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Previously, we demonstrated that miRNA isoforms (isomiRs) are constitutive and 
their expression profiles depend on tissue, tissue state, and disease subtype. We 
have now extended our isomiR studies to The Cancer Genome Atlas (TCGA) 
repository. Specifically, we studied whether isomiR profiles can distinguish 
amongst the 32 cancers. We analyzed 10,271 datasets from 32 cancers and found 
7,466 isomiRs from 807 miRNA hairpin-arms to be expressed above threshold. 
Using the top 20% most abundant isomiRs, we built a classifier that relied on 
“binary” isomiR profiles: isomiRs were simply represented as ‘present’ or ‘absent’ 
and, unlike previous methods, all knowledge about their expression levels was 
ignored. The classifier could label tumor samples with an average sensitivity of 
93% and a False Discovery Rate of 3%. Notably, its ability to classify well 
persisted even when we reduced the set of used features (=isomiRs) by a factor of 
10. A counterintuitive finding of our analysis is that the isomiRs and miRNA loci 
with the highest ability to classify tumors are not the ones that have been 
attracting the most research attention in the miRNA field. Our results provide a 
framework in which to study cancer-type-specific isomiRs and explore their 
potential uses as cancer biomarkers 
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INTRODUCTION 
In the post-genomic era, the flourishing of microarray and next-generation sequencing (NGS) 

technologies has made the generation of large amounts of data a quick and relative inexpensive 

process. As a result, the challenge nowadays is how best to manipulate and analyze large volumes 

of information. This has led to the development of novel tools, or the adaptation of previously-

developed algorithms for use in the biological and medical fields (1).  

Throughout this era, the field of non-coding RNAs (ncRNAs) enjoyed very significant 

progress. In fact, RNA-sequencing technologies helped uncovered many novel categories of short 

and long RNA transcripts (2). In the process, they also revealed multiple layers of regulatory 

processes.  

Among ncRNAs, microRNAs (miRNAs) are arguably the best studied to date (3-5). The 

details of miRNA biogenesis (6-8) and function (7,9,10) were worked out more than a decade 

ago. Parallel studies linked miRNAs to a wide range of cellular, molecular and physiological 
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processes in development (11-15), and homeostasis (16-18). In addition, miRNAs play important 

roles in physiological conditions and diseases (19-21), including cancer (22,23). 

Their potent regulatory roles, small size, and relatively easy quantification have made 

miRNAs ideal targets as potential biomarkers (24-26). MiRNAs have also inspired research on 

their use as tumor classifiers. i.e. as features/variables used to construct statistical models to 

classify and/or predict the type of a given tumor. For example, Lu et al. used hierarchical 

clustering to classify miRNA profiles of tumor samples into groups of cancer types (27). 

Subsequent work by Volinia et al. (28) and by Rosenfeld et al. (29) further demonstrated the 

power of the miRNA profile to classify tumors and predict cancer types.  

More than two decades since their discovery, the mining of RNA-seq datasets continues to 

generate important observations about miRNAs. Perhaps most important is the ever increasing 

repertoire of miRNAs, which has implications for the complexity of the miRNA regulatory layer. 

This was recently demonstrated by the discovery of numerous primate-specific miRNAs with 

tissue-dependent expression patterns (30). This complexity increased further with the recent 

discovery that miRNA isoforms (isomiRs) are constitutive and that isomiR expression depends on 

sex, population, race, tissue type, tissue state, and disease subtype (31-34).  

Several lines of evidence, both computational and experimental, support the functional 

importance of isomiRs. Intuitively, this is not surprising considering that isomiR profiles provide 

a richer and more granular representation of the molecules produced from each miRNA locus 

compared to the single molecule, the “archetype,” that one finds listed in public databases. As we 

exemplified in the case of breast cancer, isomiRs are more suited to capture breast cancer 

heterogeneity than the archetype miRNAs (35). Recently, others and we also showed that distinct 

isomiRs originating from the same miRNA arm can target multiple distinct genes and molecular 

pathways (31,34,35).  

The Cancer Genome Atlas (TCGA) initiative has been successfully integrating miRNA 

profiles with messenger RNA (mRNA) expression and genome-wide sequence information to 

further explain disease subtypes. More than 11,000 samples from 32 cancer types have been 

profiled today at the levels of miRNA, mRNA, protein, epigenome, etc. Tools were developed to 

analyze TCGA’s RNA-seq datasets and have generated what is a unique and rich resource for this 

kind of research (36). 

