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Abstract

Background: With the large and diverse type of biological data, bioinformatic solutions are being more
complex and computationally intensive. New specialized data skills need to be acquired by researchers in order
to follow this development. Workflow Management Systems rise as an efficient way to automate tasks through
abstract models in order to assist users during their problem solving tasks. However, current solutions could
have several problems in reusing the developed models for given tasks. The large amount of heterogenous data
and the lack of knowledge in using bioinformatics tools could mislead the users during their analyses. To tackle
this issue, we propose an ontology-based workflow-mining framework generating semantic models of
bioinformatic best practices in order to assist scientists. To this end, concrete workflows are extracted from
scientific articles and then mined using a rich domain ontology.

Results: In this study, we explore the specific topics of phylogenetic analyses. We annotated more than 300
recent articles using different ontological concepts and relations. Relative supports (frequencies) of discovered
workflow components in texts show interesting results of relevant resources currently used in the different
phylogenetic analysis steps. Mining concrete workflows from texts lead us to discover abstract but relevant
patterns of the best combinations of tools, parameters and input data for specific phylogenetic problems.

Conclusions: Extracted patterns would make workflows more intuitive and easy to be reused in similar
situations. This could provide a stepping-stone into the identification of best practices and pave the road to a
recommender system.
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1 Background
The advances in biotechnology have revolutionized
bioinformatics into a data-intensive discipline. The
rapid increasing amounts of data available from new
large scale analyses have made data processing without
automated pipelines (a.k.a. workflows) difficult. This
situation is mainly due to the complexity of integrat-
ing diverse data formats and databanks, interfacing
numerous programs with various parameters, as well
as assessing software and data. Current bioinformatic
platforms offer a variety of computational solutions (by
high-performance and cloud computing) with different
levels of computational abstractions [1]. Two types of
models are employed by workflow systems: concrete
ones, in which the tasks are bound to specific resources,
and abstract ones, presenting an abstract view of the
resources used in the tasks. Nowadays, abstract bioin-
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formatic workflows offer only service-oriented plat-
forms such as Pegasys [2], Taverna [3], Galaxy [4] or
Armadillo [5]. However, none of them provide recom-
mendations to guide users and suggest steps while tak-
ing into account the specific nature of data (complete
vs partial genomes, viral proteins, plant DNA, type
of the evolutionary model, etc.) and relevant analyses
(phylogenetic analyses, function prediction, homology
studies, genome wide association studies, etc.).

In phylogenetic tree reconstruction, the evolutionary
history of a group of organisms could be inferred with
different types of data including nucleic acid (DNA or
RNA) or protein sequences. Depending on the used
tools, different types of evolutionary events could be
included in the study such as point mutations, du-
plications, insertions and deletions, genome rearrange-
ments, etc. [6]. Such a study requires several difficult
steps from the acquisition of the raw data. Phyloge-
netic analysis constitutes a typical bioinformatic work-
flows in life sciences. This is witnessed by the large
number of publications on the topic. This resource
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could be exploited to enrich problem solving solutions.
The difficulties in the process of construction of a phy-
logenetic workflow from these publications are illus-
trated in the following example.

Example 1. A biologist U1 downloads a set of 9
hemagglutinin sequences of different Influenza viruses
from the NCBI database. To carry out the analysis
of those sequences, U1 chooses the Armadillo [5] plat-
form[1]. Several algorithmic options are displayed: i.e.
software parameters (e.g. the number of bootstraps,
mutation rate, etc.) and data constraints (e.g. in-
put/output to programs). U1’s prior abstract experi-
ence doesn’t cover all the available methods and tools,
therefore the backup solution is to adapt a workflow
from the literature (see Fig. 1). However, none of the
workflows drawn from scientific publications could ex-
actly match his needs. These workflows may not prop-
erly execute since a part of the analysis requires several
specific software versions and dependencies.

The above example shows several problems which
could occur while constructing bioinformatic work-
flows. Even simple routine projects can involve a num-
ber of different softwares requiring specific but also ab-
stract problem solving knowledge. Even though soft-
ware experimental conditions are related to several
choices, the amount of data and the lack of knowledge
of tools could also deteriorate the results of studies [7].
This is where users’ skills and experience do make the
difference. Due to this kind of lack of knowledge related
to experimental conditions and analysis tools choices,
researchers could end up confused or unable to explain
their choices [7]. To tackle these issues, we propose
to explore more multi-level abstract workflows in or-
der to assist users during their tasks. We propose an
ontology-based approach towards extracting and for-
malizing of bioinformatics practices, specifically phy-
logenetic data skills, from the specialized literature.

Example 2. Suppose that a bioinformatician U2

chooses to study the same protein sequences of the
hemagglutinin. He runs ClustalX to align sequences
and then chooses the JTT evolutionary model during
the tree reconstruction. If we want to recommend a
concrete phylogenetic program to U2 such as the pro-
gram MEGA, we propose to calculate the frequency
of the sequence s0 : 〈 ClustalX, JTT , MEGA 〉 in
the literature of thousands of tools and versions. How-
ever, such sequence is very rare due the vast varieties

[1]Armadillo is a drag and drop workflow platform ded-
icated to phylogenetic as well as general bioinformatics
analysis. www.bioinfo.uqam.ca/armadillo

of available tools for the specific task: phylogenetic in-
ference. Thus, recommending a category of tools such
as any ”maximum parsimony” or ”maximum likeli-
hood” approach is a more relevant recommendation.
An abstract pattern such p0 : 〈 LocalAlignment,
ProteinModelSelection, MaximumLikelihood 〉 is
more frequent than the concrete pattern s0. Here,
we use ontologies to represent the different categories
(concepts) of tools and resource annotations at dif-
ferent levels of abstractions. The constraints on com-
bining tools and parameter values are expressed with
properties (relations) between classes. The ontologi-
cal representations are effectively exploited by two key
processes in our approach: (1) the extraction of work-
flow terms and relations from texts (concrete work-
flows), and (2) the extraction of generalized workflow
patterns (abstract workflows). Here, we distinguish
concrete workflows made of individuals of our ontology
and links between them, from abstract ones comprising
of concepts and properties at various levels of abstrac-
tion. Problem-solving patterns mined from concrete
examples, could be the foundation of recommending
best practices within a workflow-based environment.

