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Chronic sleep disturbances, associated with cardio-metabolic diseases, psychiatric disorders 

and all-cause mortality1,2, affect 25-30% of adults worldwide3. While environmental factors 

contribute importantly to self-reported habitual sleep duration and disruption, these traits are 

heritable4-9, and gene identification should improve our understanding of sleep function, 

mechanisms linking sleep to disease, and development of novel therapies.  We report single 

and multi-trait genome-wide association analyses (GWAS) of self-reported sleep duration, 

insomnia symptoms including difficulty initiating and/or maintaining sleep, and excessive 

daytime sleepiness in the UK Biobank (n=112,586), with discovery of loci for insomnia 

symptoms (near MEIS1, TMEM132E, CYCL1, TGFBI in females and WDR27 in males), 

excessive daytime sleepiness (near AR/OPHN1) and a composite sleep trait (near INADL and 

HCRTR2), as well as replication of a locus for sleep duration (at PAX-8). Genetic correlation 

was observed between longer sleep duration and schizophrenia (rG=0.29, p=1.90x10-13) and 

between increased excessive daytime sleepiness and increased adiposity traits (BMI rG=0.20, 

p=3.12x10-09; waist circumference rG=0.20, p=2.12x10-07).  

 

Rather than being ‘secondary’, evidence suggests disordered sleep may play an important role 

in the etiology and maintenance of physical and mental health1,2. Heritability has been estimated 

at ~40% for sleep duration4,6-8, 25-45% for insomnia9 and 17% for excessive daytime 

sleepiness9, but few genetic factors are known. A Mendelian short sleep mutation in BHLHE41 

(P385R) has been identified, and confirmed in mouse models10. GWAS for sleep duration have 

been reported11-14, but only an association at the PAX8 locus reached genome-wide significance 

and was confirmed across ethnic groups12.  There are several reported loci for restless legs 

syndrome (RLS) and narcolepsy, but no known robust genetic loci for insomnia symptoms or  

excessive daytime sleepiness15,16.  
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We and others performed a GWAS for chronotype in the UK Biobank17,18 and a 23&me 

participant sample19. To identify genetic variants that contribute to self-reported sleep duration, 

insomnia symptoms, and excessive daytime sleepiness and link them with other conditions, we 

performed GWAS using phenotype measures in UK Biobank participants of European ancestry. 

Variation in sleep duration, insomnia symptoms and excessive daytime sleepiness was 

associated significantly with age, sex, principal components of ancestry (PCs), genotyping 

array, depression, psychiatric medication use, self-reported sleep apnea, and BMI 

(Supplementary Table 1), as previously reported20-23. Together age, sex, and PCs explained 

0.4%, 3.0% and 1.3% of variation in sleep duration, insomnia symptoms, and excessive daytime 

sleepiness respectively.  Strong and significant pair-wise phenotypic correlation was seen 

between the traits overall and within each sex, with limited correlation observed with 

chronotype. (Fig. 1a; Supplementary Fig. 1).  

 

GWAS analyses of sleep duration, insomnia symptoms and excessive daytime sleepiness were 

performed using linear/logistic regression adjusting for age, sex, 10 PCs and genotyping array. 

Nine genome-wide significant (p<5x10-8) and 14 suggestive (p<5x10-7 to p=5x10-8) loci were 

identified (Fig. 2, Table 1, Supplementary Figs. 2 and 3). For sleep duration (n=111,975), the 

strongest association was observed at the PAX-8 locus (rs62158211T, β(se)=2.34(0.30) 

mins/allele, p=4.7x10-14, effect allele frequency (EAF) 0.213, Fig. 2a), confirming a previously 

reported association (r2=0.96, D’=1 to lead SNP rs1823125 in 1KG CEU)12. For insomnia 

symptoms (n=32,155 cases, 26,973 controls), significant associations were observed within 

MEIS1 (rs113851554T, OR [95%CI]=1.26[1.20-1.33], p=9.1x10-19, EAF 0.057, Fig. 2b), a 

homeobox gene implicated in motor neuron connectivity in Drosophila24,25, retinal and lens 
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development in mouse26, and Substance P expression in the amygdala27, near TMEM132E 

(rs145258459C, 1.23[1.13-1.35], p=2.1x10-8, EAF 0.983, Fig. 2c), a gene family with roles in 

brain development28, panic/anxiety29 and bipolar disorder30, suggesting a link between insomnia 

symptoms and an underlying broader sensitivity to anxiety and stress, and near CYCL1 

(rs5922858G, OR [95%CI]=1.12[1.07-1.16], p=1.28 x10-8, EAF 0.849, Fig 2d) a locus previously 

associated (p=10-6) with alcohol dependence co-morbid with depressive symptoms31. Sex-

stratified analyses identified an additional female-specific signal near TGFBI (rs3792900C 

1.10[1.07-1.14], p=2.16x10-8, EAF 0.470; Table 1, Supplementary Fig. 3q, 3r, Supplementary 

Table 2), an extracellular matrix protein responsible for human corneal dystrophy32 and a male-

specific signal near WDR27, a scaffold protein (rs13192566G OR [95%CI]=1.14[1.09-1.20], 

p=3.2x10-8, EAF 0.860)(Table 1, Supplementary Fig. 3s, 3t, 4; Supplementary Table 2). 