Our recent analyses of expression profiles from hundreds of individuals showed that “how 

many” and “which” isomiRs are produced from a given miRNA locus depends on the locus and 

the tissue, among other variables (31,35). This is in agreement with previous reports that the 

archetype miRNAs of miRBase are specifically expressed in some tissues but absent from other 
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(30,37). These findings by others and us suggest that miRNA expression signatures are complex 

and dynamic. Additionally, these findings support the possible use of isomiRs as biomarkers and 

prompted us to investigate their use as such. The ideal isomiRs to use as features in a biomarker 

signature should be present primarily in the cancer being studied and largely absent from the 

other cancer types.  

Here we describe our findings from a pan-cancer analysis of TCGA’s short RNA-seq 

datasets. Specifically, we evaluated the ability of binary profiles that we built on isomiRs to 

discriminate among the 32 TCGA cancer types. For protein-coding transcripts, binary profiles 

were shown previously to exhibit robustness to noise and to contain enough information to 

distinguish among tumor types (38,39) and among tissues (40). For isomiRs, we generated 

“binary isomiR profiles” as follows: after thresholding in an adaptive manner, we ignored the 

isomiR’s actual level of abundance and instead declared it present, if its expression exceeds 

threshold; otherwise, we declare it absent. We also evaluated the ability of “binary miRNA-arm 

profiles” to discriminate among the 32 TCGA cancer types. In this case, we declare either the 5p 

or the 3p miRNA arm present, if at least one of its isomiRs is present above threshold, and absent 

otherwise. Clearly, the miRNA-arm representation greatly reduces the information that the 

analysis is allowed to use. 

 

 

MATERIALS AND METHODS 
Data acquisition and correction 
We quantified the TCGA isomiR expression data of 10,271 samples at the molecule/isomiR-

sequence level.  In order to do this, we took the publicly downloadable loci-based 

isoform.quantification.txt files from the TCGA datasets (downloaded from the TCGA data portal 

https://tcga-data.nci.nih.gov on August 06, 2015) and converted them to be molecule/sequence 

based. Importantly, our pool of candidate biomarker miRNA loci includes miRBase as well as 

those hairpin arms of miRBase for which we reported recently that they are expressed in various 

tissues (30). Prior to the analysis, we applied corrections to account for mature sequences that 

could originate from any of several known miRNA paralogues. We also corrected for the fact that 

the isoform.quantification.txt files made available by TCGA often list only a subset of possible 

loci in the case of miRNA paralogues. Importantly, even though we counted the expression of 

miRNA paralogues once (thereby avoiding multiple counting) we maintained the labels of all 

possible paralogues throughout the analysis. 
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For our analyses, we used all TCGA samples from 32 cancer types. We excluded from our 

analyses all samples that were specifically annotated as potentially problematic samples 

(file_annotations.txt files of the Clinical Data from the TCGA data portal, downloaded on 28 

October, 2015), resulting in 10,271 samples. We also removed non-tumor samples, e.g. normal 

adjacent tissue or metastastic samples, including only samples that had a sample infix of ‘01’ or 

‘03’ in the TCGA barcode name.  

 

Binarized isomiR and miRNA arm profile 
We worked on a per-sample basis in order to generate the binarized isomiR profiles. Specifically, 

for each sample independently we considered the top 20% most expressed isomiRs as ‘present’. 

To generate the binarized miRNA profiles, we collapsed the information at the arm level: if there 

was at least one isomiR (originating from the respective arm) that was characterized as ‘present’, 

then the arm was also marked as ‘present’. For cases in which one isomiR could be mapped to 

more than one miRNA arms, we further merged them into meta-arms, i.e. collections of arms that 

were sharing all their common isomiRs. 

 

Statistical and machine learning analyses 
Analyses were done in R and Python. Specifically, hamming distance was calculated with the 

hamming.distance function of the e1071 package, while all other distance metrics of hierarchical 

clustering (HCL) were performed with the hcluster function of the amap package. Visualization 

of dendrograms was performed with the dendextend package of R. X2 tests were performed and P 

values were corrected to FDR values. Binarized profiles significance using X2 tests was further 

filtered so that the absolute difference between the percentage (%) of samples containing the 

isomiR or miRNA arm in one cancer, but not the other, had to be greater than or equal to 80%. 