Current bioinformatics Workflow Management Sys-
tems (WMS) have emerged as global intelligent in-
frastructures by integrating new technologies to main-
tain a certain level of reusability through grid and
cloud computing [1, 8]. Yet, we consider intelligence,
a system to help compose workflows, which we de-
fine here as guided assistance based on the context
of the bioinformatics problem-solving. Our level of un-
derstanding should better solve problems and make
decisions via Knowledge Management (KM) discipline.
KM is the subject that provides strategy, process and
technology to share information and expertise among
users. For instance, Semantic Web (SW) technolo-
gies [9] , as a special case of KM, allow automatic dis-
covery and execution of web services that can handle
the workflow tasks. Similarly, ontologies have substan-
tially improved knowledge integration, querying, and
sharing in the bioinformatics domain [10]. Bioinfor-
matic workflow systems could benefit from the SW ef-
forts to develop strategies to capture knowledge about
the available bioinformatics tools, services and algo-
rithms. Proteus [11] is one of the first projects to inte-
grate an ontology-based design in bioinformatic work-
flows. It exploits a DAML+OIL ontology for the data
mining domain describing resources and processes of
knowledge discovery in databases. However, formaliz-
ing bioinformatics solutions in a hierarchy of appli-
cations is not enough if there is no reasoning engine
to make benefits of the presented semantics to assist
and guide users. Proteus provides semantics about re-
sources but doesn’t recommend the best categories for
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a specific task. In fact, requirements and technologies
for bioinformatic applications should allow the WMS
to specify complex problem solving applications. Cur-
rent solutions for bioinformatics recommendation can
be grouped into three categories: (1) expert recom-
mendation, (2) semantic-based recommendation and
(3) pattern-based recommendation.

Experts recommendation. In the literature of bioin-
formatic best practises, few works report on experi-
ences and/or provide suggestions for the current WMS.
In this vein, Spjuth et al. [1] review the most ad-
vanced projects defining general guidelines for the
methodological choices at various stages of a bioin-
formatics pipeline. The authors recommend dedicated
practices in maintaining reproducibility and standard-
ization in local and distributed environments. Anisi-
mova et al. [6] criticize the outdated methodology and
provides practical guidance on issues and constraints
faced by each of the phylogenetic analysis steps. Garijo
et al. [12] propose a set of high-level abstract motifs
(patterns) as a view of activities undertaken within
workflows. They performed their manual analysis over
a set of real-world scientific workflows from Taverna
and Wings systems.

Semantic-based recommendation. Lee et al. [13] de-
scribes a SW solution assuming a Grid computing envi-
ronment. The proposed Bio-STEER system offers SW
services in OWL-S. A small-size ontology is employed
in the representation of both abstract workflows (for
Grid resources) and concrete ones (to bind tasks to
specific resources). Ison et al. [14] introduce the EDAM
ontology for bioinformatic operations, types of data,
identifiers, topics and formats. EDAM supports se-
mantic annotations for web services, databases, inter-
active tools and libraries. The ontology has been used
to find, describe, compare and select tools into work-
flows. EDAM annotations have been implemented in a
set of frameworks such as EMBOSS [2] and eSysbio [3].
However, these systems don’t exploit the entire rich-
ness of EDAM semantics. For example, eSysbio uses
”EDAM Data and Format” to decide how to handle
data by an adequate visualization and search. How-
ever this navigation, as static as it is, doesn’t take the
advantage of the relations between concepts. Navigat-
ing and searching the right tools in categories of tools
are not enough to guide users to complete their tasks.
Formulating queries could be a very difficult task if
users don’t know what is the best category for the
next step. Digiampietri et al. [15] propose the SHOP2
specification which comprises three sections: a domain

[2]www.ebi.ac.uk/Tools/emboss
[3]www.esysbio.org

definition (defdomain), a problem definition (defprob-
lem) and a problem resolver (find-plans) where the lat-
ter is being in charge of finding the plans to solve the
targeted problem. The respective SHOP2 planner sup-
ports generalization/specialization hierarchies of oper-
ators (tasks) and handles complex objects: structures
created from basic objects by composition. It uses on-
tologies to semantically support workflow construction
for a better selection of appropriate tasks and services.

Pattern-based recommendation. Pattern-based rec-
ommenders use sequential pattern mining algorithms
[16] in order to discover recurring software and data
usage patterns. Duck et al. [17] propose to use Natural
Language Processing (NLP) tools to extract software
and database terms from scientific texts. The process
uses the bioNerDS terminology [4] in order to cate-
gorize terms in texts. In the pattern mining step, a
straightforward mining algorithm discovers frequently
occurring resource pairs. Each resource is paired with
the one that immediately follows it in a text while
accounting for the direction within the ensuing pairs.
However, the order of the terms in the text is not
always reliable. Without a context-aware extraction
approach, the occurrence of such a pair could mean
nothing but simple mentions. Soomro et al. [18] pro-
pose a pattern-based recommender system for neuro-
imaging workflows. While the described implementa-
tion is domain-specific, the architecture could easily be
reused in bioinformatics workflows. The workflows are
first converted into graphs, their components are then
generalized and the result is fed into a pattern miner.
Once matching patterns are found, they are specialized
and the partial workflow (the workflow to recommend)
is semantically analyzed and enriched. Authors don’t
provide details about their pattern mining algorithm
but show interesting results in terms of Mean Recipro-
cal Rank (MRR). Other measures to calculate work-
flow similarities are proposed in [19–21]. In the same
scope of graph-based workflow discovery, Goderis et
al. [22] attempt to build a gold standard for workflow
ranking based on graph sub-isomorphism matching.
However, their method have been only tested on 89
different workflows.

