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Abstract

Motivation: Advances in cloning and sequencing technology yielded a massive number of genome of virus strains.
The classification and annotation of these genomes constitute important assets in the discovery of genomic variability,
taxonomic characteristics and disease mechanisms. Existing classification methods are often designed for a well-studied
virus. Thus, the viral comparative genomic studies could benefit from more generic, fast and accurate tools for classifying
and typing newly sequenced strains of diverse virus families. Results: Here, we introduce a fast, accurate and generic
virus classification platform, CASTOR, based on a machine learning approach. CASTOR is inspired by a well-known
technique in molecular biology: Restriction Fragment Length Polymorphism (RFLP). It simulates the restriction digestion of
genomic material by different enzymes into fragments in-silico. It uses two metrics to construct feature vectors for machine
learning algorithms in the classification step. We benchmark CASTOR for the classification of distinct datasets of Human
Papillomaviruses (HPV), Hepatitis B Viruses (HBV) and Human Immunodeficiency viruses (HIV). Results reveal true positive
rates of 99%, 99% and 98% for HPV Alpha species, HBV genotyping and HIV M group subtyping respectively. Furthermore,
CASTOR shows a competitive performance compare to well-known HIV-specific classifier REGA and COMET on whole
genome and pol fragments. With such prediction rates, genericity and robustness, as well as rapidity, such approach could
constitute a reference in large-scale virus studies. Finally, we developed the CASTOR web platform for open access and
reproducible viral machine learning classifiers. Availability: http://castor.bioinfo.ugam.ca

Contact: diallo.abdoulaye@ugam.ca

1 Introduction including methods based on nucleotide correlations (Liu et al., 2008)
and sequence composition (Yu et al., 2013; Struck et al., 2014). It

Genomic sequence classification assigns a given sequence into its ) ) :
transforms sequences or their relationships to feature vectors and then

related group of known sequences having similar properties, traits or

characteristics. It is a fundamental practice in different research areas constructs a phylogeny, statistical or machine leamning model (Vinga

and Almeida, 2003; Bonham-Carter et al., 2013). These methods are
reviewed in Vinga and Almeida (2003), Mantaci et al. (2008), Xing
et al. (2010) and Bonham-Carter et al. (2013). Restriction fragment length
polymorphism (RFLP), a molecular biology technique (Williams, 1989),
is used to type different virus strains (Bernard et al., 1994; Nobre et al.,

of microbiology yielding major challenges in comparative genomics.
Accurate genomic sequence classification and typing help to have a
better understanding of the evolution and phylogenetic relationships
of viruses. They also help in determining pathogenicity, developing
vaccines, studying epidemiology and drug resistances (Struck et al., 2014).
Recent advances in DNA sequencing and molecular biology techniques
provide an immense collection of genomic information. Such data volume

2008). Several computational and algorithmic approaches have tackled
theoretical and experimental problems related to the restriction enzyme

raises challenges for genetic-based classification techniques. Three main data such as phylogeny estimation (Felsenstein, 1992), SNP genotyping

approaches have been designed and implemented to classify different
types of viruses based on their genomic sequence characteristics. The

(Chang et al., 2010) and analysis of RFLP digitized gel images (Maramis
et al., 2011). However, large-scale computational sequence classification

first is sequence alignment-based approach which is widely used, e.g.: based on the RFLP technique is not yet covered in literature. Due to

in similarity search methods (BLAST (Altschul ef al., 1997), USEARCH (e genetic polymorphism in DNA sequences, fragments resulting from
(Edgar, 2010), etc.) and in pairwise distance based-methods (PASC (Bao enzyme digestions are different in terms of number and length between

et al., 2014), DEmARC (Lauber and Gorbalenya, 2012), etc.). The individuals or types. A set of restriction enzymes grounds a fragment

second is phylogenetic-based approach. It is implemented in several pattern signature for each sequence. Therefore, similar sequences ought to

