 6), and top left quadrants (positions 7 versus
8). As shown in Figure 7, all of these within-quadrant classifications were performed with above-
chance accuracy for EEG data recorded between 200 — 300 ms post-stimulus (two-tailed cluster p-
values for the first significant cluster after trial onset were p =.022 for top right, p = .001 for top left,
and p < 107 for bottom right and bottom left). Accuracies were slightly lower than for the top-
bottom and left-right discriminations in Experiment 1 (cf. Figure 4), plausibly due to the more fine-
grained nature of the discriminations and a lower signal-to-noise ratio due to the lower number of

trials for these comparisons when compared to Experiment 1.
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Figure 6. Experiment 2. A averaged N2pc for all left and right targets in experiment 2. B 8-way
classification accuracy of target position (chance = .125). The black line reflects significance at
p<10- (cluster based permutation test), shaded area is +/- s.e.m. Peak at 264 ms. Note again the
similiarity in temporal evolution between N2pc and decoding accuracy.
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Figure 7. Within quadrant decoding accuracy of
target position for experiment 2. Black lines are
corrected for multiple comparisons at p<.05 using
cluster based permutation testing, two-tailed, see
main text for exact cluster p-values. Shaded areas
are +/- s.e.m.

Experiment 2: FEM results

The ability to make more fine-grained discriminations between target positions within
hemispheres and quadrants inspired us to build a continuous model of the relationship between
target position and the multivariate EEG signal. For this we employed procedures similar to those
used by Brouwer and Heeger (2009) and Garcia et al. (2013 see Methods section for details). A clear
cortical tuning function (CTF) was obtained during the 260-270 ms post-stimulus time window
(corresponding to the post-stimulus latency when BDM accuracy was maximal; see Figure 6B),
describing a graded continuous relationship between attended target positions and multivariate EEG
responses (Figure 8A). To determine whether this relationship was driven more strongly by some
positions than by others, we also plotted the channel responses separately for each of the 8 stimulus
conditions (Figure 8B). Although slightly more noisy, these results confirm that a Gaussian-like
response profile was present for all 8 target positions, such that neighboring positions result in
partially overlapping activation patterns. This confirms that the overall CTF was driven jointly by all

target positions and not just by a subset of positions.


https://doi.org/10.1101/082818

bioRxiv preprint doi: https://doi.org/10.1101/082818; this version posted October 24, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

condition 1 condition 2 condition 3 condition 4
0.5 3
—CTF S 04
—— pre-stimulus baseline 2 jau! I/h
Q04 ] s \ [
n 5 0.2 } } \ /I / \
c g A/ [
g 03 5o L j/( { PG M\ﬂ [I Klj
0 ' 0.2
) 567812345 678123456 781234567 812345678
: 0 2 channel channel channel channel
o .
E condition 5 condition 6 condition 7 condition 8
G 0.1 g%
S 8 04 A g
0 8 [\ /\!\{ L I/L\
3% /14 I \ H ;o
g SEAZN 4 N A | /1
-0.1 5 o AN ER || AT | N IKN
8123456738 02 s b6 761 234567812 345678123 456781234
Channel channel channel channel channel
[ p— 0.4
4
% [N
0.3 3
5 °||l ' :
Qo ' | 0.2 1
£ ° bl 0
=}
£ 4 " ' Lo y
GCJ 3 I -2
™ 0 3
S 2 | -4
-0.1
uv

1 H< 10'ﬁlister based, 2-sided)
|

0 200 400 600 800 1000
time in ms.

Figure 8. Cortical Tuning Functions (CTF). A CTF for the 260-270 ms window and CTF during
baseline (-100 to 0 ms) obtained by shifting the individual condition CTFs to align to the same
channel. B CTFs for individual conditions show that the CTF is not driven by particular target
positions. C CTF development over time in which color reflects channel responses. The black
line near the time axis shows the time windows where the center position channel has
significantly stronger channel responses than the outer boundary channel (p<10-73, cluster based
permutation test). D Topographic weight plots for each condition in the 260-270 ms time
window. Weights from forward models are directly interpretable in terms of neural sources
(Haufe et al., 2014). These plots therefore show how neural activity changes as a function of
variability in target position.

To determine how the CTF signal reflecting target position evolves in real time, we plotted
the CTF as a function of time during a 1000 ms post-stimulus time window as a 2D plot in which
colour reflects the strength of the channel response (Figure 8C). Statistical significance of the CTF
was established by t-testing the center channel response to the channel response occurring in the
periphery for each sample point, correcting for multiple comparisons using cluster-based
permutation testing. The thick black line near the time axis represents statistically significant periods

(both p < 107 after 1000 iterations). These plots confirm that the strongest CTF for target locations
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in the 8-item search displays was present in the 200-300 ms time range, in line with the decoding

accuracy results shown in Figure 6.