Networks were visualized using the igraph package in R. 

Support Vector Machines (SVMs) were run with the svm function of the e1071 package in R 

with linear kernel function and with allowed probability predictions. After the SVM model was 

trained, the probability vectors (one per sample) were computed for each sample in the test set. 

Each vector has 32 elements each one representing the probability that the given sample is of the 

respective cancer type. The sample is classified to the cancer type with the highest probability. If 

the probability < 0.5 for all cancers, then we assign the sample in the ‘Other’ category. Sensitivity 

and FDR scores were estimated separately for each cancer and separately for each iteration. 

Sensitivity was defined as the number of true positive classifications divided by the total number 

of samples, while FDR was calculated as the number of false positive samples divided by the 
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number of samples identified as cancer, i.e. non-Other. For the histograms of Figs. 3C, 3D, 5C 

and 5D, we averaged the sensitivity and FDR scores per iteration. For Supp. Fig. S4, we 

correlated (Spearman’s rho coefficient) the sensitivity and FDR with the number of samples in 

each cancer and plotted the distributions as a histogram. The VI scores were computed separately 

for each isomiR or separately for each miRNA arm as the average of the squared values of the 

weights across all pairwise SVM comparisons and then were scaled to 1 by dividing by the 

maximum score. RandomForest was run with the H2O package in R. 

PubMed entries were identified per miRNA gene. The unique gene identifiers in the Gene 

database of NCBI were retrieved and the number of links to PubMed entries was counted (current 

as of October 07, 2016).  

 

RESULTS 
Preliminary material and definitions 
We analyzed the isomiR expression profiles for 10,271 samples from 32 cancer types (see 

Methods for details). To deal with miRNAs with multiple genomic copies (paralogues), we 

worked at the level of the sequenced reads: thusly, for isomiRs whose sequences exist at more 

than one genomic locus we kept one representative instance avoiding multiple counting. 

Consequently, we represented each sample using an expression vector with as many dimensions 

as the number of distinct isomiR sequences that are expressed in the sample.  

As mentioned at the end of the Introduction, we intentionally focus on binary isomiR profiles, 

i.e. profiles that simply list an isomiR as present or absent. We determined an isomiR’s presence 

or absence independently for each sample and without any influences by the isomiR’s genomic 

origin. Binarization of isomiR abundances proceeded as follows: within the sample at hand, we 

considered as “present” the top 20% most abundant isomiRs; all other isomiRs were labeled 

“absent.” Drawing the line at the top 20%, represented an average threshold of ~10 reads per 

million (RPM), i.e. 10 RPM, which is a stringent threshold (Supp. Fig. S1).  

In addition to working with the binarized profiles of isomiRs, we also explored an alternative 

scheme, namely “miRNA-arm binarization.” This representation scheme collapses the 

information captured by multiple isomiRs into a single statement of “present” or “absent.” 

Specifically, if a miRNA arm, either 5p or 3p, had at least one of its isomiRs labeled “present,” 

then this arm was also labeled as “present,” otherwise it was labeled “absent.” 

 

Statistics of binarized isomiRs 
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By processing the 10,271 normal and tumor TCGA samples, we accumulated a total of 7,466 

isomiRs that passed threshold in at least one sample. These isomiRs arise from 807 arms that 

correspond to 767 miRNA loci from miRBase and 40 novel miRNA genes as we reported in 

Londin et al. (30). Supp. Tables S1 and S2 list the binary expression profiles for isomiRs and 

miRNA arms, respectively. Our analyses were carried out on the samples corresponding to 

primary solid tumors (sample infix ‘01’ in the TCGA sample barcode) except for Acute Myeloid 

Leukemia (LAML) where blood-derived samples were used (sample infix ‘03’). 

By analyzing the 7,466 isomiRs that occupy the 20% most abundant positions in at least one 

sample, we found that the vast majority of them (90.2%) are present in fewer than half of the 

analyzed tumor samples. Only 48 out of the 7,466 isomiRs are present in all datasets (Supp. Fig. 

S2A). Interestingly, 11 of the 48 isomiRs arise from loci that belong to the let-7 family of 

miRNAs. Other isomiRs that are present in many of the analyzed datasets arise from widely-

studied miRNA loci including miR-21, miR-29, miR-30, the miR-17/92 cluster and its 

paralogues. For individual miRNA loci, the distribution of their isomiRs varied greatly across 

samples. For example, let-7 isomiRs were “dichotomized:” one subset is present in most of the 

TCGA datasets whereas a second subset is present in fewer than 25% of the datasets (Supp. Fig. 

