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Abstract

This paper introduces a method for automatic workflow extraction from texts

using Process-Oriented Case-Based Reasoning (POCBR). While the current

workflow management systems implement mostly different complicated graphi-

cal tasks based on advanced distributed solutions (e.g. cloud computing and

grid computation), workflow knowledge acquisition from texts using case-based

reasoning represents more expressive and semantic cases representations. We

propose in this context, an ontology-based workflow extraction framework to

acquire processual knowledge from texts. Our methodology extends classic NLP

techniques to extract and disambiguate tasks in texts. Using a graph-based re-

presentation of workflows and a domain ontology, our extraction process uses

a context-based approach to recognize workflow components : data and control

flows. We applied our framework in a technical domain in bioinformatics : i.e.

phylogenetic analyses. An evaluation based on workflow semantic similarities

on a gold standard proves that our approach provides promising results in the

process extraction domain. Both data and implementation of our framework are

available in : http://labo.bioinfo.uqam.ca/tgrowler.

Keywords: Workflow extraction, Ontologies, Word Sense Disambiguation,

Similarity
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1. Introduction

Current Workflow Management Systems provide a step by step guidance for

users through sophisticated graphical workflow modelling [1]. Tracking these

executions can be used to adapt workflows to new situations. This can be

supported by reasoning methods like Process Oriented Case-Based Reasoning

(POCBR) [2] which is a newly merged branch from the Case Based Reasoning

(CBR) field. Because case engineering is a complicated and a costly process,

automatic case-based acquisition from texts has been a major focus research in

the last decade [3, 4, 5].

Textual CBR approaches vary widely in their scope according to their use

of Natural Language Processing (NLP) methods and highly dependent on the

intended applications. Even though [6] compared three different methods : key-

based, grammar-based and machine learning, they considered only imperative

sentence which cover more than 50% of the whole data and their interpreta-

tion modules are limited to the command tuple representation (A : type of

the action, textual parameter to an action, the target on which to act). In [7],

the authors developed a process extractor trained with a few manually created

positive samples. A set of extraction rules are generated and then applied to au-

tomatically crawled documents (from e-how web sites, e.g. www.wikihow.com).

However, their model have only successfully extracted ∼ 42% of these docu-

ments. In [4], the authors propose to use a full fledged NLP solution to extract

and enrich workflows from texts. Their frame-based Information Extraction (IE)

approach to resolve anaphoras in texts uses frame patterns to trigger phrases

with slots filled with content extracted from texts. A sequential pattern mining is

also applied to mine anaphora-rules and then search for the most frequent term

cooccurrences to resolve an anaphoric reference. A similar approach is proposed

by [3] to resolve "universal references" using a domain-specific ontology. Given

that ontology, they map the anaphoric reference to a concept. Their resolution

is based on heuristics and very dependent to the domain application. In [8], the

authors proposed a Plan Acquisition Architecture to build an augmented plan
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in the form of predicates from extracted raw content by reducing the article into

a list of two kinds of information : input-tool (predicate that describes the tool

properties) and action (action description with action properties). They also

use data mining and statistical algorithms to identify particular subsequences

of plans to specific contexts. Instead of manually composed plans from a set of

atomic actions, the authors in [9] proposed to generate plans by transforming

natural language task instructions from how-to sites into formal symbolic robot

plans. Their evaluation results show that their planner is able transform about

80% of the instructions. This number can be increased with a better syntax

parser and more mappings to find connections between WordNet synsets and

ontological concepts. The most recent approach to extracting situation onto-

logy from how-to instructions is found in [10] where an automatic method using

syntactic patterns and CRF-based probabilistic model are used to classify ac-

tions and objects such as time and place. Although the pattern-based approach

achieves a high level accuracy, its coverage is limited to the rules constructed

semi-automatically from small fraction of sentences and possible patterns to

reveal the associations between the verb and the subject/object. In [11], the au-

thors proposed a novel attempt to extract procedural knowledge from Medline

abstracts using the TAM model — a triple combination of Target , Method ,

and Action, and designed a text mining method with deep language processing

analysis. This analysis contains a (1) preprocessing step (syntactic and ontology

tagging), (2) purpose/solution sentence classification and (3) the relationship

between two processes is assigned to a control flow (sequential, parallel, causal,

etc.).

While those techniques will continue to be essential, new challenges will also

emerge as we understand more about the nature of human experience and its role

in making an application system. This knowledge grounded in scientific texts

may present complex semantic ambiguities. To the best of our knowledge only

anaphora resolutions have been studied in procedural texts. However, seman-

tic ambiguities arise more difficulties : i.e. word sense ambiguities (polysemy).