To further characterize the distribution of neural activity associated with particular target
positions within the search displays, Figure 8D shows topographic plots of the electrode weights
resulting from the FEM estimation procedure, which are directly interpretable in terms of neural
sources (Haufe et al., 2014). The resulting plots show gradual and systematic topographical shifts
while spatial attention moves from upper to lower target positions on the same side, and a clear
polarity swap when attention moves from the right to the left side in (positions 1 to 4 versus

positions 5 to 8).

Experiment 2: Using FEM to construct activation patterns for new target positions

The other main goal of Experiment 2 was to perform an ultimate validity check of the FEM
approach by testing whether it is possible to predict the distribution of neural responses to target
positions that were not actually presented. In Experiment 2, all stimulus positions were lateralized
and targets never appeared on the vertical or horizontal midline. Forward models that produce a
graded CTF (as shown in Figure 7) can essentially be regarded as continuous models. The CTF
obtained for Experiment 2 should therefore be able to predict hypothetical activation patterns in
response to target locations that were not included in this experiment, such as the horizontal and
vertical positions that were only employed in Experiment 1. To construct virtual activation patterns
for vertical and horizontal target positions for Experiment 2, we used a line symmetrical version of
the group CTF from Figure 8A as the basis set to capture the relationship between multivariate
responses and target positions. By averaging the responses across two neighboring positions (i.e., by
interpolating the channel responses between position 8 and 1 to obtain the hypothetical response to
targets at the top location), new channel responses were reconstructed that correspond to the
intermediate positions between 8 and 1 (top), 4 and 5 (bottom), 2 and 3 (right), and 6 and 7 (left;

see Figures 9A and 9B).
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Figure 9. Reconstructing the neural signature of contingent capture
for target positions that were never presented during experiment 2.
A The target positions that are reconstructed: top, bottom, left and
right. B The constructed channel responses that are associated with
these positions using the CTF from Figure 8A (see methods for
details). Top is in between target position 8 and 1, so the channel
response to top is constructed by averaging the hypothetical channel
response to position 8 and position 1. Similarly, right is created from
averaging channel responses to 2 and 3 etc. Any position on the
circle can be constructed using a weighted average of channel
responses. C,D Left, right, bottom and top weights were
reconstructed using the product of the constructed channel
responses and the weight matrix at 260-270 ms. Next, the left
versus right pattern was generated by subtracting the left from the
right pattern (C), likewise the top versus bottom pattern was created
by subtracting the bottom pattern from the top pattern (D). Note the
similarity with the left-right and top-bottom patterns from experiment
1. All patterns were normalized across space to allow direct
comparisons. Thick electrode dots belong to a cluster that has
p<0.01 under cluster based permutation testing.
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Next, we multiplied these channel responses with the weights obtained from the initial
training phase to construct four multivariate patterns that reflect the predicted hypothetical neural
responses to targets at the top, bottom, left and right positions. To visualize the reconstructed
response patterns to targets at the right versus left and targets at the top versus bottom locations,
we subtracted the weights associated with the constructed right position from the weights for the
constructed left position, and the weights for the constructed bottom position from the weights
associated with the top position. The resulting values were normalized across space by subtracting
the average over all electrodes and dividing by the standard deviation across electrodes. The
topographic weight maps for hypothetical target locations on the horizontal midline (left versus
right, both cluster-based p-values < 10 at 1000 iterations) and on the vertical midline (top versus
bottom, cluster-based p-value < 10 for the positive cluster and cluster-based p-value = .009 for the
negative cluster) are shown in Figures 9C and 9D. These two maps show remarkably similar
topographies to the corresponding BDM-based maps for left versus right and top versus bottom
targets obtained in Experiment 1 (Figure 5), where targets were in fact physically presented at these

positions.