Independent associations at both loci are observed with type 1 diabetes, suggesting an immune 

role33-35. For excessive daytime sleepiness (n=111,648), we identified a signal near the 

androgen receptor AR (rs73536079T, β=0.634, p=3.94x10-8, EAF 0.002, Fig. 3e), with no sex-

specific effects.  Secondary analyses after additional adjustment for depression or BMI identified 

a signal near ROBO1,  (depression adjustment n=107,440, rs182765975T, beta=0.099, 

p=3.33x10-8, EAF 0.003, Table 1, Supplementary Figure 3o), a neuronal axon guidance 

receptor previously implicated in dyslexia36, and a signal near another member of the TMEM132 

family, TMEM132B (BMI adjustment n=75,480, rs142261172A, β=0.106, p=9.06x10-9, EAF 

0.004, Table 1, Supplementary Figure 3p).  Conditional analyses did not identify independent 

association signals (Supplementary Table 3). Sensitivity analyses adjusting for factors 

influencing sleep traits, including self-reported sleep apnea, depression, psychiatric medication 

use, smoking, socio-economic status, employment status, marital status, and snoring did not 

significantly alter results for primary association signals (Supplementary Table 4).  
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The leading associations overlap interesting candidate genes enriched in murine/zebrafish 

hypocretin expressing neurons37,38, differentially expressed in sleep-deprived rats39, and/or 

regulate sleep in Drosophila40. Credible set analyses41 highlighted a number of potential causal 

variants at each locus (Table 1) and future experimental studies will be necessary.  

Bioinformatic annotations42 offer an initial opportunity at in silico functional interpretation 

(Supplementary Table 5; Supplementary Fig. 5). For example, multiple variants for all three 

traits are predicted to disrupt binding of FOXP1, a neural transcriptional repressor implicated in 

intellectual disability, autism and language impairment43. Interestingly, the PAX-8 sleep duration 

association is adjacent to the only chromosomal fusion site since divergence of humans from 

other hominids ~5 million years ago44,45, and the novel genomic structure created by this unique 

evolutionary history may play a causal role. Pathway analysis46 of significant and suggestive loci 

revealed enrichment of genes associated with immune, neuro-developmental, pituitary and 

communication disorders (p<0.01), and enriched for transcription factor-binding sites for stress-

responsive heat-shock-factor 1 (HSF1) and endoplasmic reticulum stress/unfolded protein-

responsive factor HERPUD1 (Supplementary Tables 6&7).  

 

Aside from the lead PAX-8 SNPs and a DRD2 region variant47 for sleep duration, limited 

evidence of association was observed for previously published candidate gene or GWAS 

signals (pmeta<5x10-5; Supplementary Table 8), or for regions encompassing core clock genes 

(Supplementary Fig. 6). Our findings for sleep duration GWAS largely overlap with Jones et 

al.18, despite differences in exclusion criteria and analytic approach. Particularly, our study 

excluded shift workers (n=6,557), sleep medication users (n=1,184) and first-to-third degree 

relatives (n=7,980), whereas the linear mixed-model analyses by Jones et al. included these 

populations, leading to a larger sample size (n=127,573). Likely due to this increase in power, 

Jones et al. identified two additional signals at VRK2 that did not attain genome-wide 
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significance in our study (rs1380703A β(se)=1.5(0.30) mins/allele and rs17190618T, 

β(se)=1.60(0.34) mins/allele, p=3.8x10-6). 

 

Trait heritability calculated as the proportion of trait variance due to additive genetic factors 

measured here (observed scale SNP heritability, h2 (S.E.)) was 10.3 (0.006)% for sleep 

duration, 20.6 (0.011)% for insomnia symptoms and 8.4 (0.006)% for sleepiness (BOLT-REML 

variance components analysis48). LD-score regression analysis49 confirmed no residual 

population stratification (Intercept (SE): Sleep Duration 1.012 (0.008), Insomnia Symptoms 

1.003 (0.008), Excessive Daytime Sleepiness 1.005 (0.007).   Tests for enrichment of heritability 

by functional class using an LD-score regression approach50 identified excess heritability across 

active transcriptional regions for insomnia symptoms and genomic regions conserved in 

mammals for all three sleep traits.  Consistently, heritability enrichment in conserved regions 

was seen for traits demonstrating significant genetic correlation with sleep (Fig. 3, 

Supplementary Table 9).  