Lord et al. [23] describe a classification of bioinfor-
matics workflows that could be used to suggest classes
of tools while creating a workflow. Their proposed ap-
proach, based on clustering methods, considers pro-
gram terms but also some structural workflow infor-
mations (pairs of tasks) and input-output parame-
ters in the encoding phase. However, taking into ac-
count these informations doesn’t improve the quality

[4]www.bionerds.sourceforge.net
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of workflow classification due the spareness of data en-
codings (using matrices). In a different vein, meth-
ods for mining patterns and associations on top of
an ontology have been proposed in [24]. As an exam-
ple, the GSP (Generalized Sequential Patterns) algo-
rithm [25] mines frequent patterns from sequences of
user transactions. It traverses the pattern space with
an Apriori-like level-wise discipline [26] and by explor-
ing the monotony of itemset frequencies over the tax-
onomy. Besides, using an ontology to enrich patterns
of Web usage has been researched on for at least a
decade [27, 28]. However, these latter only process the
class hierarchy.

Here, we follow the methodology described in [29]
where the input data are sequences of clicks further
translated into IDs of content objects with their se-
mantic links. Our own approach could be seen as an
extension thereof where, beside workflow sequences ex-
tracted from texts, it also comprises labeled links be-
tween items, thus, forming a layered 2-labeled DAG
(Direct Acyclic Graph). Our proposed workflow lan-
guage is both richer (various sorts of interdependen-
cies) and less constrained (lack of a total order on
workflow elements) hence costlier to process. Thus, we
put the emphasis on pattern-to-data matching and on
parsimony of pattern space traversal. In our case, on
top of the workflow DAGs, an ontology provides two
taxonomies, one for concepts (a.k.a. generalized items)
and one for relations. Hence, our patterns are made of
concepts with inter-concept relations which may be-
long to different generality levels in the ontology.

The remainder of the paper is organized as follows:
section 2, we define the pipeline of our approach. We
also describe the methods for concrete workflow ex-
traction from texts and for generalized pattern mining.
Section 3 presents the experimental evaluation and re-
sults of the extracted patterns. We discuss the quality
of our approach in section 4 and conclude in the last
section.

2 Methods
The proposed solution consists of reconstructing a set
of workflows from the scientific literature and then
mining higher-level of abstractions (generalized work-
flow patterns) from these. A specific domain ontology
is used to extract concrete workflows from texts. The
included concepts and properties are further used as
building blocks in the pattern generation process. The
ontology is exploited for two purposes: (1) it is used
as schema to create a terminology to annotate work-
flows in texts and (2) as a knowledge base to mine
generalized patterns from the extracted ones.

2.1 Formalisms for enriched workflow representations
2.1.1 Workflow representation
In general, a workflow consists of a set of tasks (also
called activities) combined in a control-flow and a
data-flow whereby the data-flow describes interactions
(relationships) between tasks and data items (task in-
puts/outputs corresponding to data types). Given a
universe of task items and data O and links L, a work-
flow record is a vertex- and edge-labeled DAG. How-
ever, by following the steps of the overall analytical
process –and performing a topological sort, if needed–
it can be split into layers of independent vertices (no
intra-layer edges). This allows a workflow representa-
tion as: (1) a sequence of object sets (item sets), plus
(2) a set of cross-itemset links.

A data language ∆W defines workflows as pairs
w = (ζ,Θ) where ζ = 〈{o1, o2, ..., oi1}, {oi1+1, ..., oi2},
..., {oi(m−1)+1

, ..., oim}〉 is the sequence of object trans-
actions (steps). In turn, Θ = {θ1, θ2, . . . , θp} is the set
of triples where θk = (i1, l, i2) represents a link of type
l between the object at position i1 in w.ζ, i.e. w.ζ[i1]
and at w.ζ[i2] where i1 < i2. Fig.2 shows an example
of workflow representation in ∆W .

2.1.2 Ontology representation
Workflow components are encoded in a specific domain
ontology Ω. Formally, an ontology is defined as a six-
tuple Ω = 〈C,O,R,L ≤Ω, ρ〉 where O is the set of
all object items, i.e. individual tasks and data types,
L the set of all links between objects, C the set of
all concepts, and R the set of all relations between
concepts. Moreover, concepts and relations are orga-
nized in taxonomies w.r.t. the generality order (sub-
ClassOf relationship in RDF) of the ontology ≤Ω: i.e.:
HC = 〈C,≤Ω〉 and HR = 〈R,≤Ω〉, the hierarchical
order in the ontology. ρ ⊆ C ×R× C is a ternary re-
lation whose triples c1 × r× c2 express the connection
between a relation and its domain (c1) and range (c2)
concepts. Objects o ∈ O and links l ∈ L are instances
of concepts c ∈ C and relations r ∈ R, respectively.
Fig. 3 shows an example of a phylogenetic processual
ontology representing workflows abstract components.

2.2 Workflow extraction from texts
Below, the sub-tasks of our workflow extraction solu-
tion are described. Following a standard Natural Lan-
guage Processing (NLP) pipeline, we are going from
morphological analysis of the text to the identification
of grammatical classes and recognition of domain con-
cept occurrences. The remainder addresses the known
semantic ambiguity issues in a semi-automated way.
Our approach, as an ontology-based annotation, is
about learning how to recognize and classify workflow
components (data and control flows) in texts using the
ontological categories.
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2.2.1 Morphosyntactic annotation

The initial step divides the text into lexical items
called tokens. In fact, the tokenisation operates words
with white spaces between them. In our context, due to
the specificity of the grammar used in bioinformatics
texts, a specialized biomedical tokenizer is used relying
on a dedicated pattern for bioinformatics tokens [30].
The text is also segmented into sentences by recog-
nizing a set of known punctuation patterns (given as
regex ). The extracted tokens are further tagged with
their appropriate grammatical classes, a.k.a. part-of-
speech (POS) taggings. To this end, we use the Med-
Post POS tagger [31] which is based on a HMM
(Hidden Markov Model) model trained over several
biomedical MEDLINE texts. This tagger was able to
achieve high accuracy (97.43% on 26 566 tokens) by
using the contextual information in the HMM to re-
solve grammatical ambiguities.