tools, e.g.: REGA (de Oliveira ef al., 2005) and Pplacer (Matsen ef al., ha\./e 51m1¥ar 'fragment patterns and thus 31m11a.rrestrlct10.n site dlSFl‘lbu[lOHS.
2010). The aim of these methods is to place an unknown sequence This a priori knowledge could be used t'o l?mld'a m'ac}%mebleammg model
where sequences are represented by restriction site distributions as a feature
vector and a class feature corresponding to a taxonomic level (genus,

species, etc.). In this paper we introduce CASTOR, a machine learning

on a phylogenetic tree of a reference sequences. Each time a given
sequence has to be classified, it is realigned with the set of reference
sequences. Then, either a new phylogenetic tree is inferred or the given

sequence is placed in the existing tree. The third is alignment-free approach web platform, to classify and type sequences. CASTOR integrates a

new alignment-free method based on the RFLP principle. Our in silico
method is independent of the sequence structure or function and is also
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not organism-specific. CASTOR is designed to facilitate the reuse, sharing
and reproducibility of sequence classification experiments.

2 Material and methods
2.1 Overview of the approach

In this study, we propose an in silico approach to identify and classify viral
DNA sequences based on their restriction enzyme sites using supervised
machine learning techniques. Like other supervised learning approaches,
ours is divided into two main units (Fig. 1). The classifier construction
unit builds and trains classification models (or classifiers). It requires a set
of reference viral genomic sequences, their classes and a list of restriction
enzyme patterns. It starts by creating a training set including an ensemble
of feature vectors. The latter is computed from the distribution of the
restriction site patterns on the given DNA sequences and then refined by
feature selection methods. A collection of learning classifiers are then
trained and evaluated using 10-fold cross analyses in order to choose the
best classifier. The second unit (prediction unit) is intended to predict
classes or annotions of given viral sequences. The input data of this unit
are a classifier, a set of DNA sequences and the same list of restriction
enzyme patterns used to train the classifier.

2.2 Restriction fragment pattern-based features

In this study, we propose a set of features simulating the outcome of
the RFLP technique. From REBASE database (Roberts et al., 2015), we
extracted a list of 172 type II restriction enzymes and their recognition
sites. Type II family cleaves (cuts) DNA sequences precisely on each
occurrence of the recognition site. Then, the restriction digestion of DNA
sequences is computationally simulated. In order to build a training set, for
each sequence s and enzyme z we compute two metrics representing the
distribution of the digested fragments: the number of cuts of the enzyme
(CUT (s, %)) and the root mean square of digested fragment lengths

(RMS(s,z)) calculated as RM S(s,z) = /1 37" | 12 where n is
the number of fragments (CUT (s, z) + 1) and I; is the length of the it
fragment in linear genomes. For circular genomes n = CUT (s, z). Other
metrics could be easily computed from the fragment digestion to construct
the feature vectors.

2.3 Feature selection methods

Selection of an optimal subset of features improves the learning efficiency
and increases the predictive performance. Feature selection techniques
reduce the learning set dimension by pruning irrelevant and redundant
features. Two relevant methods of feature reduction are provided. The first
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method (topAttributes) ranks the features according to their information
gain (Ben-Bassat, 1982) and a subset of top-k features is selected.
Information gain estimates the mutual information between a feature and
the target class. The second method (correlation) uses the Spearman’s
rank correlation coefficient to construct a set of uncorrelated features.
The correlation coefficient between two feature ranking Vectgrs w and
n
ST Qb A two-
tailed p-value is computed to test the null hypothesis which states that
two feature vectors are uncorrelated. In order to compare and remove one

v of size n is computed as follows: p = 1 —

of two correlated features, two methods could be used: feature with the
largest sum of absolute correlation coefficients, or feature with the smallest
information gain ranking.