 

Sleep duration, insomnia symptoms, excessive daytime sleepiness, and chronotype, are 

significantly correlated both at the phenotype and genetic level (Fig. 1), with greater pair-wise 

correlations in males as compared to females (Supplementary Fig.1). Thus, in order to find loci 

common to sleep traits, we performed a multi-trait GWAS51.  We identified two novel association 

signals near HCRTR2 and INADL, and revealed that PAX-8 and MEIS-1 associations influence 

multiple sleep traits (Fig. 2; Table 2, Supplementary Fig. 7). HCRTR2 encodes hypocretin 

receptor 2, the main receptor of two receptors for wake-promoting orexin neuropeptides52 

involved in narcolepsy and regulation of sleep. Notably, the minor allele at rs3122163 (C) 

showed sub-threshold association with shorter sleep duration and morningness chronotype, 
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suggesting gain of function, but no association with insomnia symptoms. Assessment of 

objective sleep measures, functional and physiologic follow-up should yield important insights 

into orexin receptor signaling, a pathway important for the pharmacological treatment of 

narcolepsy53 and insomnia54.  INADL encodes a membrane protein involved in the formation of 

tight junctions, and is implicated in photoreception in mice and Drosophila55,56. The INADL 

protein is reported to interact with HTR2A57, a serotonin receptor with a known role in sleep 

regulation58,59.    

 

Our strongest association for insomnia symptoms fell within MEIS1, a locus previously 

associated with RLS in GWAS60. Our lead SNP rs113851554 and the correlated 3’UTR variant 

rs11693221 (pair-wise r2=0.69, D’=0.90 in 1KG EUR) represent the strongest known genetic risk 

factor for RLS and were identified in follow-up sequencing studies of MEIS161,62 of the original 

RLS GWAS signal rs230047860,63. Conditional analysis suggests that only one underlying signal 

detected by the lead SNP rs113851554 in our GWAS explains the association of all three SNPs 

with insomnia symptoms (Supplementary Fig. 8; Supplementary Table 10). To further 

investigate the extent of overlap between RLS and insomnia symptoms, we tested if a  weighted 

genetic risk score (GRS) for RLS64,65 was also associated with insomnia symptoms with 

concordant direction of allelic effects (OR [95%CI]= 1.06[1.05-1.07] per RLS risk allele, 

p=1.17x10-21; Supplementary Table 11). Weighting of RLS GWAS alleles by SNP effects on 

periodic limb movements (PLMs) did not substantially alter overall results (Supplementary 

Table 11). Interestingly, recent data indicating increased thalamic glutamatergic activity in RLS 

provides evidence for an underlying propensity for hyperarousal in RLS66, which is also a core 

feature of insomnia. Future analyses of pair-wise bidirectional causal effects for all three traits 

will be necessary to determine if shared genetic associations represent causality, partial 

mediation or pleiotropy.	
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Strong epidemiologic associations of sleep duration, insomnia symptoms and sleepiness have 

been observed with disease traits, but the extent to which the underlying genetics is shared is 

unknown. Therefore, we tested for genome-wide genetic correlation between our sleep GWAS 

and publicly available GWAS for 20 phenotypes spanning a range of cognitive, 

neuropsychiatric, anthropometric, cardio-metabolic and auto-immune traits using LD-score 

regression67 (Fig. 4 and Supplementary Table 12).  

 

Genetic correlations demonstrated a strong biological link between longer sleep duration and 

risk of schizophrenia (rG=0.29, p=10-13), as suggested by previous reports18,47,68. Furthermore, a 

schizophrenia GRS (96 variants) was associated with longer sleep duration (β(se)=1.44(0.36) 

mins/allele, p=2.56x10-4 [2.3 hr inter-quartile range], although a variety of sleep behaviors are 

seen in schizophrenia patients69-71. Significant genetic correlation between low birth weight and 

longer sleep duration (rG= -0.27, p=10-4) may reflect shared links between genetically-

determined insulin secretion or action pathways underlying fetal growth72,73 and long sleep 

duration. In support, significant genetic correlation was observed by Jones et al.18 between 

over-sleepers and both fasting insulin and risk of type 2 diabetes in UK Biobank. Genetic 

correlation between sleep duration and Crohn’s disease risk (rG=0.18, p=10-3) is also consistent 

with epidemiologic observations74.  

 

Significant genetic correlation was also found between increased insomnia symptoms and 

adverse glycemic traits, increased adiposity and fewer years of education, and between 

excessive daytime sleepiness and increased adiposity (all p<10-3), further highlighting biological 

overlap of sleep traits with metabolism and educational attainment17. In support, studies have 

shown that experimentally suppressing slow wave sleep leads to decreased insulin sensitivity 
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and impaired glucose tolerance75,76. Notably, a fasting insulin GRS was not significantly 

associated with insomnia symptoms (7 SNPs, OR =1.01, p=0.51). Finally, consistent with a well-

established but poorly-understood link between excessive daytime sleepiness and obesity77,78, a 

BMI GRS was associated with excessive daytime sleepiness (95 SNPs, β(se) 0.002(0.0004) 

sleepiness category/allele, p=1.67x10-4), but not with insomnia symptoms (OR=1.00, p=0.73).  

 

Moving forward, replication and systematic testing of genetic correlations in larger samples will 

be needed. Importantly, genetic correlation testing between insomnia and RLS should be 

examined, but was not possible here because RLS consortium GWAS results were not 

available. Additionally, identifying causal relationships between genetically correlated traits may 

be difficult, and findings using Mendelian randomization approaches will need cautious 

interpretation given potential selection biases in UK Biobank79-81.  