2.2.2 Semantic annotation

A specific OWL ontology gazetteer (terminology) is
used in order to recognize bioinformatics concept and
property instances in the text. This gazetteer was
generated from widely-used databases: Gene Ontology
[32], UniProtKB [33], NCBI Genbank [34] and the Joe
Felsenstein Web site [5]. Gene Ontology, NBCI Gen-
bank and UniProtKB offer structured and up-to-date
databases widely popular in the context of bioinfor-
matics. We extracted scientific terms and their syn-
onyms (common names, short/long forms, etc.) using
ETL (Extract, Transform and Load) tools [35]. Felsen-
stein’s Web site offers also a very interesting catego-
rization of 392 phylogeny packages and 54 free web
servers where each package and web server lists a set
of services and programs. Entries in this site are fre-
quently (∼6 months) updated. We crawled HTML con-
tents from this web site using simple XPATH extrac-
tion rules in the Rapidminer platform [36]. Generated
terms from the different databases and HTML pages
are first stored in a relational database as a common
storage before transforming them into an ontology us-
ing the schema provided by an expert (see Fig.3) and
the SQL-SPARQL mapping tool ONTOP [37]. Also,
we used the Sesame ontology repository [6] as a knowl-
edge base manager. The resulted terminology is used
to recognize term tokens and N-grams in texts and sup-
port the reconstruction of workflow sequences. This
process faces known hurdles rooted in the semantic
ambiguities that we address in the following para-
graph.

[5]www.evolution.genetics.washington.edu
[6]www.rdf4j.org

2.2.3 Disambiguation rules
For this purpose, we choose to create manually specific
pattern rules to concepts grounding special semantic
ambiguities i.e. polysemy [38]. For example, the term
’MEGA’ is a polysemic term in our context: it could
be either the common term (huge) or the name of a
general purpose program. ’MEGA’ could be used in se-
quence alignment, phylogenetic tree inference or/and
in other phylogenetic tasks. To solve this type of am-
biguities, we first created a set of disambiguation rules
in JAPE [7]. These rules enabled the construction of
a large set of terms already annotated (classified) to
be further integrated in a machine learner (see next
section). For example, to verify if ’MEGA’ was used
in the inference step, we search for the verb ’infer’ in
the context of ’MEGA’. By context here we mean the
sentence in which the term appears (see Fig. 4). How-
ever, a sentence could carry a lot of information and
has different forms (active or passive). Thus, we use a
syntactic analyzer to construct a 2-levels parsing tree
(chunk) [39] to detect the appropriate context of the
term ’MEGA’ in order to fire JAPE rules. For example
the rule M searches if the term ’MEGA’ was used to
infer phylogenetic trees. Rule M (sentence) : { if the
verb’s root in ’MEGA’ chunk is ’infer’ or there is a
phylogenetic approach in the object of the chunk then
create ’PhylogeneticInferenceProgram’ Annotation }.
The chunk of ’MEGA’ is the verb phrase in the sen-
tence where ’MEGA’ is its Object/Subject (depend-
ing on the active or the passive voice of the sentence).
The sentence in Fig. 4 shows that ’MEGA’ is used a
phylogenetic inference program since it is preceded by
the approach ’MaximumParsimony’ in its context. For
each polysemic ’concept step’ (see Fig. 3), we create n
disambiguation rules (where n is number of ’concept
steps’ in the ontology) in order to clarify the ambigu-
ities of program classes and generate a training set to
the final disambiguation model.

2.2.4 Learning features
A supervised learning approach is applied to ambi-
guity resolution. To this end, we created a set of
features to support proper classification of bioinfor-
matics concepts and properties in texts. For exam-
ple in Fig.5, in order to classify the term ’MEGA’
(ClassC), we generate the set of features (featuresC)
reflecting its context. The context covers a window
made of: the wini = 3 concepts preceding and the
wini ones following (Token.class) the concerning word
(e.g. ’MEGA’) in its context sentence. It also com-
prises the sequence of POS tags of the selected to-
kens (Token.category). In this example Token.class

[7]Java Annotation Patterns Engine:
www.gate.ac.uk/sale/tao/splitch8.html
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= {DataType,MaximumParsimonyApproach } and
Token.category = { Determiner, Noun, preposition
}.

In addition, in order to classify a relation between
the software ’MEGA’ (domain) and the data ’align-
ments’ (range) - classR, we define its context as the
set of tokens between the domain and the range.
Now, features (featuresR) represent token POS tags
(TokensBetween.category), distance between domain
and range, relation direction and the list of verbs be-
tween the concerned terms. The overall set of fea-
tures is then used in the construction of a statistical
model for automated annotation of the texts. Relation
types between terms are already defined in the schema
of the ontology (see Fig. 3). Tuples of concepts are
then queried in order to recognize properties in text
and calculate its features. For example, the ontologi-
cal property ’has used by program’ between datatypes
and phylogenetic inference programs is used to calcu-
late the set of features featuresC representing the re-
lation’s context in the sentence.

2.2.5 Model creation and application
In this study, we choose PAUM as a classifier over
others i.e.: CRF (Conditional Random Fields), SVM
(Support Vector machines) and Random Forest. We
compared PAUM models with the mentioned algo-
rithms in terms of f-measure and speed, but we only
present here the best classifier results. The PAUM
algorithm (Perceptron Algorithm with Uneven Mar-
gins) [40] was used to learn term and relation classifica-
tions from the extracted features. PAUM was designed
especially for imbalanced data and has been success-
fully applied to various named entity recognition prob-
lems: [41, 42]. PAUM differs from other classifiers as it
approximates the best distance between positive and
negative sets. As our approach is based on concept con-
texts to disambiguate polysemic words, the distance
between surrounded concept examples (negatives) and
the concerned word is important, same for domain and
range relations. PAUM uses a specific margin function
to adjust weights of positive and negative example fea-
tures and thus shows competitive results. This function
updates weights w for each example xi based on a fixed
bias parameters τ+ and τ representing the number
of positive and negative examples, respectively. After
creating and tuning our models to annotate the texts
automatically, we applied a 10 folds cross validation
analysis [43]. Extracted terms and links are then as-
sessed using classic evaluation metrics i.e.: precision,
recall and f-measure.