Word Sense Disambiguation (WSD) [12] is the process to identify the sense

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/082784doi: bioRxiv preprint 

https://doi.org/10.1101/082784


or senses of a polysemic terms. Although important, WSD is an ’intermediate’

task, it is unlikely that anyone other than linguistics would be interested in its

results. However, we found that, at least in bioinformatics domain, polysemic

words are also common even in very technical domains such as in phylogenetic

analyses where specific softwares and programs could be used for different pur-

poses. Generally, programs may contain multiple packages and processes and

offer multiple supports. Thus, even specific programs may be used in different

contexts. Without a context-based approach it is very difficult to reconstruct a

phylogenetic analysis workflow from texts with a simple term-based extraction

pipeline. Identifying activities (tasks) and organize them in a control-flow seem

to be a complicated task, specially when it can be applied in different positions

in a workflow.

We tried to not limit ourselves to highly structured procedural texts but

to a domain specific problem to extract only domain-relevant meanings from

it. We propose in this paper an ontology-based approach to extract enriched

bioinformatics workflows from texts.

Section 2 presents certain choices made in designing our ontology-based ex-

traction process. Two formalisms are presented : workflow representation and

ontologies. Additionally, one running example is introduced to explain our re-

presentational choices for phylogenetic analyses. Section 3 is the main core of

the paper. It describes in details the process of workflow extraction. A text is

analyzed with a pipes-an-filter NLP pipeline. Section 4 presents experiments and

results of our proposed process by comparing automatically obtained workflows

with a gold standard. Section 5 finally discusses results and future work.

2. Formalisms for enriched workflow representations

2.1. Workflow representation

Traditionally, workflows are "the automation of a business process, in whole

or part, during which documents, information or tasks are passed from one par-

ticipant to another for action, according to a set of procedural rules" [1]. In
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general, workflows consist of a set of tasks (activities) combined with a control-

flow such as sequences, parallel (conjunction) or alternative branches (disjunc-

tion), as well as repeated executions (loops). We are interested in this work

in workflows as sequences and parallel executions of program tasks. These lat-

ter consume data items i.e. input sources and output products. The data-flow

presents interactions (relationships) between them (data items) and tasks. In

addition, a task has a set of semantic descriptors (e.g. parameters). Data items

too. These metadata describe additional information about data, e.g. provenace

of data.

Different types of workflow representations are proposed in the literature of

POCBR [2, 1]. Petri Networks are the most popular design representing the

dynamic aspect of processes. However, the representational bias (as in other

languages) of such model should be considered while extracting workflows, e.g.

multiple instantiations of a task or sub-task. Enriched workflows with semantics

describing task parameters and metadata on data items are also to be considered

while representing workflows in order to make the workflow more expressive and

hence reusable.

In this study, we illustrate our approach in the domain of phylogenetics [13].

Inferred from nucleic acid (DNA or RNA) or protein sequences, phylogenetic

relationships represent the evolutionary history of a group of species. During

phylogenetic steps, multiple bioinformatics programs (softwares) are used. Here,

the tasks represent phylogenetic programs and their combination of parameters

and data items referring to input/output data are enriched with metadata.

An example of a phylogenetic analysis of hemagglutinin (HA) protein se-

quences, extracted from the article text of [14], is illustrated in Fig. 1. This

workflow represents the phylogenetic solution to study the evolutionary history

of HA proteins according to the following steps : (1) multiple sequence align-

ment, (2) model representation, (3) tree inference and (4) result visualization.

Each step is composed of partially ordered program tasks dependently linked

with each other. These dependencies represent control and data flows enhanced

with semantic annotations. For instance, BionJ, a neighbour joining program,
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Figure 1: Example excerpts from the article [14].

gets Hemagglutinin sequences collected from the Genbank database as input

and produces phylogenetic trees.

Definition 2.1 (Workflow data language). Given a universe of task items

and data items ωO, a workflow language ∆W defines workflow records of partially

ordered sequences of inter-related objects o ∈ O. A workflow w ∈ ∆W is a direct

acyclic graph w = (ζ,Θ) where ζ = 〈{o1,1, o2,1, . . . , oi,1}, . . . {. . . , oi,j , . . .},

. . . , {. . . , om,n}〉 is the sequence of objects i at each transaction j (step). In

turn, Θ = {θ1, θ2, θk, . . . , θp} is the set of triples where θk = (i1, l, i2) represents

the link of type l between the object at position i1 in w.ζ, i.e. w.ζ[i1] and the

object at the position i2, i.e. w.ζ[i2].

Intra-transactional relations are not allowed in ∆W forbids links within the
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same transaction : in a valid triple (i1, l, i2), i1 and i2 belong to different tran-

sactions whereby the transaction of i1 is before the one of i2.

Definition 2.2 (Transaction mapping). Let τw : N→ N be the function that

maps item positions to transaction positions. ∀θk = (i1, l, i2) ∈ w.Θ, τp(i1) <

τp(i2).

Fig. 2 shows a sub-workflow representation from the above example in Fig. 1.