To formally evaluate this apparent match between constructed and real topographies
associated with attended targets at left versus right or top versus bottom positions, we removed the
four electrodes that were used in Experiment 2 but not in Experiment 1 from the data set for
Experiment 2. We then applied unpaired two-sided t-tests to compare actual BDM-based activation
patterns in Experiment 1 and the constructed activation patterns based on FEM weights in
Experiment 2. These tests were performed for each electrode, correcting for multiple comparisons
using cluster-based permutation testing. Neither the left-right (Figure 10A) nor the top-bottom
topographies (Figure 10B) differed significantly between these experiments. This strongly suggests
that the reconstructed activity patterns obtained in Experiment 2 for hypothetical targets on the
horizontal or vertical meridian showed the same topography as was found in Experiment 1 for real
targets at these locations. To check whether the absence of significant differences between FEM
weights and BDM patterns might be due to a lack of power (e.g. because we tested between rather
than within participants), we also tested the left-right FEM weights against the top-bottom BDM
pattern, this time yielding clear clusters of significant differences (p<107 for both clusters, two-sided
cluster-based test at 1000 iterations, Figure 10C). Thus, we believe the similarity between the
reconstructed top/bottom topography found in Experiment 2 and the observed top/bottom

topography found in Experiment 1 is meaningful.
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Figure 10. Comparing reconstructed weights in experiment 2 to
actual patterns in experiment 1. The difference between FEM
(Forward Encoding Model) weights from experiment 2 and
BDM (Backward Decoding Model) patterns from experimen 1 is
evaluated using unpaired t-tests. A FEM and BDM left-right
patterns show no significant differences. B FEM and BDM
top-bottom patterns show no significant differences. C To show
that the absence of significant differences in A and B is not
caused by a lack of power due to t-testing between rather than
within subjects, we also compare left-right FEM weights to the
top-bottom BDM weights. This comparison reveals two large
significant clusters.Thick electrode dots belong to clusters that
have p<0.01 under cluster based permutation testing.

Discussion

During search for targets with known features at unpredictable locations, feature-
based selection mechanisms guide attention towards candidate target objects. To track
these mechanisms, neural markers are needed that are not only temporally precise but can

also dissociate selection at different locations within the visual field. Such markers can be
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provided by intracranial recordings, but these can only target few specific locations in the
visual field a time, and are highly invasive. Many EEG and MEG studies (e.g. Luck and
Hillyard, 1994; Hopf et al., 2000; 2004; Eimer and Grubert, 2014) have used the N2pc
component as a measure of feature-based selection (see Luck, 2012 for review). While the
N2pc provides excellent temporal information, the fact that it is based on differences
between ipsilateral and contralateral hemispheres severely constrains its spatial resolution.

We demonstrate that a multivariate analysis of raw EEG data can track feature-
based attentional selection in a spatially precise way while retaining the millisecond
resolution inherent in EEG signals, exhibiting spatial selectivity from 200 ms onwards. In
Experiment 1, backward decoding models successfully discriminated the selection of target
objects on the vertical meridian (above versus below fixation) that is invisible to studies that
rely on the N2pc component. Classification accuracy rapidly increased from about 200 ms
after display onset, thus matching the time course of the N2pc, and was highly comparable
for top versus bottom and left versus right targets. In Experiment 2, classifiers successfully
discriminated different target locations across all locations — even within the same quadrant
— with classification performance again rising above chance level from about 200 ms post-
stimulus. These results show that backward decoding models based on raw EEG data can be
employed to obtain a much more precise spatial profile of feature-based attentional
selection processes than is possible with standard N2pc methods.

We then employed a forward encoding model to construct a CTF that describes the
relationship between target position and multivariate EEG in Experiment 2, analogous to
recent studies of representations in working memory (Foster et al., 2016). While in fitting
the CTFs we used a delta basis set that does not make any a priori assumptions about their
shape, the outcome revealed a clear gradual (i.e., Gaussian) response profile. This provides
strong evidence that the spatial location of feature-based targets modulates the distribution
of EEG activity in a continuous fashion.

Recent fMRI studies have used multivariate decoding to recover activation patterns
in visual cortex that are sensitive to visual features or categories (Kamitani and Tong, 2005;
Haynes and Rees, 2006; e.g. Kamitani and Tong, 2006; Cichy et al., 2014). In addition,
forward encoding models have been developed for fMRI data (Brouwer and Heeger, 2009;
2011). Analogous multivariate analyses techniques have also been successfully applied to

EEG data to track feature-selective activity in visual areas (Garcia et al., 2013) and the
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activation of stored items in visual working memory (LaRocque et al., 2013). Two recent
studies have demonstrated the utility of multivariate analyses of specifically EEG alpha band
activity in tracking spatially selective processing during working memory maintenance and
during cued shifts of spatial attention. Foster et al. (2016) asked participants to memorize
the location of sample stimuli during delay periods, and found that the spatial distribution of
alpha power tracked the sample stimulus locations in working memory. Location-based CTFs
based on multivariate alpha power showed a Gaussian profile, suggesting that location
representations in working memory have a continuous relationship with the distribution of
neural activity in visual cortex. Samaha et al. (2016) employed a spatial cueing task where
covert attention had to be directed to one of six possible target locations indicated by
centrally presented, symbolic cues. Cued locations could be successfully classified on the
basis of alpha activity elicited during the late period of the cue-target interval (1000 — 1900
ms after cue onset). Using a forward encoding model, Samaha et al. (2016) reconstructed
CTFs, which revealed location-specific tuning that emerged around 450 ms after cue onset.