2.2.6 Workflow reconstruction
From recognized links between concept instances
in text, we build our concrete workflow knowledge

database where items are the named entities or-
dered by the top-level pattern in the domain ontol-
ogy. Concept and property instances serve to identify
respectively the data-flow and control-flow of work-
flows. For example, from the tuples: (ρ1) (alignment,
”has dataSource”, hemagglutinin), (ρ2) (alignment,
”used in SequenceAlignmentProgram”, ClustalW )
and ( ρ3 ) (alignment, ”used in PhylogeneticInfence
Program”, MEGA), we construct the workflow se-
quence S1 : 〈 hemagglutinin, alignment, ClustalW,
MEGA 〉. We flatten then the workflow structure into
a sequence of data and programs enriched with seman-
tic relations (tuples) in order to represent the data and
control flows.

2.2.7 Workflow quality criterion
In order to evaluate the extracted concrete workflows,
we calculate the similarity measure sw(a, p) ∈ {0..1}
which represents the similarity between the actual a
and the predicted p workflow components. If a, p ∈
∆W and w = (ζ,Θ), where ζ is the sequence of work-
flow items i at each step j, Θ is the set of triples
θk = (i1, r, i2) connecting relations r to the object do-
main at position i1 and the object range at i2, then the
similarity sw between a and p is given by the following
formulas:

sw(a, p) =
sζw + sθw

2
(1)

sζw(a, p) =

∑m
j

∑n
i (wζ(a.oi,j , p.ζ))

n
m

(2)

sΘ
w(a, p) =

∑p
i (w

Θ(a.θk, p.Θ))

p
(3)

where m, n and p are, respectively, the total number
of steps, items per step and relations in a workflow.
Each object oi,j is weighted by the accuracy measure
wζ and each property θk is weighted by the accuracy
wΘ = wΘt ×wΘs where the weight wΘt ∈ {0..1} is the
degree of a concept term accuracy and wΘs ∈ {0..1} is
the degree of a relation term accuracy. The similarity
ratio of a workflow is then the mean of its compo-
nents accuracies. Table 1 shows the weights that we
propose to measure the degrees of accuracies of work-
flow components. If a term (concept or relation) in the
actual workflow a is well annotated, then, its weight
w is 1. Otherwise, if a term is partially correct, we
assign a weight of 0.6. In the case where a relation
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type is partially correct, a much lesser weight is given
(0.1). Finally, if a term/step is not correct or absent,
the weight is 0. These weights are inspired from the
work of [43] where lenient precisions and recalls are
calculated given a partial overlap measure.

2.3 Generalized pattern mining
Next, we generate more abstract workflows from the
set of concrete workflows extracted from the texts, i.e.
the workflow database D.

2.3.1 Candidate generation
Two descriptive languages are defined to represent
both concrete workflows and abstract workflows. A
data language ∆ is derived from workflow sequences
W translated into IDs from the proposed ontology Ω.
The second language Γ is used to represent patterns p
in a canonic language [29]. ΓW comprises generalized
DAG patterns p = (ζ,Θ) where p.ζ is the sequence of
concepts and p.Θ is the set of relation triples.

Our Apriori-like [26] level-wise mining approach con-
siders the global pattern space as being made of levels.
A level is defined w.r.t the overall depth of the pattern
components within the ontology. Pattern candidates of
a level k + 1 are generated from the kth-level frequent
pattern by a refinement operator [44]. Here we extend
the work of Adda et al. [29] by applying five different
canonic operations to refine a pattern p: 1) append a
root concept to a new transaction (step) in p.ζ, 2) add
a root concept to p.ζ, 3) replace a concept from p.ζ by
a direct instantiation (specialization) thereof, 4) add a
root property between two concepts in p.θ and 5) re-
place a property from p.θ by a direct instantiation. For
example (see Fig. 5), a possible specialization of the
concept 24-’MultipleSequenceAlignmentProgram’ in a
pattern p, would be to replace it by one of its imme-
diate successors in the ontology, say 25-’Progressive’.

The starting point is the computation of frequent
level 1 patterns directly from the ontology (made of on-
tological root concept singletons). For each of the sub-
sequent levels k+1, the level candidates are generated
from frequent patterns at level k by applying canonic
operations to them. The resulting candidates are first
tested for the known infrequent sub-patterns and then
the surviving candidates are sent to the database D
for a direct evaluation of their interestingness.

2.3.2 Pattern quality criterion
As an approximation of the interestingness of a pat-
tern, we use its support (frequency) σ. Our matching
operation confronts a pattern ps to a concrete workflow
ws. If the matching holds, then ws is in the support set
of p in D, so it can be counted in the numeric value
of the support criterion. The precedence relation, in

candidate generation order which is based on instan-
tiation, is considered in the matching data structure
so we don’t need to recalculate the already matched
sequences in each iteration. The matching verification
begins from the last canonic operation on a pattern
candidate. The matching data structure stores all pre-
vious matching IDs of a workflow pattern, searches
and verifies whether the last refinement operation pre-
serves the matching status or not. At a post-processing
step, and in order to facilitate the interpretation by ex-
perts, concept and property IDs are replaced in each
workflow pattern by the corresponding names from the
ontology (labels).

Besides the support (frequency) as an interestingness
feature, we calculate 6 other qualitative features. To
characterize generalized workflow patterns, we propose
to use representational features so we can measure the
generalization/specialisation power of a pattern and
its coverage. Hence, we propose to use the following
set of features.
• Specialization score (ss). We measure here

the generalization / specialization tradeoff score
of a pattern. This score calculates the sum of
its components levels (maximum depth of a con-
cept/relation) from the ontology. Hence, a spe-
cialization score of 1 means that a pattern is too
general. This score is weighted by the α ∈ {0..1}
parameter to specify the ontological tradeoff level
in which the user considers as the threshold level
of generality. α = 1 means that the minimum gen-
erality level expected by the user is the root level
in the ontology.

• Number of steps (ns). This feature calculates
the number of steps covered by a pattern.

• Number of data (nd). This feature calculates
the number of data used in a pattern.

• Number of metadata (nm). This feature calcu-
lates the number of annotations over pattern com-
ponents. A metadata is an additional information
on data or programs (parameters) discovered in
the ontology.