Phylogenetic programs and parameters and their input/output data and meta-

data are represented in a partially ordered sequence and a set of relations bet-

ween them. For example, Hemagglutinin alignments (o2,1) are the input (θ3) for

the neighbour joining program BionJ (o3,1) which generates phylogenetic trees

(θ4). The order between phylogenetic programs represents the partial execution

order of phylogenetic steps. The parallel execution of programs is represented by

transactions in w.ζ. Thus, a workflow w is represented by a sequence of itemsets

(of tasks and data items) and a set of links between them defined in the universe

of objects in an ontology.

Hemagglutinin alignments trees jModelTest BionJ MEGA MEGA

(o1,1 , 
hasDataSource, 

o2,2)

(o2,1 , 
isInputOf,  

o3,1)

(o2,1 , 
isInputOf, 

o4,1)

(o2,2 , 
isOutputOf, 

o4,1)

(o2,1 , 
isInputOf, 

o4,2)

1,1 2,1 2,2 3,1 4,1 4,2 4,3

!1 !2 !3 !4 !5

W1ζ

W.θ

O O O O O O O

(o2,2 , 
isOutput, 

o4,2)

GTR

3,2O

!6

(o2,1 , 
isInputOf, 

o4,3)

!7

(o2,2 , 
isOutput, 

o4,3)

!8

Figure 2: Workflow Sequence Language example as a set of partially ordered concept w.ζ

and a set of relation triples w.Θ. Here, items of the same set are seperated with dotted lines.

2.2. Ontology representation

Formally, an ontology is defined as a six-tuple Ω = 〈C,O,R,L ≤Ω, ρ〉 where

O is the set of all object items, i.e. individual tasks and data types, L the set of

all links between objects, C the set of all concepts, and R the set of all relations

between concepts. Moreover, concepts and relations are organized in taxonomies

w.r.t. the generality order (is-a relationship) of the ontology ≤Ω : HC = 〈C,≤Ω〉

and HR = 〈R,≤Ω〉, the hierarchical order in the ontology. ρ ⊆ C × R × C is

a ternary relation whose triples c1 × r × c2 express the connection between a
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relation and its domain and range concepts (c1 and c2, respectively ). Objects

o ∈ O and links l ∈ L are instances of concepts c ∈ C and relations r ∈ R,

respectively.

Definition 2.3 (Universe of objects). The universe of objects Ow is defined

in the domain ontology Ω. Formally, a six-tuple Ω = 〈C,O,R,L ≤Ω, ρ〉 where C

is the set of concepts, O is the set of objects, L is the set of links and R is the set

of domain relations. Concepts and relations are organized in taxonomies : HC =

〈C,≤Ω〉 and HR = 〈R,≤Ω〉, where ≤Ω is the generality order (e.g ’subClassOf’

RDF relationship) in the ontology Ω. ρ is a ternary relation C1×R×C2 which

connects two concepts Ci with one relation R ∈ R. C1 is called the domain

concept and C2 is the range concept.

hasSubClass

hasSubClass

hasSubClass

hasSubClass

hasSubClass hasSubClass hasSubClass hasSubClass

hasSource

isOutputOf

isOutputOf

isOutputOf

isOutputOfisInputOf
isInputOf

isInputOf

isInputOf

Figure 3: A sample from the phylogenetic domain ontology. Grey rectangles illustrate

concepts and coloured arcs represent relationships between them.

Fig. 3 shows a sample from the domain ontology of phylogenetic anlayses 2.

Grey rectangles represent concepts, hard arcs represent the hierarchical rela-

tionships (i.e. ’hasSubClass’ which is the inverse of ’subClassOf’ in RDF) bet-

2. http://bioportal.bioontology.org/ontologies/PHAGE
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ween concepts and the dotted ones represent the other semantic relations. For

example, the first step in a phylogenetic analysis is the ’data collection step’

which represents program tasks collecting multiple data (’Data Types’ : high-

lighted concept in green) from different sources ’Data Source’. Relations between

data types and programs are input/output relationships.

3. Extraction process

Our framework is based on a pipes and filters architecture [15] using the

NLP software GATE (General Architecture for Text Engineering) developed

by Cunningham et al. [16]. A filter contains an element performing a data

transformation on the data stream. The pipes connect the data stream from

the output filter to the input one. Filters are independent so one could add or

delete them without affecting the execution of others. The following sections

describe the different sub-tasks of our workflow extraction solution. Following

the standard NLP pipeline, the very first steps are going from the morpholo-

gical analysis of the text to the identification of syntactic classes of terms and

sentences. Section 3.1 quickly goes through those steps. We present some com-

monly used techniques and tools and we discuss how we adapted them to our

issues. Taking the output of those steps, section 3.2 describes our solution to

recognize domain terms based on concepts and relations from the ontology. Sec-

tion 3.3 proposes a way to recognize word sense ambiguities from the ontological

concepts. Our WSD technique is supported by a supervised machine learning

approach. Section 3.4 describes the way we create a training set to build a WSD

and a relational model. Sections 3.5 presents the features and the classifier that

we use to learn WSD and relationships in texts. Section 3.6 details the process to

reconstruct data and control flows from the extracted and disambiguated terms

and finally section 3.7 presents the similarity workflow of extracted workflows

based on a gold standard created by an expert.
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Sentence

Verb
Phrase

Noun
Phrase

Prepositional
Phrase

Verb
Phrase

Noun
Phrase

validate neighbour-joining trees by MEGA using 1000 replicates.