S2B).  

A significant portion (58.8%) of the 7,466 isomiRs is present in fewer than 100 samples each 

(Supp. Fig. S2A). Moreover, 77.5% of the 7,466 isomiRs are present in at least two of the 32 

distinct cancer types (Supp. Fig. S2C). These findings suggest that the expression of many of the 

identified isomiRs has a cancer-specific dimension.  

Fig. 1A depicts as a heatmap the variation in the number of isomiRs from a given locus. Only 

the top 70 loci from the standpoint of the isomiRs they produce are shown in the heatmap. As can 

be seen, let-7a-5p consistently produces numerous isomiRs independent of cancer type. MiR-21-

5p and miR-30a-3p also produce many isomiRs in many of the 32 analyzed cancers. Ovarian 

cancer (OV) in the case of miR-21-5p, and acute myeloid leukemia (LAML) in the case of miR-

30a-3p are notable exceptions to this observation. Analogously, we also observed several miRNA 

arms that produce numerous isomiRs in some cancers only. The 5p and 3p arms of miR-9 are a 

characteristic such example: both arms produce numerous isomiRs in lower glade glioma (LGG).  

 

IsomiR production is cancer-dependent 
We studied systematically the binary differences of presence/absence of abundant isomiRs among 

cancers by conducting all possible pairwise comparisons among 32 cancers. For each comparison, 

we performed x2 tests, suitable for comparison of binary data, for all isomiRs in the two given 
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cancers. To focus on the most discriminatory isomiRs, we imposed a False Discovery Rate (FDR) 

threshold of 0.1% and further required that the percentage of samples in each cancer that contain 

the isomiR differ by at least 80%. We were able to identify several isomiRs that were 

significantly present in one cancer and absent from many of the remaining ones (Supp. Table S3). 

Fig. 1B illustrates this observation using LGG as an example. As already mentioned above (Fig. 

1A), isomiRs from the miR-9-3p arm are present in LGG samples and absent from nearly all 

other cancers. The opposite holds true for isomiRs from the miR-10a-5p arm and the miR-200 

family: they are absent from LGG and present in 71-93% of the other cancers. Another 

characteristic example can be seen in Supp. Table S3: in testicular germ cell tumors (TGCT), the 

miR-302 family and miR-371/372/373 cluster express several isomiRs absent from nearly all 

other cancers. 

 

MiRNA-arm transcription is cancer-dependent  
Noticing the co-presence/co-absence of isomiRs from the same miRNA arm in some cancers, we 

tested the hypothesis that the miRNA arms themselves are also differentially present among 

cancer types. We repeated the previous χ2 analysis for the binarized profiles of miRNA arms (see 

above for definitions) and were able to largely replicate the results that we obtained at the isomiR 

level (Supp. Table S4). Colon adenocarcinoma (COAD) provides a characteristic example. At the 

isomiR level, several isomiRs from the miR-215-5p arm were found to be COAD-specific when 

compared to the other cancer types (Supp. Table S3). Looking at miRNA arms only, we find that 

the 5p arm of miR-215 also exhibits the same trend, i.e. its production of isomiRs is specific to 

COAD (Fig. 1C and Supp. Tables S3 and S4). 

 

Binarized isomiR profiles can be used to hierarchically cluster cancers 
First, we examined how well we can classify the 32 cancer types using binarized isomiR profiles 

and hierarchical clustering (HCL). As a distance metric between two cancers, we used the 

Hamming distance between the respective binary isomiR profiles (Supp. Table S3). Essentially 

this measures the isomiR differences (present → absent, absent → present) between the two 

cancers being compared. The resulting dendrogram is shown in Fig. 1D. In it we observe several 

interesting clusters. A first cluster (light purple background) contains almost all the 

adenocarcinomas, like pancreatic ductal (PAAD) and prostate adenocarcinoma (PRAD). A 

second cluster (light orange background) encloses the breast (BRCA) and bladder (BLCA) cancer 

types along with the squamous cell carcinoma of lung (LUSC) and head and neck (HNSC). A 

third cluster (light yellow background) includes cancers of the kidneys (renal clear cell 
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carcinoma, KIRC; renal papillary cell carcinoma, KIRP), liver (hepatocellular carcinoma, LIHC) 

and the bile duct (cholangiocarcinoma, CHOL). We also note the clustering of the uveal (UVM) 

and skin (SKCM) melanomas (cyan background).  