• Number of programs (np). This feature cal-
culates the number of program types used in a
pattern.

• Number of relations (nr). This feature calcu-
lates the weight of the data flow in a pattern. It
calculates the number of triples (|Θ|) in a pattern.

Finally, patterns are ranked using the ranking func-
tion r(p) defined in:

r(p) = σ × (αss + ns + nd + nm + np + nr)

6
(4)

The ranking score measures how a pattern is infor-
mative in terms of number of information and gener-
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ality it grounds. Note that r(p) is not normalized and
if a workflow pattern has a high rank score, then it
covers an important number of steps and additional
information and is specific enough to be interpret by
humans. The level of a pattern generality should be
determined by the user using the α threshold level. In
our experiments, we fixed α to 1.

3 Results
3.1 Dataset
The experiments are derived from a sample of 1000
recent articles, journal and conference papers hav-
ing at least one section titled: ’phylogenetic analy-
sis’ or ’phylogenetic analyses’. However, these sec-
tions may have not sufficient information to re-
construct workflows from texts. Thus, we filtered
the downloaded articles based on the smallest pat-
tern that any phylogenetic analysis should repre-
sent. A phylogenetic study might use at least one
data type and a phylogenetic inference program (see
Fig. 3). Finally we retained a set of 332 articles.
All the papers are collected from the digital reposi-
tory PubMed Central (PMC) in XHTML format us-
ing the following query: ”((”open access”[filter] AND
”2015/01/01”[PDat] : ”2015/04/18”[PDat]) AND
”Phylogenetic analysis”[Section Title]) OR ”Phyloge-
netic analyses”[Section Title].

Our public PHAGE ontology on BioPortal is composed
of 37 different object properties (relations), 47,031
concepts (with 4 root concepts and 111 unique con-
cepts) and more than 1,000,000 unique individuals (in-
stances) without counting synonyms. Root concepts
represent data types, data sources, steps and parame-
ters. Step concepts represent the seven steps of phylo-
genetic analysis and relations between concepts repre-
sent data flows and control flows. Data source concepts
are provenance metadata (database, GO, organisms,
etc.) on workflow data components. We remind that
this ontology has been collected in a semi-automated
way from well-known databases such as NCBI, Ge-
neOntology, UniProtKB and Felsenstein’s Web site.

3.2 Extracted workflows from texts
A human expert has annotated manually 100 texts
to construct a workflow test database. This set rep-
resents about 1/3 of the available set (the remaining
2/3 is used in the training process). The test set serves
as a gold standard for the evaluation step. The ex-
pert annotates the given texts using our domain on-
tology schema on the platform GATE [8]. The expert
has annotated only terms of concepts and relations

[8]Gate is a cost-effective environment for annotation
projects using NLP tools. www.gate.ac.uk

that serve to reconstruct phylogenetic workflows from
texts. Next, we measure whether a term is annotated
correctly, partially or unannotated at all (missing).
We show in Table 2 details about the total counts
of discovered annotations. We calculate the classic In-
formation Retrieval f-measure [43] based on correct,
partially correct and spurious annotations. In total,
our system has annotated 2,561 concept terms while
the expert has annotated 2,641. The overall average
f-measure (average of strict and lenient f-measures) is
73%. We notice that 118 annotations (∼ 20%) repre-
sent ambiguous program terms (GuessedProgram). In
this case, the average f-measure is 84% with a precision
of 73% and a recall of 98%.

We present in Fig. 6 the distribution of similarities
sw(a, p) between the predicted and the gold standard
concrete workflows. The overall similarity sw is 0.83
over the 100 extracted concrete workflows. This fig-
ure shows also details about similarity distributions of
both concepts and relations in workflows. The overall
mean of relation similarity is 0.89 and concept similar-
ity is 0.79. The best concept results are phylogenetic
inference programs where the similarities are above 0.8
except for 5 workflows.

Moreover, in one side, gene ontology and taxa anno-
tations in workflows are 0.6 similar within the actual
workflows which is understandable since only full sci-
entific terms are considered while tagging the name of
species, genes and proteins in texts. Though, synonyms
weren’t considered for the mentioned concepts. These
are dismissed in order to minimize the error cost of the
abstractions in common terms (e.g. cell, RNA, poly-
merase, etc.). In the other side, all program terms sim-
ilarities are above 0.8 except for model selection and
hypothesis validation programs (0.6). This is due to
the context ambiguities within these categories. Bioin-
formaticians and biologists tend to use general purpose
packages instead of specific tools for model selection
and tree validation steps. The context of such tools
are 40% of the cases out if its sentence area.

In the relation side, links between data types and tree
visualization programs show the best similarities (the
mean similarity is 1). Mean similarities of relations be-
tween : data types and MSA (Multiple Sequence Align-
ment) programs, data types and phylogenetic inference
programs and data types and species are between 0.65
and 0.77. Both predicted relations between model se-
lection programs and their model parameters, and pre-
dicted relations between bootstrapping programs and
their number of replicates are 0.9 similar with the ex-
pected workflow relations.

3.3 Generalized bioinformatics patterns
At the mining step, we use an Apriori-like sequential
mining algorithm that exploits the domain ontology
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to output the most frequent generalized workflow pat-
terns. In an unrestrained run, the algorithm scans the
pattern space from the top downwards, at each step
exploring the patterns at a specific generality level.
After the first few levels, each step generates a con-
siderable number of patterns. A well-known regularity
with patterns over a hierarchy of items can easily be
observed in our case: patterns of high frequency tend
to be too general, i.e. involve concepts and properties
from the higher levels of the ontology, and therefore
have little practical value. Conversely, specific patterns
–whose component concepts and properties lay close to
the leafs of the ontological hierarchies– typically have
low supports and thus might not make to the min-
ing result. As an illustration, the diagram in Fig. 5
might be interpreted as follows: knowing that the sub-
sequence: ”database and multiple sequence alignment”
is frequently used, doesn’t ensure that every local or
global alignment program is frequent too. The question
that we investigate next is about the optimal target
level(s). If patterns specialized to this target are mined
with concepts at the same ontological levels (homoge-
neous concepts), then we can skip the rest of the levels.
Thus, we parameterized our algorithm to let bioinfor-
maticians choose their preferred ontological level (α).