2.4 Learning and evaluation

We explored three types of classifiers: (1) symbolic; using a C4.5
decision tree (J48) (Quinlan, 1993) and random forests (RFT) (Breiman,
2001), (2) statistical; using a naive Bayes classifier (NBA) (Langley
et al., 1992; John and Langley, 1995), a support vector machine (SVM)
(Cortes and Vapnik, 1995) and K-nearest neighbors (IBK) (Cover and
Hart, 1967; Aha et al., 1991) and (3) Meta-learners; using Adaboost
(ADA)(Freund and Schapire, 1997) and Bagging (BAG) (Breiman, 1996)
both combined with J48 (see Table S1). A 10-fold cross-validation strategy
is used to assess the performance of the trained classifiers. For each
class, a set of performance measures is computed and averaged from all
folds. Performance measures are weighted according to the number of
instances and computed for the overall classification. The performance
measures are: TPR =TP/(TP+ FN), FPR=FP/(FP+TN),
Precision = TP/(TP + FP) and F — measure = 2 X TPR X
Precision/(TPR + Precision) where TP, TN, FP, and FN are
the number of true positive, true negative, false positive and false negative
predictions, respectively. T'PR and F'PR are true positive rate and false
positive rate, respectively.

2.5 Datasets

‘We applied our approach to study the classification of three distinct viruses:
Human PapillomaVirus (HPV), Hepatitis B Virus (HBV) and Human
Immunodeficiency Virus type 1 (HIV-1). 1) HPVs have a circular double
stranded DNA genome of ~8000bp belonging to five genera (Alpha, Beta,
Gamma, Mu and Nu). HPVs belonging to a genus share over 53% identity
of their complete genomes (CGs) and HPVs in the same species level
share over 62% identity (Daigle et al., 2015; Bernard et al., 2010). We
assess the approach performance for the classification of HPVs in the
genus and species taxonomic levels. At the species level, we selected
only the Alpha HPV genus representing the more abundant and the most

Classifier production

Select n learning
algorithms

Prediction unit
Unknown
genomic

lassifi Restriction
Classifier
enzyme patterns
sequences

[2
Model prediction
Extract model
o[ s ] features
L
. Compute restriction
N patterns
'

Validate Validate | *
| e w |

Select best model

Compute RFLP
features
Prediction
Apply model J -P{ results

J L J

—

Validate

Fig. 1. Overview of CASTOR kernel architecture. The kernel is composed of two main units (model construction and prediction). White rectangles represent input and output data ; grey

and curved rectangles represent processes. TS and VS are respectively training set and validation set.
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diverse genomes in databases. It is divided into thirteen species (Alpha
1-11, Alpha 13-14). Unfortunately some HPV genera (Mu and Nu) and
Alpha HPV species (1, 5, 8, 11 and 13) were underrepresented and were
discarded. 2) HBV genomes are smaller (3200bp) and are circular partly
double stranded DNA. HBVs are classified into eight genotypes (A-H)
with at least 8% divergence between their genomic sequences (Schaefer,
2007). We evaluated the CASTOR performances for the genotyping of
HBYV strains. HPV and HBV genomic sequences were downloaded from
NCBI RefSeq database (Coordinators, 2016). Only complete, clean and
well-annotated sequences were selected. The taxonomic annotations were
extracted from NCBI Taxonomy database (Coordinators, 2016). 3) HIV-
1 genome has two copies of positive-sense single-stranded RNA with
~9700bp for each. Phylogenetically, HIV-1 strains are divided into four
groups: M, N, O and P (Robertson et al., 2000; Plantier et al., 2009).
M group strains are worldwide prevalent. They are categorized into pure
subtypes (A-D, F-H, J and K) and recombinant forms (up to 70 CRFs and
URFs). Genetic variations between subtypes are about 20-30% for env
gene, 7-20% for gag gene and 10% for pol gene (Gao et al., 1998). For
HIV-1 classification, we studied CGs and fragments covering pol gene
from the position 2253 to 3554 with respect to HXB2 reference sequence
and having a minimum size of 1Kbp. HIV-1 sequences were extracted
from the Los Alamos HIV database (http://www.hiv.lanl.gov/). Each class
ought to have an adequate number of genomic sequences in order to have
a representative genetic diversity.