Here we employed analogous analyses to investigate feature-based attentional
target selection in visual search, rather than endogenously cued spatial locations. Reliable
tuning for target position emerged in the 200-300 ms time window in Experiment 2, which is
much earlier than the onset of location-selective tuning reported by Samaha et al. (2016 450
ms after cue onset). This difference suggests that the feature-based target selection
mechanisms in this study are triggered more rapidly than endogenous spatial orienting
processes elicited in response to the spatial cues, as in their study. Alternatively, our
analyses are based on the raw EEG signal rather than time-frequency decomposed data, and
may provide a more sensitive measure for such early signals. Moreover, the raw EEG signal
has the additional benefit of retaining maximal temporal resolution, as it avoids the
temporal blurring that inherently accompanies time-frequency analyses.

We believe one of the most exciting aspects of our data in combination with
the forward modelling approach is that it allows for generalization beyond the observed.
We used the graded CTF for the eight lateral target locations in Experiment 2 to reconstruct
hypothetical channel responses and topographic activation patterns for target locations on
the horizontal and vertical midlines that were not actually shown. We then compared these
hypothetical patterns to the topographies of the BDM-derived neural activation patterns

obtained in Experiment 1 on the basis of actual EEG responses to horizontal and vertical
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targets. The reconstructed topographies for these target locations were statistically
indistinguishable from the neural activation profiles that were responsible for their
successful decoding when they were physically present. The similarity between hypothetical
and actual activation patterns is remarkable, given that separate sets of participants were
tested. This shows that the FEM is even able to generalize to a different subject population.
It further demonstrates the invertible nature of our FEM, and thus the continuous
relationship between feature-based selection at particular locations and EEG activity
patterns across electrodes. This shows promise for using these models as cortical mappers
of feature-based attentional selection, analogous to the use of retinotopic maps of visual
cortex obtained with fMRI measures (e.g. see Wandell, 1999). FEM-based methods may
therefore have an important role for future studies of spatial attention and other types of
cognitive operations in which a continuous relationship between cortical activity and some
experimental variable exists.

We note that in the present experiments, above-chance classification emerged
around 200 ms after search display onset but not earlier, which indicates that there were no
EEG signals associated with target selection processes prior to the point in time when the
N2pc typically emerges. This observation suggests that that the N2pc has probably rightly
been regarded as the earliest electrophysiological marker of such processes. It is also
notable that in both experiments, decoding accuracy remained above chance after the
typical N2pc time window (beyond 300 post-stimulus). Similarly, the CTF constructed on the
basis of our forward model in Experiment 2 showed reliable location tuning not only during
the N2pc period, but also at longer latencies between 400 and 600 ms post-stimulus (see
Figure 8C). These observations mirror previous ERP studies of target selection in visual
search, which found a sustained contralateral posterior negativity (SPCN) during this time
range (Mazza et al., 2007; Jolicoeur et al., 2008; Grubert et al., 2016). The SPCN is usually
interpreted as reflecting the encoding and processing of selected stimuli in visual working
memory (e.g. Luck, 2012; Eimer, 2014). Like the N2pc, SPCN components are based on
activity differences between hemispheres, and therefore cannot reflect more subtle spatial
patterns of neural activity associated with working memory maintenance within
hemispheres. The current results suggest that multivariate decoding and encoding analyses

can extract systematic patterns of EEG activity in the SPCN time range, and thus may enable
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more precise insights into how visual stimuli are spatially represented in working memory
(see also LaRocque et al., 2013; Foster et al., 2016).

The decoding of attended target locations based on multivariate EEG data
demonstrated in the current study has the potential to facilitate more general insights into
the nature and time course of attentional selection. This method should be able to track
shifts of attention from one candidate target object to another with high temporal
precision, which could for example provide new information about the speed of such
attention shifts. In displays where multiple candidate target objects are present, their
respective locations may be decoded independently and simultaneously, in order to test
whether and under which conditions attentional selection processes can operate in parallel
at different locations in the visual field.

In summary, the current experiments demonstrate the potential of multivariate
BDMs and FEMs of raw EEG data to overcome the limitations of the standard methodology
that relies entirely on differences between cortical hemispheres. These new approaches to
EEG analysis provide both spatially and temporally precise information about the neural
processes that implement selective attention, and thus provide exciting new research

opportunities.
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