 

In summary, in a GWAS of sleep traits, we identified new genetic loci that point to previously 

unstudied variants that might modulate the hypocretin/orexin system, and influence retinal or 

neural development or cerebral cortex genes. Furthermore, genome-wide analysis suggests 

that sleep traits share underlying genetic pathways with neuropsychiatric and metabolic 

disease. This work should advance understanding of molecular processes underlying sleep 

disturbances, and open new avenues of treatment for sleep disorders and related diseases.  

 

 

Methods 

Population and study design 
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Study participants were from the UK Biobank study, described in detail elsewhere80-82.  In brief, 
the UK Biobank is a prospective study of >500,000 people living in the United Kingdom.  All 
people in the National Health Service registry who were aged 40-69 and living <25 miles from a 
study center were invited to participate between 2006-2010.  In total 503,325 participants were 
recruited from over 9.2 million mailed invitations.  Self-reported baseline data was collected by 
questionnaire and anthropometric assessments were performed.  For the current analysis, 
individuals of non-white ethnicity were excluded to avoid confounding effects.   

 

Sleep quality, quantity and covariate measures 

Study subjects self-reported sleep duration, insomnia symptoms, excessive daytime sleepiness, 
depression, medication use, age, sex, height and weight on a touch-screen questionnaire.  For 
sleep duration, subjects were asked, “About how many hours sleep do you get in every 24 
hours? (please include naps)?”  with responses in hour increments.  To assess insomnia 
symptoms, subjects were asked, “Do you have trouble falling asleep at night or do you wake up 
in the middle of the night?" with responses “never/rarely”, “sometimes”, “usually”, “prefer not to 
answer”.  To assess daytime sleepiness, subjects were asked “How likely are you to doze off or 
fall asleep during the daytime when you don't mean to? (e.g. when working, reading or 
driving)?" with responses “never/rarely”, “sometimes”, “often”, “all the time”, “don’t know”, “prefer 
not to answer”.  Approximately 500,000 subjects answered these questions, but only the 
120,286 unrelated individuals with genetic data and European ancestry were considered for this 
analysis.  Subjects with self-reported shift work (n=6,557) or sleep medication use (n=1,184) 
were excluded.  Subjects who responded “Do not know” or “Prefer not to answer” were set to 
missing.  Sleep duration and excessive daytime sleepiness were untransformed and treated as 
continuous variables, with daytime sleepiness coded 1-4.  The insomnia symptom trait was 
dichotomized into controls (“never/rarely”) and cases (“usually”).  Covariates used in sensitivity 
analyses included self-reported sleep apnea, BMI, depression, psychiatric medication use, 
socio-economic, smoking, employment and marital status, and snoring, and secondary GWAS 
for sleepiness included adjustment for BMI or depression. Sleep apnea cases were defined 
based on ICD10 diagnosis code (391 cases). BMI at baseline visit was calculated from entries 
of height and weight (n=75,540 with available data). Depression was reported in answer to the 
question “How often did you feel down, depressed or hopeless mood in last 2 weeks?” (cases, 
n=4,242 based on answers “more than half the days”, or “nearly every day”). Medication use 
was self-reported as part of the initial UK Biobank interview.  Our list of psychiatric medication 
for sensitivity analysis included the four most widely used: fluoxetine (Prozac), citalopram 
(Cipranol), paroxetine (Seroxat), and sertraline (Lustral).  Our list of sleep medications included 
the 21 most widely used sleep medications in the UK Biobank: oxazepam, meprobamate, 
medazepam, bromazepam, lorazepam, clobazam, chlormezanone, temazepam, nitrazepam, 
lormetazepam, diazepam, zopiclone, triclofos, methyprylone, prazepam, triazolam, ketazolam, 
dichloralphenazone, clomethiazole, zaleplon, butobarbital.  Smoking status was self-reported as 
past smoking behavior and current smoking behavior, and classified into “current”, “past”, or 
“never” smoked.  Socio-economic status was represented by the Townsend deprivation index, 
based on national census data immediately preceding participation in the UK Biobank.  
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Employment status was self-reported (cases=retired, controls=currently employed).  Marital 
status was derived from self-reported household occupancy and relatedness data.  Snoring was 
reported in answer to the question “Does your partner or a close relative or friend complain 
about your snoring?”.   