Noun
Phrase

We
(PRP) (VBP) (JJ) (NNS) (IN) (NN) (VBG) (CD) (NNS)

PRP: Personal pronoun VBP: Verb, non-3rd person singular present JJ: Adjective NNS: Noun, plural

IN: Preposition or subordinating conjunction NN: Noun, singular or mass VBG: Verb, gerund or present participle

CD: Cardinal number

Figure 4: An example of chunking trees.

3.1. Morphosyntactic annotation

The initial step segments the text into lexical items called tokens equivalent

to words. In general, tokenization operates tokens with white spaces between

them as far as we treat english texts. Due to the specificity of the vocabulary of

bioinformatics texts, we use a specialized biomedical tokenizer which relies on

a dedicated token lattice design pattern and an adapted Viterbi algorithm for

bioinformatics tokens [17]. For instance, "don’t" is treated as two tokens, while

the gene "4’OMT2" is really one. The text is also segmented into sentences using

punctuation patterns. The extracted tokens and sentences are further tagged

with their appropriate grammatical and syntactic classes. At first, a Part-Of-

Speech (POS) tagging is executed in order to identify grammatical classes. We

use the MedPost POS tagger [18] which is based on a HMM (Hidden Markov

Model) model trained over 1,000 XHTML PubMed texts. Their tagger achieved

an accuracy of 97.43%. Next, we use a 3-level syntactic parser (chunker) to

identify active and passive verb phrases in sentences. The depth of the "chunk

tree" is strictly limited to 3 (root, phrases and POS tags). Chunkers complexities

are equivalent to a finite-state automaton and provides a very simple grammar

and sufficient to continue with the extraction process. We present in Fig. 4 an

example of a generated chunking tree.
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3.2. Semantic annotation

This step is about recognizing workflow items : i.e. tasks, parameters, data,

metadata and relations between them. For this purpose, an ontology-based

gazetteer (terminology) is used to map domain categories of terms in texts.

This step is important to any workflow extraction process. Simple words mat-

chings between ontology instances and text tokens wouldn’t be sufficient to re-

cognize workflow elements in texts. Several syntactic and semantic ambiguities

are present in natural language [19]. For this purpose, we use (1) specific JAPE

rules to extract and filter workflow concept and relation instances from texts and

(2) a word sense disambiguation model to clarify other semantic ambiguities :

i.e. multi-class classification (see next sub-sections).

In order to filter concept bad matchings from the ontology, we use specific-

domain stop-words, original XHTML markup annotations (from the texts) and

regular expression (regex) patterns written in JAPE language. For example,

when gene or protein names are nouns, verbs or adjectives, their probability to be

exact matchings in a text are never 1. For instance, the gene term ’ACG ’ is very

similar to DNA codon sequences, e.g. in ’AGC ACT GTA . . .’. In addition, some

bioinformatics software names have similar issues. For example, the word ’align’

in the context of phylogenetics presents a lexical ambiguity too. Commonly,

’align’ is a frequent verb in phylogenetics texts but it’s also used as a program

name, that’s why the probability of this term is never 1. However, the probability

of ’align’ to be the name of a software and is written in lowercase is really near to

zero. Thus, such pattern is need to be considered. An example of such recognition

written in Jape would be :

Rule R1 :

({ClassC.inst =∼ ”ˆProgramID_”,

Token.category == ”V B” || Token.category == ”NN”,

Token.orth == ”lowercase”}) : class

−− >

inputAS.remove(class) ;

Here, ClassC.inst is the instance ID in the ontology, Token.category is
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the POS tag of a token and Token.orth is its orthography. This rule deletes

program terms as verbs and nouns written in lowercase from the set of semantic

annotations. Hence, for each (most) specific category 3 in Ω, we build one rule

for the most sensitive POS categories grounding lexical ambiguities : i.e. verbs

and nouns.