2.6 Simulation studies

In order to identify the best parameters for tuning the classifiers, we
randomly divided into 10 sets each, the HPV genera, HPV Alpha species,
HBV genotypes datasets. For each obtained datasets, we performed a
10-fold cross-validation studies with different classifiers constructed as
follows. We constructed all the combinations of the two metrics (CUT
and RMS), the two sets of feature selection techniques (including
topAttributes with top — k = 10, 50, 100, 172; correlation with
p=0.5,0.7, 1, p—value = 0.05, 0.005, 0.5F —5 thresholds and two
methods to eliminate correlated features) resulting to 22 combinations and
seven learning algorithms. This construction yielded 308 combinationsx
10 datasets = 3080 experiments for each virus classification (see
Figures S1 and S2). With the best set of parameters in the feature selection
models (topAttributes: top — k = 100 and correlation parameters: p = 1,
p —value = 0.5F — 5 and information gain as elimination method), we
performed a second simulation study for the HPV genera, HPV Alpha
species, HBV genotype, HIV-1 M subtypes (CGs) and HIV-1 M subtypes
(pol fragments). Hence, in this simulation, we drawn the combination of
2 metrics*2 feature selection methodsx7 learning algorithmsx
10 datasets = 280 experiments for each virus classification. This
constitutes the main experiments presented in the result section. Raw viral
sequence datasets constructed above were class-size imbalanced, i.e., the
difference in the number of genome sequences belonging to each class was
relatively large. Under-sampling (down-sizing) majority class approach
has been shown to perform well (Blagus and Lusa, 2010) and could be used
with standard algorithms. Hence, from each previous dataset, we randomly
performed under-sampling of the larger classes and without replacement to
have relatively the same size of the other classes. The interval of sampling
size is given in each result tables.

3 Results and discussion
3.1 Classification with RFLP signatures in virus families

Figure 2 highlights the natural RFLP cuts in the collected HPV, HBV
and HIV-1 datasets. The second column of the figure shows the

multidimensional scaling (MDS) plot of the first two dimensions of the
distances between the feature vectors of the genomes. The separation
between the different HPV genera (Fig. 2a) could approximatively be
drawn, which is partly the case for the HPV species. The Cohesion
(Daigle et al., 2015) and Silhouette (Rousseeuw, 1987) indices allow to
measure the compactness and separability of classes. Here, both indexes
show moderate values (between 0.2 and 0.8 for Cohesion index and
-0.2 to 0.7 for Silhouette index) indicating that the classes are not
really crisp. Several instances could be either mis-labeled or share the
same RFLP cut patterns with other classes resulting in low or negative
values of Silhouette index in HPV Alpha 3, 7 and HPV Gamma
(Fig. 2a). With CASTOR, the best HPV Alpha Species classification
obtains a T'PR of 0.992 and F'PR of 0.002 in 10-fold cross validation
analyses of 118 instances (see Table 1). The power of RFLP cuts in
classification of viruses could be observed in HBV genotypes heatmap
(see Fig. 2b). HBV highlights three genotypes (A, E and F) with
Cohesion indexes for most instances above 0.7 indicating very coherent
classes. The Silhouette index plots show several instances of B, C, E
and G genotypes that have an important disagreement with their affected
classes (Silhouette index < —0.1). Even with these constraints,
CASTOR achieves the genotyping of 230 HBV instances with T'"P R of
0.996 and F'P R of 0.001 according to a 10-fold cross validation study (see
Table 1). The HIV-1 cut site patterns have more variability among pure
subtypes and CRFs (Fig. 2c¢). This variability among classes is reflected
on the low values of the Cohesion index (<= 0.4) All, suggesting
either variability, noise or mislabels. For instance, > 30% of HIV-1 B
and HIV-1 C instances tend to have RFLP cut pattern of another subtypes
(negative Silhouette indexes). With CASTOR, the subtyping of HIV-1
group M within 18 main subtypes was assessed for 597 instances with a
TPRof0.983 and F'PR of 0.001. Previously, it has been clearly shown
that RFLP has a power for classification in several viruses (Bernard et al.,
1994; Nobre et al., 2008). But these studies are mostly limited to two to
five classes. To the best of our knowledge, our study constitutes the first
large scale and multi-class analyses of RFLP cut for classification.