Genotyping, quality control and imputation 

Of the ~500,000 subjects with phenotype data in the UK Biobank, ~153,000 are currently 
genotyped.  Genotyping was performed by the UK Biobank, and genotyping, quality control, and 
imputation procedures are described in detail at the UK Biobank website 
(http://biobank.ctsu.ox.ac.uk/).  In brief, blood, saliva, and urine was collected from participants, 
and DNA was extracted from the buffy coat samples.  Participant DNA was genotyped on two 
arrays, UK BiLEVE and UKB Axiom with >95% common content.  Genotypes were called using 
Affymetrix Power Tools software.  Sample and SNP quality control were performed.  Samples 
were removed for high missingness or heterozygosity (480 samples), short runs of 
homozygosity (8 samples), related individuals (1,856 samples), and sex mismatches (191 
samples).  Genotypes for 152,736 samples passed sample QC (~99.9% of total samples).  
SNPs were excluded if they did not pass QC filters across all 33 genotyping batches.  Batch 
effects were identified through frequency and Hardy-Weinberg equilibrium tests (p-value <10-12). 
Before imputation, 806,466 SNPs pass QC in at least one batch (>99% of the array content).  
Population structure was captured by principal component analysis on the samples using a 
subset of high quality (missingness <1.5%), high frequency SNPs (>2.5%) (~100,000 SNPs) 
and identified the sub-sample of European descent.   Imputation of autosomal SNPs was 
performed to a merged reference panel of the Phase 3 1000 Genome Project and the UK10K 
using IMPUTE283.  Data were prephased using SHAPEIT384. In total, 73,355,677 SNPs, short 
indels and large structural variants were imputed.  X-chromosome data were imputed 
separately, using Eagle 2.0 for pre-phasing with the –X chromosome flag (no reference panel) 
in the entire cohort85 and IMPUTE283 with the Phase 3 1KG Project reference panel for 
imputation using the –chrX flag on 500kb chunks in randomly assigned subsets of 30,000 
individuals.  Post-imputation QC was performed as previously outlined 
(http://biobank.ctsu.ox.ac.uk/) and an imputation info score cut-off of 0.8 was applied. For 
GWAS, we further excluded SNPs with MAF <0.001, maximum per SNP missingness of 10%, 
and maximum per sample missingness of 40%.  In total, up to 112,586 samples of European 
descent with high quality genotyping and complete phenotype/covariate data were used for 
these analyses. 

Statistical Analysis 

Phenotypic correlation analysis was performed using the Spearman test in R using the Hmisc 
package.  Genetic association analysis for autosomes was performed in SNPTEST86,87 with the 
“expected” method using an additive genetic model adjusted for age, sex, 10 PCs and 
genotyping array.  Genome-wide association analysis was performed separately for sleep 
duration, insomnia symptoms, and excessive daytime sleepiness with a genome-wide 
significance threshold of 5x10-8 for each GWAS.  We are 80% powered to detect the following 
effects: sleep duration β=0.045 hrs (2.7 mins), insomnia symptoms OR=1.07, and excessive 
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daytime sleepiness β=0.021 units (assuming a MAF 0.1, p=5x10-7) and 80% powered to detect 
the following effects: sleep duration β= 0.048 hrs (2.9 mins), insomnia symptoms OR=1.08 and 
excessive daytime sleepiness β=0.023 units (assuming a MAF 0.1, p=5x10-8).  X-chromosome 
analysis was performed in PLINK 1.988 using linear/logistic regression with separate analysis 
of the pseudoautosomal regions using the split chromosome flag, adjusting for sex, age, 10 PCs 
and genotyping array. For the X chromosome signal at rs73536079, we verified using principal 
components analysis that all carriers of the minor allele fall within the major European ancestry 
cluster.  Follow-up analyses on genome-wide suggestive and significant loci in the primary 
analyses included covariate sensitivity analysis individually adjusting for sleep apnea, 
depression, psychiatric medication use, socio-economic, smoking, employment and marital 
status, and snoring, or BMI (on top of the baseline model adjusting for age, sex, 10 PCs and 
genotyping array).  Sensitivity analysis was conducted only in the subset of subjects with all 
secondary covariates (n=75,477 for sleep duration, n=39,812 for insomnia symptoms and 
n=75,640 for excessive daytime sleepiness). Enrichment for disease associated gene sets and 
transcription factors was performed in WebGestalt46 using the human genome as the reference 
set, the Benjamini Hochberg adjustment for multiple testing, and a minimum number of 2 genes 
per category. Sex specific GWAS were performed in PLINK 1.988 using linear/logistic regression 
stratified by sex adjusting for age, 10 principal components of ancestry, and genotyping 
array.  We used a hard-call genotype threshold of 0.1 (calls with greater than 0.1 are treated as 
missing), SNP imputation quality threshold of 0.80, and a MAF threshold of 0.001.  Regional 
association plots were made using Locuszoom with the HG19 Nov2014 EUR reference panel 
for background linkage disequilibrium89.  