For the relation recognition step, we adopt the following hypothesis : "a

relation between two concepts (domain and range) may exist in the same sen-

tence evoking the instances of those concepts. The link is defined in the verb

of this sentence". For this purpose, we use ontology triplets ρ = (C1, R, C2) to

match ontological relations R with links L in texts with θ = (O1, L,O2). Rela-

tion instances (links) are recognized based on all relation triples that exist in Ω

compatible with its its elements (domain, range and link type). The interpreter

loads all the triples from the ontology and maps tagged concepts as domains and

ranges in texts for each link. For example, for the triple ( ”BootstrapProgram”,

”hasParameter”, ”NbBootstraps”), we search for all its domain and range na-

med entities (instances) from the same sentence in texts. For example, a sen-

tence candidate, in this case, would be : "We validate neighbour-joining trees

by MEGA (domain) using (link) 1000 replicates (range)".

If a match is found, a set of patterns is applied for each relation to filter bad

matchings. For example, if the phrase voice is active, then the verb evoking the

relation domain and range might be between these terms taking into account the

order of domain and range terms in the sentence (i.e domain occurring before

range). An example of relation pattern recognition is shown bellow (R2) where

dStart, rStart and dEnd correspond to start and end positions of terms in the

sentence.

Rule R2 :

(({V erb Phrase}) contains ({Domain} {Token}+ {Range})) : p

3. A most specific concept/relation is the leaf category (which has no child category) in

the hierarchies HC and HR.
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−− >

{for(Annotation d : domain)

for(Annotation r : range)

if(dStart < rStart && dEnd < rStart && p is active)

outputAS.add(dStart, rEnd, ”ClassR”, p.verb)} ;

3.3. Word sense ambiguity recognition

The previous process of semantic annotation faces known hurdles rooted

in the word sense ambiguities : i.e. polysemy. The problem is that words often

have more than one meaning and sometimes completely different meanings. The

meaning of a word in a particular usage can only be determined by examining its

context. This is, in general, a trivial task in NLP. For example, in the following

two sentences, the software MEGA, a multi-purposes package of programs, is

used in different contexts.

— We validate neighbor-joining trees by MEGA using 1000 replicates.

— Tree data was visualized using MEGA.

In the first sentence, MEGA is used to validate the phylogenetic hypothe-

sis which corresponds to the ’HypothesisValidationProgram’ concept. However,

in the second sentence, the program MEGA is used in the visualization step

which corresponds to the ’TreeVisualizationProgram’ concept. Multi-purpose

packages programs such as MEGA, PHYLIP and BEAST refer to multiple

concepts in the domain ontology. A new concept ’GeneralPurposePackages’ is

added to the ontology Ω. This is done automatically while interpreting the hie-

rarchy of concepts HC to search for individuals (instances) belonging to multiple

task concepts. For each concept c ∈ C belonging to a multiple inheritance in

the hierarchy HC , we add the RDF triples : <: c > < rdfs : subClassOf >,<:

MultiplePurposePackages >) in Ω. Moreover, we add the equivalence relation-

ship between c and the ambiguous concept ’MultiplePurposePackages’, i.e :

<: c > < owl : sameAs > <:′ MultiplePurpose − Packages >′ (see example

in Fig. 5). Hence, after discovering polysemic concepts in the ontology, we tag

their ambiguous instances in texts.
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MSA
Task

Inference
Task

MSAProgram*
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Task

MSA
Task
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Task

MSAProgram ==
MPP
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Multiple
Purpose

Packages (MPP)

Inference
Program == 

MPP

Validation
Program == 

MPP

rdfs:subClassOf

rdfs:subClassOf

(1)

(2)

We validate neighbor-joining trees by MEGA using 1000 replicates.

* polysemic concept

== <owl:sameAs>

Figure 5: Ontology transformation. An example of multiple inheritance grounding polysemic

concepts in Ω : (1) the ontology before (having multiple inheritance), (2) the ontology after

(keeping only the most right relation (dotted arrows) and adding a new concept for each

ambiguous task).
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3.4. Word sense disambiguation

We propose here a supervised machine learning approach to WSD. The pro-

blem of WSD is defined as follows : "given a set of pre-tagged polysemic words,

WSD is to classify each word with its appropriate task concept (sense) with high

accuracy and efficiency". Pre-tagged words are usually created manually, but

here we propose to construct the WSD ground truth in a semi automatic way

using the domain ontology and the syntactic tags in sentences.

Rule R3 :

Priority : 90

(({V erbPhrase}) contains ({GeneralPurposePackages})) : context

−− >

{if(context is active &&

context.verb.root in {”valid”, ”test”, . . .} &&

context.object.root in {”bootstrap”, ”replicate”, . . .} )

GeneralPurposePackages.put(”resolution”, ”V alidationProgram”); } ;

Rule R3 shows an example of JAPE rules to generate the WSD learning

set. Here, both of the context concepts (see section 3.2 ) and the syntactic tree

(see section 3.1) are used to clarify the concept c into the ’ValidationProgram’

concept. The set context.verb. root are root verbs extracted automatically from

the Wordnet synonyms [20] of the parent concept c′ in HC (i.e from the level

immediately above : c ≺can c′). The set context.object.root are also Wordnet

synonyms of Parameters terms. These latter are used (if they exist) as hints

to classify the polysemic program to its right class. The pattern R3 verifies if

the verb in the active voice phrase is about testing or validating something.