3.2 Machine learning classifiers tuning and performance

The CASTOR platform relies on machine learning methods for the
classification of viruses based on RFLP signatures in nucleotide sequences.
The platform is detailed in the CASTOR platform section. Three important
parameters constitute the kernel of each CASTOR classifier (a metric, a
feature selection method, a learning algorithm). To assess the different
combination of the models, we performed a 10-fold cross-validation of
the 280 experiments associated to each of the five datasets. From the
overall results of the three virus datasets, it is tricky to distinguish the
best candidate between CUT and RM S metrics. In the genotyping of
HBV, CUT performs better than RM S (p-value = 0.0012) while in
the HPV genera and species classifications RM .S performs better than
CUT (p-values 5.00E-03 and 0.0293 respectively) (Fig. S3). However
the weighted mean F-measures for both methods are in all case >= 0.90
(with minimum of 0.79 and maximum of 0.99). The same analyses were
performed on HIV-1 CGs and pol fragments. CUT and RM S perform
quite similar in both datasets when comparing the mean weighted F-
measure (non-significant p-values). Due to the variability of HIV-1, the
mean weighted F-measure is 0.86 in CGs and 0.80 in pol fragments.
Hence for the remaining of our study, we will fix the metric according
to its performance on the corresponding datasets. Figure S4 presents
the comparative analyses of the two feature selection methods in the
280 experiments for each dataset. The Wilcoxon/kruskal-wallis tests
comparison of the mean of weighted F-measure for the two feature
selection approaches show that correlation and topAttribute results are not
statistically different in all datasets. In fact, the two methods are correlated
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Table 1. CASTOR best accuracies on the classification of five datasets.

Type of virus Organism Classification # of classes # of instances TPR FPR F-measure Classifier ID
G 3 125 0.992 0.005 0.992 PMSHPVO1
Group I dsDNA HPV enera
Alpha 8 118 0.992 0.002 0.992 PMSHPV02
species
Group VIIdsDNA-RT HBV Genotypes 8 230 0.996 0.001 0.996 PMSHBVO1
G 4 76 1.000 0.000 1.000 PMSHIVO1
Group VI ssRNA-RT  HIV-1 roups
M Subtypes 18 597 0.983 0.001 0.983 PMSHIV02

This table contains the best results of the experimental study performed on the different datasets. The evaluation measures are obtained with 10-fold
cross validation analysis. The column Classifier ID contains the corresponding models available in CASTOR platform.

in the three viruses with a Spearman’s rank correlation coefficient ranging
between 0.77 and 0.96 (see Fig. S6). In these simulations, the seven
learning algorithms have various performance according to the different
datasets. The algorithm J48 has the worst weighted F-measure values (see
Fig. 3). However, its performance improves when combined with RFT or
BAG algorithms. In general, SVM performs better in 4/5 datasets with
weighted mean F-measure > 0.95 and ranking number 1 in HPV Alpha
species, HBV genotypes and HIV-1 subtypes classification and 4 in HPV
genera classification. It is followed by RFT, NBA and IBK. However, RFT
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and NBA are affected by a large variance (Fig. 3). These ranking are more
less observable on Figure S5 and S6. While most algorithms have similar
performance with CUT or RM S, Naive Bayes surprisingly performs
better with CUT'.