In the next experiments, we generated over 4 000
patterns using exclusively concepts from the 1st level
of the application ontology.

We evaluate the components of generated patterns
using the qualitative features described in section 2.3.
Fig. 7 shows results of the distribution of each fea-
ture on the set of generated patterns. The majority of
patterns (89%) have high degrees of specialization (be-
tween 9 and 17). For low values of minimum of support
(σ < 0.2), pattern levels are high, thus we obtain more
specific patterns while decreasing σ. The distribution
of the number of steps shows that our patterns cover
mostly 6 steps of the phylogenetic inference analyses
which is a very good coverage. In addition, these pat-
terns have an average of 2 data per pattern and are
annotated by up to 2 metadata. The number of pro-
grams follows the distribution of step frequencies and
most of the discovered patterns have 6 ∼ 8 relations
between their components.

Next, we evaluate generated patterns by measuring
their ranking scores using the qualitative measures, so
the more a pattern is informative (in terms of its sup-
port, degree of specialisation, number of covered steps,
etc.), the highest rank it gets. Fig. 8 describes the per-
centage of ranking scores (rounded values) over the set
of patterns. Top-40 best patterns ( 1%) have a rounded
rank score of 10 (best score). This means that only
40 frequent patterns from the discovered ones are the
most informative and cover the best values of features.

We present, next, a sample of the discovered gener-
alized workflows based on the concrete database.

P1 〈〈{Protein, Alignments, Tree, NCBI}, {Global
MSA}, {NJ P, NJ M, CAT}, {Bootstrapping P}〉,
{(1, isRetrievedIn, 4), (2, isAlignedBy, 5), (3, isIn-
ferredBy, 6), 6, isDerivedFrom, 7), (8, isEvolMod-
elIn, 6)}〉: [σ = 0.5]

P2 〈〈{Protein, Alignment, Tree, Plant, PDB}, { Gen-
eral MSA P}, {ModelSel P, CAT}, {Bayesian P}〉,
{(1, hasOrganism, 4), (1, isRetrievedIn, 5), (2,
isAlignedBy, 6), (1, isModeledBy, 7), (3, isIn-
ferredBy, 9), (8, isEvolModelIn, 7)}〉: [σ = 0.2]

P3 〈〈{Protein, Alignments, Trees, Virus, PDB}, {
GlobalMSA P}, {ModelSelection P, JTT}, {Max-
imum Likelihood P}, {Bootstrap-ping P}〉, {(4,
isOrganism, 1), (1, isRetrievedIn, 5), (2, isAligned-
By, 6), (1, isModeledBy, 7), (3, isInferredBy, 9),
(3, isValidatedBy, 10), (9, isEvolModelIn, 7)}〉:
[σ = 0.1]

The first pattern P1 is 50% frequent in the concrete
workflow database. Protein sequences are used with a
global Multiple Sequence Alignment (MSA) programs
and followed by a neighbour joining inference program
and a bootstrapping program. These proteins are col-
lected from the NCBI database and modelled with the
CAT model. The second pattern is less frequent ( 20%)
than the first one but it contains more information.
Here P2 presents 4 phylogenetic steps. In the first step,
plant protein sequences are downloaded from the PDB
database. These sequences are then aligned using a
General MSA program and modelled by the CAT un-
der a model selection program. A Bayesian program is
also used to reconstruct phylogenetic trees. The third
pattern is quite frequent ( 10% ) but it presents 5 dif-
ferent steps which is very interesting. Here we find that
viral protein sequences are first loaded to be aligned
with a global MSA program. Next, a model selection
program is used to represent the evolutionary history
of these sequences using the JTT model. The maxi-
mum likelihood approach is also used to infer the phy-
logenetic trees and a bootstrapping program to vali-
date them.

4 Discussion
As shown in the previous section, our solution may
produce truly interesting results, yet the traversal of
the levels in the ontology structure and, to an even
greater extent, the levels in the pattern space, may
prove costly. Thus, if the appropriate levels in the on-
tology could be fixed beforehand, so that only the cor-
responding concepts and properties are used for pat-
tern generation, the overall mining step will be per-
formed much faster and the output is more likely to
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be of interest. The ultimate interestingness of a pat-
tern depends on the decision-maker (subjective cri-
teria) and does not solely depend on the statistical
strength of the pattern (objective criteria, e.g. sup-
port) [45, 46]. Albeit useful, objective measures are
not enough to determine the interestingness of a pat-
tern particularly in complexly structured domains like
phylogenetics problem solving. Our intended solution
is to let users choose their levels of interest in the on-
tology. Then, the ranking score could be used to avoid
checking too many patterns [46]. To the best of our
knowledge existing solutions for semantic-based work-
flow mining [11, 15, 17, 18] propose domain-specific
solutions while producing substantially different types
of abstract models. Therefore, comparing our frame-
work with systems like Proteus or eSysbio in terms
of generated models, while conceivable, is not a triv-
ial task. Furthermore, in order to validate the quality
of our results, a human expert has already evaluated
the building blocks of the generated workflows (see
the above section 3). The abstract workflows produced
here could be used in a pattern-based recommender to
suggest a next tool to a user who got lost after a cer-
tain number of steps with the workflow manager plat-
form. To that end, the system has to match the partial
workflow corresponding to the user’s session against
(the prefixes of) the abstract patterns from our pat-
tern base. The remaining part (suffix) of a matching
pattern represents a potential hint as to the way the
user’s session might unfold from that step on. More
specifically, if we take Example 2. as an illustrative ex-
ample, we can apply the pattern P3 (see section 4.3)
since it matches the sequence of the concrete workflow
S2 : 〈rRNA sequences, ClustalX,MAPPS〉. S2 do
matches with P3 in the data type ’Protein sequences’
(same as in the source and database metadata) and
in programs used: ’Global MSA Program’ and ’Model
Selection Program’. From P3 we can recommend to
use a JTT model, a maximum likelihood inference ap-
proach and a bootstrap-based tree validation for the
next steps. With a concept-based recommendation, the
system could work on different granularity levels and
hence offer more flexible recommendations. Indeed, in-
stead of objects as concrete tools and resources from
concrete workflows, we suggest a class of objects to
assist users with more semantically rich recommenda-
tions. Semantic suggestions could guide to compose
more complex pipelines by presenting likely compo-
sitions. Users shouldn’t be worried about very spe-
cific details (software versions, technical supports, etc.)
while constructing their workflows.