In addition, if a validation parameter is found in the object of the sentence,

then the ’GeneralPurposePackages’ concept is disambiguated to the concept

’ValidationProgram’. Each WSD rule has a priority probability to fire them by

order. For each polysemic concept created in the previous step, we generate one

WSD rule. An additional rule is added by the expert to represent the default

concept if no heuristic is valid (default rule).
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3.5. Learning module

In order to create a model for automatic WSD, a set of features is generated

representing the dataset of already tagged words in texts. For example, in order

to classify the term ’MEGA’ (ClassC ) in the example of Fig. 6, we generate the

set of features (featuresC ) reflecting its context. The context covers a window

made of : the Wini concepts (Token.class) and POS tags (Token.category) pre-

ceding and the Wini ones following the concerned word in the sentence. The

window of concepts and POS tags (Wini) is fixed in the learning step. In this

example, wini = 3, hence, Token.class = {DataType, MaximumParsimonyAp-

proach} and Token.category = {Determiner, Noun, Preposition}. In addition,

in order to classify a relation (classR=has_used_by_program) between the am-

biguous word ’MEGA’ (relation’s domain) and the data type ’alignments’ (its

range), we define its context as the set of tokens between the domain and the

range. Now, features (featuresR) represent context tokens’ POS tags (Tokens-

Between.category), their distance (in number of tokens between domain and

range), direction (domain-to-range) and verbs between the concerned terms. As

a feature selection approach, we use a sequential forward selection [21] while

adding f features at a time. The selected best set of features are then used in

the construction of a model for automated annotation of ambiguous words in

texts and their relations.

We use the PAUM model (Perceptron Algorithm with Uneven Margins) [22]

to learn WSD and relation classifications based on the extracted features. PAUM

is a hybrid SVM (Support Vector Machine) and Perceptron (neural network)

classifier that was designed especially for imbalanced data and has successfully

been applied to various semantic annotation problems [23, 24]. This algorithm

differs from other classifiers as it treats positive and negative examples diffe-

rently by introducing two margin parameters τ+ and τ− into the updating rules

for the positive and negative examples, respectively. Here, τ+ and τ− simulate

context examples (see Fig. 6), hence, we could increase/decrease the distance

between an ambiguous concept and its surrounded ones. This reflects the in-

tuition that the nearer a neighbouring concept is, the more important it is for
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ClassR

DataType
Maximum 
Parsimony  
approach 

ClassC

Similarly, alignments were examined and investigated by MP approach with heuristic search in MEGA.
TokenToken Tok Token TokenTo T T Token To Token Token T Token

NNRB VB
N VBD DTC

C
I
N

N
N NN IN DT NN I

N NN

Token.category (POS) [-3,+3]
Token.class [-3, +3]

TokensBetween.category
TokensBetween.classC
distance
direction
verbs

featuresC

featuresR

RB: Adverb ; NN: Noun, singular or mass ; VBN: Verb, past participle ; VBD: Verb, past tense ; CC: Coordinating 
conjunction ; DT: Determiner ; IN: Preposition or subordinating conjunction

Phylogenetic 
Inference 
Program*

has_used_by_program: -were-examined—investigated

Sentence

has_used_in_approach: -were-examined—investigated

Figure 6: An example of learning features for WSD concepts and relation extraction from

texts.

classifying the given token. It is about the same intuition for the relation clas-

sification. We modelize the distance between domain and range concepts of one

relation with τ− and τ+ parameters representing the positive and the negative

token annotations between relation components. PAUM learns how to update

its learning rate and margin parameters to maximize this distance [22]. After

tuning (in number of features, margin parameters, etc.) and training our mo-

dels, we applied them to the test set (test corpus) which constitutes 1/3 of the

available corpus (We note the other 2/3 are used for training). Extracted terms

and links are then evaluated using different measures like precision, recall and

F1measure [25].
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3.6. Workflow reconstruction

From recognized links between concept instances in texts, we build our

concrete workflow knowledge database where items are the named entities or-

dered by the top-level pattern in the domain ontology. Concept and relation

instances serve to identify respectively the data-flow and the control-flow. For

example, from the tuples : ρ1 = (Alignments, "isOutputOf", ClustalW), ρ2 =

(Alignments, "isInputOf", MEGA), we construct the control-flow : w.ζ = 〈 {Ali-

gnments}, {ClustalW}, {MEGA} 〉 and the data-flow : w.θ = (ρ1, ρ2, ρ3) where

ρ3 = (Alignments, "genInputTo", ClustalW). The partial order in the sequence

w.ζ is carried out with the ’generate input to’ (genInputTo) relation which is

the result of the transitive relation between an input and output data between

two tasks from the ontology Ω .