3.3 Assessing the performance CASTOR on HIV data

Table 2 highlights Castor prediction accuracies on five CG and seven pol
sequence fragments based HIV-1 classification. The T'PR of the best
classifier for the main HIV-1 types M, N, O and P indicates that all the
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Fig. 2. Class cohesion of three virus datasets. The four columns illustrate the separability and compactness of three virus complete genomes datasets based on 172 restriction enzyme RFLP
cuts. The first column shows heatmaps of CUT clustered by x-axis. The samples in the y-axis are grouped by studied classes followed by intra-class clusterings. The second column shows
MDS of the CUT distances between samples. The third and fourth column represents, respectively, the Cohesion and Silhouette indices of the classes. (a) Classes in HPV are Alpha species,
Beta and Gamma genera. (b) Classes in HBV are A-H genotypes (c) Classes in HIV-1 are M pure subtypes and CRFs. The first 10 largest classes for each dataset (except HBV).
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Fig. 3. Learning algorithm evaluation on five datasets. This figure illustrates the F-measure distribution (boxplot) of seven learning algorithms on the prediction for (a) HPV genera, (b)

HPV Alpha species, (c) HBV genotypes, (d) HIV-1 M subtypes with complete genomes (e) HIV-1 M subtypes with pol fragments. HPV and HBV datasets are complete genomes. The

number below each boxplot corresponds to the statistically discriminative ranking of the algorithms. The ranking is performed with paired Student’s t test. 1, o are the mean and the standard

deviation of the overall F-measures. p is the p-value of the statistically significance of the F-measure median differences among the algorithms computed with the Wilcoxon signed rank test.

sequences are correctly classified. For the prediction between the main
HIV-1 pure subtypes as well as CRFs, are above 0.98 (with FPR <=
0.001) for both CGs and pol fragments when the pure subtypes and CRFs
are separate models. When combining Pure subtypes and CRFs, the T PR
still remains above 0.98 for CGs but it drops at 0.92 when the classes are
balanced to 30 instances per class or 0.96 for 200 instances per class. It
appears that the CASTOR models are underperforming when we try to
predict between pure subtypes and CRFs (F-measure of 0.795 and 0.885
for CGs and pol fragments respectively).

Next, we also compare the performance of CASTOR against the most
powerful and widely used specific HIV-1 predictors namely COMET
(Struck et al., 2014) and REGA vs2 (de Oliveira et al., 2005) (Figure
4). It is important to notice that these programs are fixed and do not allow
neither any changing on the trained classes nor new training samples.
Here the actual training of COMET and REGA includes respectively
55 and 22 classes. To avoid under-represented classes, CASTOR was
trained on 18 classes for CGs and 28 classes for pol fragments (models are
available under the classifierid PMSHIV02 and PMSHIVO03, respectively).
We performed three comparisons (complete sampling, specific subtypes,
common subtypes; see Figure 4 ). REGA performs the best for CGs when
COMET outperforms for pol fragments. But their performance drastically
dropped in the other analyses by more than 10% compared to the best
performing method and arriving at the third position (Figure 4). Meanwhile
CASTOR is second in both two datasets. In CGs, CASTOR obtained
a correct classification of 72.41% against the sampling of LANL data
when REGA obtains 76.77%. But when testing predictors on their trained
classes, the percentage of correct classification drastically increases to
98.33% and 96.61% respectively for REGA and CASTOR. This result
remains almost the same when comparing only the common trained class
among the three predictors (Figure 4). These common classes cover 75%
and 93% of the overall instances of the sampling of CGs and pol fragments,
respectively. CG data includes 6 classes with 4 pure subtypes and 2 CRFs
(Table S2). The mean T"PR of CASTOR is higher than 0.95 in either
pure subtypes or CRFs. The T'P R of REGA drops to 0.83 when assessing
CRFs and remains almost perfect for pure classes (Table S2).