Trait heritability was calculated as the proportion of trait variance due to additive genetic factors 
across the autosomes measured in this study using BOLT-REML48, to leverage the power of 
raw genotype data together with low frequency variants (MAF≥0.001). For multi-trait genome-
wide association analysis we applied the CPASSOC package developed by Zhu et al.51 to 
combine association evidence of chronotype, sleep duration, insomnia symptoms and excessive 
daytime sleepiness. CPASSOC provides two statistics, SHom and SHet. SHom is similar to the 
fixed effect meta-analysis method90 but accounting for the correlation of summary statistics 
because of the correlated traits. SHom uses a sample size of a trait as a weight instead of 
variance, so that it is possible to combine traits with different measurement scales. SHet is an 
extension of SHom but power can be improved when the genetic effect sizes are different for 
different traits. The distribution of SHet under the null hypothesis was obtained through an 
estimated beta distribution. To calculate statistics SHom and SHet, a correlation matrix is 
required to account for the correlation among traits or induced by overlapped or related samples 
from different cohorts. In this study, we directly provide the correlation matrix calculated from the 
residuals of four sleep traits after adjusting for age, sex, PCs of ancestry and genotyping array. 
Post-GWAS genome-wide genetic correlation analysis of LD Score Regression (LDSC)67 was 
conducted using all UK Biobank SNPs also found in HapMap389 and included publicly available 
data from 20 published genome-wide association studies, with a significance threshold of 
p=0.0026 after Bonferroni correction for all 20 tests performed. As expected, the observed 
heritability estimates from LDSC67 using summary statistics for HapMap3 are lower (5.7 
(0.0065)% for sleep duration, 13.3 (0.0123)% for insomnia symptoms and 5.3 (0.005)% for 
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sleepiness) than those calculated by Bolt-REML48 using primary data (10.3 (0.006)% for sleep 
duration, 20.6 (0.011)% for insomnia symptoms and 8.4 (0.006)% for sleepiness), because the 
HapMap3 panel restricts to variants with >5% MAF. LDSC estimates genetic correlation 
between two traits from summary statistics (ranging from -1 to 1) using the fact that the GWAS 
effect-size estimate for each SNP incorporates effects of all SNPs in LD with that SNP, SNPs 
with high LD have higher X2 statistics than SNPs with low LD, and a similar relationship is 
observed when single study test statistics are replaced with the product of z-scores from two 
studies of traits with some correlation67. Furthermore, genetic correlation is possible between 
case/control studies and quantitative traits, as well as within these trait types.   We performed a 
weighted genetic risk score analysis using risk scores for restless legs syndrome, 
schizophrenia, body mass index, and fasting insulin.  Risk score SNPs passed the genome-
wide significance threshold (p<5x10−8) from recent large-scale genome-wide association studies 
and were present in the UK Biobank (restless legs syndrome 7 SNPs Supp Table 1165; 
schizophrenia 96 SNPs91; BMI 95 SNPs92; fasting insulin 7 SNPs93). Independent SNPs were 
identified and beta estimates recorded for calculation of the weighted risk score. The genetic 
risk score was calculated by summing the products of the risk allele count multiplied by the 
effect reported in the discovery GWAS paper.  The additive genotype model was used for all 
SNPs.  We performed partitioning of heritability using the 25 pre-computed functional 
annotations available through LDSC, which were curated from large-scale robust datasets50. 
Enrichment both in the functional regions and in an expanded region (+500bp) around each 
functional class was calculated in order to prevent the estimates from being biased upward by 
enrichment in nearby regions. The multiple testing threshold was determined using the 
conservative Bonferroni correction (p of 0.05/25 classes).  Summary GWAS statistics will be 
made available at the UK Biobank web site (http://biobank.ctsu.ox.ac.uk/). 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/082792doi: bioRxiv preprint 

https://doi.org/10.1101/082792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author Contributions 

The study was designed by JML, MKR, and RS. JML, JL, IV and RS performed genetic 
analyses. JML and RS wrote the manuscript and all co-authors helped interpret data, reviewed 
and edited the manuscript, before approving its submission. RS is the guarantor of this work 
and, as such, had full access to all the data in the study and takes responsibility for the integrity 
of the data and the accuracy of the data analysis. 

Acknowledgements 

This research has been conducted using the UK Biobank Resource. We would like to thank the 
participants and researchers from the UK Biobank who contributed or collected data.  This work 
was supported by NIH grants R01DK107859 (RS), R21HL121728 (RS), F32DK102323 (JML), 
R01HL113338 (JML, SR and RS), R01DK102696 (RS and FS), R01DK105072 (RS and FS), 
T32HL007567(JL), HG003054 (XZ), The University of Manchester (Research Infrastructure 
Fund), the Wellcome Trust (salary support for DWR and AL) and UK Medical Research Council 
MC_UU_12013/5 (DAL). Data on glycemic traits have been contributed by MAGIC investigators 
and have been downloaded from www.magicinvestigators.org.  Data on coronary artery disease 
/ myocardial infarction have been contributed by CARDIo-GRAMplusC4D investigators and 
have been downloaded from www.CARDIOGRAMPLUSC4D.ORG.  We thank the International 
Genomics of Alzheimer's Project (IGAP) for providing summary results data for these analyses. 

 

The authors have no competing financial interests to declare.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/082792doi: bioRxiv preprint 

https://doi.org/10.1101/082792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trait SNP 
Chr:position 
NCBI 37

Nearest Gene(s) 
Alleles 
(E/A) 

EAF 
Imputation 

Quality
Beta (SE) SE p-val  Most likely causal SNPs (probability)†

Sleep Duration (n=111,975)

rs62158211 2:114106139 PAX8 T/G 0.213 0.99 0.039 0.005 4.72 x 10-14 rs62158211 (0.16), rs62158213 (0.16), rs4618068 (0.16), 
rs1807282 (0.16), rs56093896 (0.16)

rs1380703 2:57941287
VRK2/LOC647016
/LOC100131953

A/G 0.618 0.89 0.025 0.005 8.44 x 10-8 rs1380703 (1)

rs10953765 7:114291435 FOXP2 G/A 0.447 0.98 0.022 0.004 2.96 x 10-7 rs10953765 (0.27), rs1456031 (0.14)

rs146977851 10:56570954 PCDH15 C/T 0.971 0.97 0.065 0.013 3.53 x 10-7 rs146977851 (0.85), rs75334053 (0.14)

rs61980273 14:94218949 PRIMA1 A/G 0.039 1.00 0.058 0.011 1.30 x 10-7 rs61980273 (1)