Fig. 7 shows an example of workflow reconstruction from a domain ontology.

The hard black arcs represent the possible concept matchings between the onto-

logical workflow pattern (grey rectangles) and the workflow sequence w1.ζ (blue

rectangles). The first set in w1.ζ : {Sequences, Alignments, Tree} represents the

data types. While relations ρ between datatypes and programs ’ClustalW’ and

’MEGA’ represent the data-flow, the sequence of itemsets in w1.ζ represent the

control-flow.

3.7. Workflow similarity measure

Here, we calculate the similarity measure sw(a, p) ∈ {0..1} which calculates

the similarity between a gold standard workflow a and a predicted one p. Each

workflow a, p is represented by the couple (ζ,Θ) in ∆W . The similarity between

two workflows a and p is given by the following formulas :

sw(a, p) =
sζw + sθw

2
(1)

sζw(a, p) =

∑m
j

∑n
i (wζ(a.oi,j , p.ζ))

n
m

(2)
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‘Multiple Sequence 
Alignment Program’

‘Model Selection 
Program’

‘Phylogenetic 
Inference Program’

ClustalW MEGA

Tree

Sequences

genInputTo

‘Phylogenetic
trees

Alignments

‘alignment
sequences’

‘nucleic or 
protein 

sequences’

isInputOf

isInputOf

isOutputOf

isOutputOf

Workflow
W1

Ontology
Ω

Figure 7: An example of a workflow reconstruction from a domain-ontology.

sΘ
w(a, p) =

∑p
i (w

Θ(a.θk, p.Θ))

p
(3)

Herem, n and p are respectively the total number of steps, items per step and

relations in a workflow. Each object oi,j is weighted by the accuracy measure

wζ = {wζt1 , w
ζt
2 , w

ζt
3 } and each property θk is weighted by wΘ = wΘt × wΘs

where the weight wΘt ∈ {0..1} is the degree of an object term accuracy and

wΘs ∈ {0..1} is the degree of a link term accuracy. The semantic similarity of

a predicted workflow is then the mean of its component accuracies in the gold

standard.

wζt1 = 1 is the weight given if the object a.oi,j is found in p.σ and is correct.

wζt2 = 0.6 is the weight given if the object a.oi,j is found in p.σ and is partially

correct. Finally, wζt3 = 0 if the object a.oi,j is not found in p.σ. In the relation

side, we tuned the weights as follows : wΘt
1 = 1, wΘt

2 = 0.6, wΘt
3 = 0.1, wΘs

1 = 1,

wΘs
2 = 0.6 and wΘs

3 = 0. Hence, wΘt are the weights given if the term of

a link (e.g. ’isDataSource’) is correct, partially correct or not. Same for wΘs ,

weights represent the correctness degrees of relations structure : domain and

range terms. Weights values are inspired from the work of [26] where lenient
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precisions and recalls are calculated given a partial overlap measure of terms.

4. Experiments and results

4.1. Dataset

For this study, we downloaded scientific articles from the digital repository

PubMed Central PMC database (published from January until April 2015) in

XHTML format. 320 texts have been extracted. At first we downloaded more

than 1000 recent articles, journals and conference papers having at least one sec-

tion : ’phylogenetic analysis’ or ’phylogenetic analyses’. However, these sections

may have not sufficient information to reconstruct workflows from texts. Thus,

we filtered the downloaded articles based on the smallest ontological pattern

that any phylogenetic analysis should represent. A phylogenetic study might

use at least one datatype and a phylogenetic inference program (see Fig. 3).

In addition, we constructed at first a relational database gazetteer (in MySQL)

from different well-known databases in the phylogenetic literature such as Gene

ontology, NCBI , UniprotKB and from Felsenstein’s web site 4 [27]. The termi-

nology is then reorganized in a domain ontology in order to recognize terms

and relations in texts. We used the Quest-Ontop plateform [28] to map MySQL

classes to SPARQL concepts in a domain ontology. The generated ontology pre-

sents 17 different object properties (relations), 44,581 concepts (with 7 root

concepts and 111 unique concepts) and more than 1,300,000 unique instances

without counting the synonyms. Root concepts represent the seven top tasks

(steps) of a phylogenetic analysis. Our ontology is free to access under the Bio-

portal repository : http://bioportal.bioontology.org/ontologies/PHAGE.

The Gate implementation of our workflows extractor is available in : http:

//labo.bioinfo.uqam.ca/tgrowler.

4. http://evolution.genetics.washington.edu
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4.2. Results

Following experiments are obtained from the 100 extraction results by the

human expert (gold standard).