In pol fragments, COMET outperforms CASTOR and REGA
in all comparisons. Against the 10% random sampling of LANL,
COMET, REGA and CASTOR have respectively a percentage of correct

classification of 91.74%, 72.48% and 86.64%. This picture is confirmed
when comparing only the common trained classes where COMET reaches
95.57% and CASTOR 89.51%. Notice that REGA could not perform
higher than 76% and has a mean T'P R of 0.96 in pure subtypes competing
with COMET. In CRF instances, COMET and CASTOR obtain an equal
mean of T PR at 0.81 (Table S3). However, CASTOR has higher FPR
that is reflected on the mean F-measure of 0.77 compare to 0.84 for
REGA. The fact that F'PR values are higher in CASTOR compare to
the two other programs are not surprising. Since REGA and COMET
are specifically tuned to predict HIV data, their predictions with lower
scores tend to be discarded or ambiguous. For instance COMET has
32% of its CG prediction that is unassigned as well as 5% of its pol
fragment predictions. Hence, these numbers are higher than the false
positive values of CASTOR, but there are not included in the FFPR
computation. But, it will be interesting to include in CASTOR a threshold
of inclusion of a given sequence into a class. This could help reducing
the F'PR but it would necessitate deeper analyses. It should also be
associated to the open-set classification problem that is beyond the scope
of this paper. Even though CASTOR is not a specific HIV-1 classifier,
it competes with the most powerful method in HIV-1. Unlike COMET
and REGA, CASTOR provides an easy way of performing several types
of classification (see Table 2). It also has no restriction in the size of
data and is really time efficient. Hence, we completed the analysis by
performing a test on whole LANL. For CGs (3 778 instances), CASTOR
computes the test in Im59s with and accuracy of 91.2%. While for the pol
fragments (119 005 instances), it requires 20min10sec with an accuracy
of 85.41%. It shows that CASTOR takes 0.01sec to process a sequence
that is far more efficient than the time results indicated in (Struck ef al.,
2014) for REGA (28sec/sequence), but 10-fold less efficient than COMET
(0.001sec/sequence) (Struck et al., 2014). Furthermore, due to size issues,
itis not possible to perform such large analyses in actual version of COMET
server. Overall, CASTOR highlights good accuracy on the classification
of the three studied viruses. However this accuracy is slightly lower than
specific virus predictors as shown previously. But it exhibits more analysis
capacity, permitting several and highly accurate set of classifications. As
shown in 2, this accuracy is higher than 90% for almost all studies except
for comparing HIV-1 M pure subtypes vs CRFs. For less complex genomes
such as HPV and HBYV, the weighted mean F-measure is higher than 0.96.
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Table 2. Evaluation of HIV classification with CASTOR

Classification # of classes #of [min - max] TPR FPR F — Classifier ID
instances instances/class measure

Groups (M, N, O and P) 4 76 [4-32] 1.000 0.000 1.000 PMVHIVGCO1
Pure subtypes 6 189 [30 - 36] 0.995 0.001 0.995 PMVHIVGCO02
Complete genomes CRFs 12 234 [10 - 30] 1.000 0.000 1.000 PMVHIVGCO03
Pure subtypes and CRFs 18 423 [10 - 36] 0.981 0.001 0.981 PMVHIVGC04
Pure subtypes vs CRFs 2 200 [100 - 100] 0.795 0.205 0.795 PMVHIVGCO05
Groups (M, N, O and P) 4 94 [4 - 45] 1.000 0.000 1.000 PMVHIVPLO1
Pure 6 1800  [300 - 300] 0.983 0.003 0.983 PMVHIVPL02
CRFs 16 480 [30 - 30] 0.971 0.002 0.971 PMVHIVPLO03
pol fragments CRFs 6 1200 [200 - 200] 0.993 0.001 0.993 PMVHIVPL04
Pure subtypes and CRFs 23 690 [30 - 30] 0.920 0.004 0.919 PMVHIVPLOS
Pure subtypes and CRFs 12 2400  [200 - 200] 0.962 0.003 0.962 PMVHIVPLO06
Pure subtypes vs CRFs 2 200 [100 - 100] 0.885 0.115 0.885 PMVHIVPL07

This table contains the TPR, FPR and F-measure of 12 HIV classifications obtained with 10-fold cross validation analysis. For each classification, the
number of corresponding classes and instances are given. The range [min-max] indicates the interval of instance frequencies per class used during the
training of each model. The column Classifier ID contains the corresponding models available in CASTOR platform.