Insomnia Symptoms (n up to 31,767 cases and 26,935 controls) OR 95% CI

rs576106307 1:18007282 ARHGEF10L C/CT 0.934 0.89 1.07 1.10-1.04 2.66 x 10-7 rs576106307 (1)

rs113851554 2:66750564 MEIS1 T/G 0.057 1.00 1.26 1.20-1.33 9.11 x 10-19 rs113851554 (0.98)

rs376775068 8:145604659 ADCK5 G/C 0.934 0.67 1.11 1.16-1.06 6.81 x 10-8 rs376775068 (1)

rs145258459 17:32986155 TMEM132E C/T 0.983 0.69 1.23 1.13-1.35 2.13 x 10-8 rs145258459 (1.0)

rs531814036 17:43219921 ACBD4 C/CT 0.419 0.91 1.06 1.03-1.08 2.92 x 10-7 rs531814036 (1)

rs5922858 X:82971008 CYCL1 G/T 0.849 0.99 1.12 1.07-1.16 1.28 x 10-8 rs5922858 (1)

Males rs13192566 6:169961635 WDR27 G/C 0.860 0.99 1.14 1.09-1.20 3.17 x 10-8 rs13192566 (0.50), rs13208844 (0.50)

Females rs3792900 5:135393754 TGFBI C/T 0.470 0.99 1.1 1.07-1.14 2.16 x 10-8 rs3792900 (0.14), rs6894815 (0.07) 

Excessive Daytime Sleepiness (n<111,648) Beta SE

rs192315283 1:59531543 HSD52 C/T 0.010 0.76 0.126 0.025 3.55 x10-7 rs192315283 (1)

rs76645968 2:53827686 ASB3 G/C 0.977 0.99 0.073 0.014 1.79 x 10-7 rs76645968 (0.26), rs12328289 (0.26)

rs920065 3:5893776
MRPS35P1/ 
MRPS36P1

C/G 0.824 0.96 0.028 0.006 4.25 x 10-7 rs920065 (0.49)

rs115320831 4:159178375 TMEM144 A/G 0.702 0.98 0.024 0.005 3.68 x 10-7 rs115320831 (0.58)

rs35309287 5:146775386 DPYSL3 TA/T 0.970 0.94 0.067 0.013 1.25 x 10-7 rs35309287 (0.45), rs34398961 (0.45)

rs189689339 6:82375372 FAM46A T/C 0.003 0.67 0.226 0.044 2.13 x 10-7 rs189689339 (1)

rs17507216 15:83226925 CPEB1 A/G 0.232 1.00 0.026 0.005 1.59 x 10-7 rs17507216 (0.20), rs72751643 (0.11)

rs73536079 X:67154206 AR/OPHN1 T/G 0.002 0.90 0.634 0.115 3.94 x 10-8 rs73536079 (1)

rs182765975* 3:78538431 ROBO1 T/G 0.003 0.86 0.099 0.018 3.33 x 10-8 rs182765975 (0.33), rs191435135 (0.33), rs182979911 
(0.33)

rs142261172**12:126049981 TMEM132B A/G 0.004 0.92 0.106 0.018 9.06 x 10-9 rs142261172 (0.50),  rs189248622 (0.50)

E=effect allele, A=alternative allele, Chr=chromosome, OR=Odds Ratio, CI=confidence interval, INFO=imputation quality from Impute2. EAF=effect allele frequency.  Note, increasing beta and Odds 
Ratio indicate longer sleep duration in hours, increased insomnia symptoms, and increased sleepiness.  Analyses are adjusted for age, sex, genetic ancestry and genotyping array.  * denotes secondary 

analysis with additional adjustment for depression.  **denotes secondary analysis with additional adjustment for body mass index.  Bold denotes genome-wide significant signals (p<5x10-8). † Using 
PICS.  

Table 1.  Genome-wide significant (p<5x10-8) and suggestive (p<5x10-7) loci associated with sleep duration, insomnia symptoms, and excessive daytime sleepiness in subjects of European ancestry in 
the UKBiobank.
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    Beta SE OR 95% CI     Beta SE     Beta SE

-0.009 0.007 1.039 0.999-1.08 -0.036 0.007 0.036 0.008

-0.002 0.006 0.98 0.95-1.011 -0.008 0.006 -0.043 0.006

0.018 0.012 0.98 0.917-1.048 -0.009 0.012 0.099 0.013

0.001 0.009 1.264 1.202-1.329 -0.002 0.009 0.033 0.01

0.039 0.005 0.943 0.917-0.969 0.005 0.005 0.014 0.005

0.019 0.005 0.984 0.957-1.011 -0.023 0.005 0.021 0.005

1.00

8.18x10-13

rs3122163 6:55164327 HCRTR2 T/C 0.768 0.99 4.18x10-10

rs62158211 2:113822609 PAX8 T/G 0.214 0.99

A/G 0.159 0.99

2.72x10-11

rs113851554 2:66523432 MEIS1 T/G 0.056 1.00 3.97x10-16

rs694383 1:180834827 RGS16 C/G 0.030

SNP 
Chr:position 
NCBI 37

Nearest 
Gene

Alleles 
(E/A) 