In the first experiment, we evaluate the PAUM WSD model. We use pre-

cision, recall and F1measure metrics. A 10-fold cross validation was run over

the PAUM classifier to choose the best parameters : τ− = 5, τ+ = 50, where

τ− and τ+ are respectively the negative and positive margins. We have pi-

cked the best values for τ− from {−10,−5,−1, 0, 1, 5, 10} and for τ+ from

{−100,−50,−10, 0, 10, 50, 100} based on the validation test. We chose the whole

set of proposed features, since all POS and concept context tags give the best

F1Measure. The best context window is wini = 5 based on our experiments.

In the second experiment, we evaluate the relation extraction model. Same

as in the previous experiment, we ran a 10-fold cross validation over the PAUM

Relation Extraction (PAUM RE) classifier. We chose the best features and best

parameters as follows : τ− = 1, τ+ = 10. Selected features are : tokens POS,

concepts, distance (in terms of number of tokens), direction and the list of verbs

between domain d and range r links. Due to the space constraints, we only show

here the precision, recall and F1Measure for the best configurations.

Table 1: PAUM Word Sense Disambiguation and relation extraction evaluation results.

Precision (%) Recall (%) F1Measure (%)

PAUM WSD 99.21 66.66 79.74

PAUM RE 72.63 84.22 77.24

Table 1 shows results of WSD and relation extraction learning. For PAUM

WSD, the recall is the ratio of total amount of ambiguous words correctly di-

sambiguated over the total amount of ambigious words in the gold standard,

and the precision is the ratio of the total amount of correctly disambiguated

words over the total of generated ambigious words. Our PAUM WSD model is

highly precise (99.21%) but predicted words represent 66.66% of the total num-

ber of ambiguous words in the gold standard. This is understandable since the
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context of an ambiguous word could be out of it’s sentence context. Hence this

is one of our context-based limitation hypothesis. PAUM RE model presents

different results in terms of precision and recall from the PAUM WSD but it

shows similar F1Measures. PAUM RE covers 84.22% from the actual relations

in the gold standard, however, 72.63% of the generated relations are correctly

predicted.

Mean(Workflows’ Similarity): 0.8289

Mean(Data-flow links’ Similarity): 0.8892

Mean(Objects’ Similarity): 0.7871

Mean(Control-flow Links’ Similarity): 0.8910

Figure 8: Workflow similarity distributions.

Fig. 8 shows the similarity distribution results obtained through the evalua-

tion of 100 gold standard workflows. Generated workflows are 82.89% similar
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with the actual workflows extracted by the expert (first figure on top in Fig.8).

While, the best mean workflow similarity is 100%, the worst workflow simila-

rity is 54.68% which means that at the worst cases our workflow extraction

framework will probably extracts the half of the real workflow components.

The mean of workflow object similarities is 78.71% (second figure in Fig.8).

The best workflow task similarity is found in phylogenetic tree inference pro-

grams (100%). Generally, this task is explicitly defined in phylogenetic analysis

texts. We found that phylogenetic methods are frequently co-occurred in the

context of the phylogenetic inference programs which explains the mean simila-

rities of this task. However, the worst task similarity, ’Hypothesis Validation’,

is about 60%. This is due to the context of this task which is ambiguous to

be be resolved in one sentence. 30% of the hypothesis validation programs are

ambiguous programs (multiple purpose packages). Concepts and POS catego-

ries surrounding these programs are not very conclusive to disambiguate this

category of tasks.

The relation side of workflows rep resents the data-flow and control-flow

(third figure in Fig.8). The mean similarity in the control flow is 89.1% and

88.92% in the data flow. While the worst similarities in the data-flow relations

is 74.43% which represents the relation between data types and multiple se-

quence alignment programs, the best data-flow similarity is the similarity of the

relation between data types and hypothesis validation programs (100%). Verbs

like "validate" and "test" are commonly used between data types and these

programs which explains the high similarity in this concept. The worst simila-

rities in the control-flow are found in the links between phylogenetic inference

programs and their methods with a mean of 79.84%. However, links between

programs’s parameters like the number of bootstraps and the type of evolutio-

nary models are, generally, explicitly described in the sentence which explains

its high similarity in the control-flow with a mean of 100%.
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5. Conclusion

This paper addresses the problem of the extraction of enriched workflows

using a domain-ontology to resolve word sense ambiguities in texts. The frame-

work is supported by an application in bioinformatics domain. Our graph based

workflow representation extends the classic POCBR workflow structures with

more semantic relations that serve for both : the extraction and the resolution of

polysemic tasks in texts. It’s promising that our method reaches high similarities

with an ontology-based word sense disambiguation approach for tasks, however,

other concept ambiguities need to be improved, mainly data type metadata such

as : genes, proteins and species terms.

Future work will extend the existing control-flow representation with more

sophisticated relations representing disjunction and loop controls in workflows.

Outside the context of the case acquisitions, we intend to include text adaptation

where, in the case of extraction deficiencies (missing tasks), fragments from the

workflows are automatically added based on more general contexts in texts

instead of sentences : e.g. paragraphs.
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