(a) Complete genomes (b) pol fragments
# of instances 551 461 418 413 413 11156 10949 10451 10771 10381
# of classes 51 29 8 6 6 71 48 21 22 15

100 100

75

50

25 25

% of correct classifications

Complete sampling Specific subtypes

Common subtypes Complete sampling

Specific subtypes Common subtypes

B COMET B REGA B CASTOR

Fig. 4. Performance of CASTOR with COMET and REGA predictors on HIV-1 datasets. The panels (a), (b) show the percentage of correct classifications for HIV-1 complete genomes
and HIV-1 pol fragments, respectively. The number of instances and the associated classes for each sampling is presented above the panels. Complete sampling corresponds to 10% of LOS
Alamos HIV-1 data selected randomly. In specific subtypes sampling, the predictors are assessed against their trained classes. In common subtypes sampling, the predictors are assessed
against the classes intersection between the three trained predictors.

It will allow to increase the class representatives, to add or remove classes
and also to benchmark several types of classification. For viruses that no
specific classifier exists, it could accurately cover the needs as it is for HPV,
instead of relying on the closes sequence search such as BLAST (Altschul
et al., 1997) or USEARCH (Edgar, 2010). Sequence search is generally
not recommended for subtyping since it will not allow the identification of
novel forms, it cannot also aggregate common attributes of a class while
predicting (Struck et al., 2014; Edgar, 2010).

3.4 CASTOR web platform

CASTOR is available as a public web platform. It is composed of four
main applications. (1) CASTOR-build allows a user to the create and train
new classifiers from a set of labeled virus sequences. It contains default
parameters and advanced options letting a user to customize the classifier
parameters. It can be used also to update the parameters or input sequences
of an already built classifier. The constructed classifiers can be saved in an
exportable file locally or publish to the community via CASTOR-database
described below. (2) CASTOR-optimize constructs improved classifiers.
unlike CASTOR-build that allows user to define metrics, algorithms and
feature selection models, It assesses all combinations of the classification

parameters and provides the best fitting classifier according to the input
data. (3) CASTOR-predict is the kernel application that allows user to
annotate a viral sequences according to a chosen classifier. It also serves
as evaluation module for classifiers with a labeled test sets. The results are
provided with enriched graphics and performance measures (4) CASTOR-
database is a public database of classifiers which allow the community to
share their expertise and models. It facilitates experiment reproducibility
and models refinement. A search engine and classifier properties viewer are
also implemented. Hence, from the interface of CASTOR-database, users
can download, reuse, update and comment the published classifiers. In the
best of our knowledge, this platform constitutes the first RFLP prediction
based platforms for the classification of viral sequences.

4 Conclusion

In this paper, we have shown that RFLP has a great performance in
large scale sequence classification such as typing, subtyping, genotyping
and others. We also provide CASTOR, the first generic viral sequence
classification platform based on RFLP. We raised that CASTOR can
perform well in different type of viruses Group I, Group VI and Group
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VII (see Table 1) with weighted mean F' — measure > 0.90 in most
of the case. In the future, we will attempt to increase the performance by
modelling the boundaries of the classes and including open-set approach
to deal with instances from unknown classes. The CASTOR platform
implements several metrics and classifiers, allowing generic and diverse
analyses within the same environment. CASTOR allows the storage of
models allowing for reproducible experiments and open data access. Even
though, CASTOR is scale for viruses, it can be used and extend easily for
other type of organisms, including whole genome and partial sequences. In
the future, more models will be included, in particular those for less studied
organisms and/or without dedicated tools. Moreover, scientists could add
their tuned models helping CASTOR to enhance the predictions. We will
also optimize the platform to allow diverse type of classification such as
functional, disease related, geographical classifications. Hence, CASTOR
could quickly become a reference in comparative genomics focusing on
various type of sequence classification.
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