5 Conclusions
With many biologists and bioinformaticians having lit-
tle experience of automating bioinformatics analyses,

it is important to provide relevant recommendations in
order to improve the efficiency of analyses. Concept-
based pattern recommendation helps users not only
to acquire contextual information but also to provide
valuable suggestions. In this article, we presented the
foundation of such recommendation system. We in-
tend to extend our ontology-based mining framework
in order to consider a variety of criteria, for example
programs’ parameters (e.g. Gamma rates, transition
ratios, number of bootstraps, etc.), more complex con-
trol structures (e.g. parallel executions, if-else state-
ments) and resource quality in terms of time (the most
recent tools/databases), author (focusing on domain’s
experts), journals, popularity, etc,). Updating our text
corpora with the most recent articles will help to pro-
duce more relevant patterns. Moreover, the proposed
generalized patterns could be used to improve even
journals quality to select the most relevant articles us-
ing the abstract and concrete workflow information
within texts. For instance representing the proposed
workflow used in a submitted article could also as-
sist the reviewer in a semi automatic assessment and
reusability of the proposed procedure.
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Figures

Figure 1 A Phylogenetic analysis example drawn from the
publication [47] using the Armadillo [5] platform. From the
highlighted softwares, data, descriptive metadata and
parameters in texts, an expert drew a phylogenetic workflow.
Task programs are represented with coloured rectangles and
data flow with labeled links (input/output parameters).

Tables

Figure 2 An example of workflow representation. Workflow
items: i.e. tasks, data and parameters are encoded in the
sequential set w1.ζ while links between them are encoded in
the triple set w1.Θ. Each triple represents a link between item
positions. Here, the links l1, l2 and l3 represent respectively,
the isInput, isOutput and hasParameter relations.

Figure 3 A sample from the proposed PHAGE ontology
published in the BioPortal repository
(see http://bioportal.bioontology.org/ontologies/PHAGE).
Grey rectangles represent workflow reference concepts to:
steps, programs, data types, resources and parameters. The
hard arcs represent hierarchical hasSubClass relations and the
dotted arcs represent input/output properties.

Figure 4 An example of concept and relation annotation in
texts. After segmenting the text into tokens and POS tags, we
construct a set of concept features featuresC to learn how to
classify concepts ClassC and relation features featuresR to
learn how to classify relations ClassR. Since our feature
extraction method is context-based, we recognize each
concept and relation in its sentence.

Figure 5 An example of pattern refinement from a level k to
k + 1. Let p be an abstract workflow pattern (grey ovals) and
w the concrete workflow sequence (blue rectangles). After
refining/replacing the concept 24: MultipleSequenceAlignment
with its immediate ontological child concept 25: Progressive,
we need to verify if the matching between the concepts and
relations of p and w still hold from the level k to k + 1.

Figure 6 Workflow similarities results. The top figure
represents the overall similarity between the actual a
(annotated by the expert) workflows and the predicted p ones.
The experiments have been performed on 100 recent articles
downloaded from the PMC database. The second and third
figures represent box-plots and contour distributions of
concept and relation similarities between a and p. Bold points
represent the interquartile ranges outliers.

Figure 7 Pattern features distributions. This figure shows the
frequencies of qualitative features over generated patterns
using quantile box plots and contour densities. The Y axis
shows the minimum of support used to generate patterns and
the X axis shows feature values.

Figure 8 Pattern ranking score r distribution. This figure
shows the distribution of r values over generated patterns in
terms of percentages.
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Table 1 Objects and relations weights

Weight Description Val

wζt1 The object term oi,j in p.ζ is correct. 1

wζt2 The object term oi,j in p.ζ is partially correct. 0.6

wζt3 The object term oi,j in p.ζ is not correct. 0

wΘt
1 The relation term of a.θk in p.Θ is correct. 1

wΘt
2 The relation term of a.θk in p.Θ is partially correct. 0.6

wΘt
3 The relation term of a.θk in p.Θ is not correct. 0.1

wΘs
1 The domain and range terms of a.θk in p.Θ are correct. 1

wΘs
2 The domain or range terms of a.θk in p.Θ are correct. 0.6

wΘs
3 The domain and range terms of a.θk in p.Θ are not correct. 0

Weights values represent strings/substrings matchings between predicted item
and triple terms against the gold standard terms.

Table 2 Concepts Evaluation Distribution

Concept Match Only G Only P Overlap A.FM
BootstrapsParameter 61 19 8 1 0.81
DataBase 43 19 13 3 0.71
DataCollectionProgram 36 29 5 0 0.67
DataType 597 103 186 89 0.77
GeneOntology 139 172 5 3 0.60
HypothesisValidationProgram 25 40 29 2 0.42
Method 326 48 46 14 0.86
ModelSelectionProgram 42 50 17 1 0.55
PhylogeneticInferenceProgram 205 16 146 10 0.70
SequenceAlignmentProgram 70 15 19 4 0.79
SourceTaxon 202 125 57 19 0.67
TreeVisualizationProgram 18 7 2 0 0.80
GuessedPrograms 87 1 31 0 0.84
Sum 1851 644 564 146
Macro average 0.71
Micro average 0.73

The ’Match’ column represents the number of successfully recognized annota-
tions. The ’OnlyG’ column represents missed annotations while the ’OnlyP’ col-
umn shows the number of unknown annotations. The ’Overlap’ column shows the
number of lenient (partially recognized) annotations. The A.FM column shows
the average of f-measure between strict and lenient precision and recalls for each
concept [43]. Micro averaging essentially treats the corpus as one large document
while Macro averaging calculates the f-measure on a per document basis, and
then averages the results.
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