EAF Causal SNPs (probability)

1.03x10-9

rs12140153 1:62352479 INADL T/G 0.099 0.93 1.06x10-10

rs76681500 1:77247749 AK5

rs12140153 (1)

rs76681500 (0.5732)

Imputation 
Quality

Multitrait p -
val

5.64x10-4

7.93x10-3

rs3122163 (0.0833), rs34694541 (0.0833), rs3122170 
(0.0833)

rs694383 (0.2207), rs509476 (0.2207),  rs1144566 
(0.2207), rs12743617 (0.2207)

rs113851554 (0.9619)

rs62158211 (0.1547),rs62158213 (0.1547), rs4618068 
(0.1547), rs1807282 (0.1547), rs56093896 (0.1547)  

9.11x10-19

1.31x10-5

8.68x10-5

Chronotype
Excessive Daytime 

Sleepiness

6.60x10-7

0.15

0.47

0.85

0.37

5.51x10-6

p -val p -val

2.59x10-6

1.50x10-12

2.61x10-14

Table 2.  Genome-wide significant (p<5x10-8) loci associated with a multiphenotype model of sleep duration, insomnia symptoms, excessive daytime sleepiness and categorical chronotype in subjects of European ancestry in the UKBiobank.

E=effect allele, A=alternative allele, Chr=chromosome, OR=Odds Ratio, CI=confidence interval. EAF=effect allele frequency.  Note, increasing beta and Odds Ratio indicate longer sleep duration,  increased insomnia symptoms, increased daytime sleepiness, and later chronotype.

0.52

Insomnia SymptomsSleep Duration

0.22

0.79

0.14

0.95

4.72x10-14

9.97x10-5

p -val p -val

0.05

0.27

0.75
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Figure 1.  Sleep traits are phenotypically and genetically correlated.    a.  Phenotypic 
correlation between the reported sleep traits, using Spearman correlation (r).  b.  Genetic 
correlation (rG) between the reported sleep traits, using LD-score regression67.  Color scale 
represents the strength of the correlation.  Chronotype ranges from extreme morning types to 
extreme evening types.    

Figure 2. Regional association plots for genome-wide significant loci.  Panel a sleep 
duration, b-d insomnia symptoms, e excessive daytime sleepiness, f-g composite trait of sleep 
duration, insomnia symptoms, excessive daytime sleepiness, and chronotype.  Chromosomal 
position is indicated on the x-axis and –log10 p-values for each SNP (filled circles/squares) is 
indicated on the y-axis, with the lead SNP shown in purple (400kb window around lead SNP 
shown).  Genes within the region are shown in the lower panel.  The blue line indicates the 
recombination rate.  Additional SNPs in the locus are colored according to linkage disequilibrium 
(r2) with the lead SNP (estimated by LocusZoom based on the CEU HapMap haplotypes or 
within UK Biobank (panel c).  Squares represent directly genotyped SNPs, and circles represent 
imputed SNPs.   

Figure 3.  Partitioning of genetic architecture of sleep duration, insomnia symptoms, and 
excessive daytime sleepiness across functional annotation categories. Fold enrichment 
estimates for the main annotations of LD-score regression50 are indicated on the y-axis across 
functional annotation class on the x-axis for each trait.   Error bars represent the 95% 
confidence interval around the estimate.  25 functional annotations were tested, and annotations 
passing the multiple testing threshold (p<0.005) are shown.  For context, the average 
enrichment across functional annotation categories is shown for 9 traits with significant genetic 
correlation to at least one sleep trait (GWAS traits correlated with Sleep: includes GWAS for 
BMI, waist circumference, birth weight, depression, educational attainment, three glycemic traits 
in non-diabetics, and schizophrenia) or for 5 traits with no significant genetic correlation to any 
sleep traits (GWAS traits uncorrelated with Sleep: includes GWAS for Alzheimer’s Disease, 
Type 2 Diabetes, autism, rheumatoid arthritis, and height). Abbreviations:  H3K9=histone H3 
lysine 9.  

Figure 4.  Shared genetic architecture between sleep duration, insomnia symptoms, or 
excessive daytime sleepiness and 20 behavioral and disease traits. LD-score regression67 
estimates of genetic correlation (rG) of sleep duration (a), insomnia symptoms (b), and 
excessive daytime sleepiness (c) are compared with the summary statistics from 20 publicly 
available genome-wide association studies of psychiatric and metabolic disorders, immune 
diseases, and other traits of natural variation.  The x-axis indicates the phenotype compared to 
each sleep trait and the y-axis indicates genetic correlation (rG).  Error bars are standard errors.  
Abbreviations: BMI=body mass index, ADHD=attention deficit hyperactivity disorder, T2D=type 
2 diabetes. * p<10-3, **p<10-5, ***p<10-7.  After Bonferroni correction, p-value cut-off is 0.0025.  
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