The above clustering into tumor groups implies a small Hamming distance and indicates 

similarities in the profiles of abundant isomiRs. By extension, the profile similarities imply 

commonalities in the respective molecular physiologies. However, this univariate analysis is not 

suitable for tackling the multidimensional question of cancer classification.  

 

Conventional multivariate clustering cannot separate all cancer types 
We next embark on multivariate statistical approaches to evaluate the hypothesis that the 

binarized isomiR and binarized miRNA-arm abundance profiles can be used for tumor 

discrimination and classification. After computing Hamming distances between pairs of samples 

(not pairs of cancers) using the respective binarized isomiR profiles, we carried out HCL. We 

were able to discriminate up to seven cancers using the binarized isomiR profiles (Fig. 2A). 

Collapsing isomiR profiles into binarized miRNA-arm profiles did not provide any additional 

discriminatory ability (Fig. 2B). 

To investigate the upper limit of using HCL and Hamming distances at the sample level, we 

considered all possible cancer pairs and performed all comparisons among the respective 

samples. In each case, we examined whether each cancer’s samples would form their own cluster. 

Figs. 2C (isomiRs) and 2D (miRNA arms) illustrate the outcome of this analysis. In the shown 

networks, each node is a cancer type. Two nodes are linked with an edge if and only if the 

corresponding cancers can be distinguished from one another (large Hamming distance between 

samples from the respective cancers). LAML, TGCT and thymoma (THYM) appear as central 

hubs in these networks: this means that these cancers can be distinguished with relative ease from 

several other cancer types. We note the absence of nodes for e.g. colon adenocarcinoma (COAD) 

and thyroid cancer (THCA) from these networks. This indicates that, using the current clustering 

model (Hamming distance + HCL), COAD and THCA cannot be distinguished from other 

cancers. Also, not surprisingly, binarized isomiR profiles (Fig. 2C) can separate several more 

cancers from one another compared to binarized miRNA-arm profiles (Fig. 2D).  

 

Binarized isomiR profiles can discriminate amongst cancers  
Support Vector Machines (SVMs) have been gaining popularity, due to their capacity for multi-

class classification in many different contexts (41-45). SVMs are intrinsically designed for binary 

classifications, i.e. for finding the best hyperplane that separates two a priori defined clusters. For 
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our multi-cancer classification, we used an approach analogous to PhyloPythia, our previously 

published method for classifying metagenomes (41,42). In particular, we build 496 SVMs for 

each of all possible “cancer-type-X vs. cancer-type-Y” pairwise comparisons, and then integrate 

the information into a single model by attaching probabilities to the classification outcome. 

We split our 9,293 tumor datasets into training sets (used to construct each model) and test 

sets (used to evaluate each model), as is general practice in machine learning. Specifically, for 

each cancer type in turn, we formed a training set that comprised 60% of the type’s samples. The 

remaining 40% of the sample’s for the cancer type at hand formed the test set. For each cancer 

type, we used the respective “training” samples to build an SVM aimed at separating the cancer 

type at hand from the remaining 30 cancer types.  

We built 496 SVM models using the “binarized isomiR profiles” and another 496 models 

using the “binarized miRNA-arm profiles.” The isomiR SVM models were evaluated separately 

from the miRNA-arm SVM models. For the 496 SVM models being considered, we presented 

each test sample to each of the 496 SVMs in turn and used their output to build a 32-dimensional 

vector of probabilities: the i-th element of the vector is the probability that the test sample at hand 

belongs to the i-th cancer type. We imposed a probability threshold of 0.5: if the i-th element of 

the probability vector was ≥ 0.5 then the test sample was classified as belonging to the i-th cancer 

type. If none of the 32 probabilities reached the 0.5 level, then the test sample was assigned to the 

‘Other’ category. The ‘Other’ category contains false negatives as well as samples that truly do 

not belong to the 32 considered cancer types. 

We repeated each cycle of SVM model building and testing 1,000 times. In each iteration, we 

used a different set of randomly selected samples for training. Fig. 3A shows a heatmap that 

summarizes the average prediction performance of the SVMs that are based on the binarized 

isomiR profiles. Each row designates the cancer type to which the test sample belongs and each 

column designates the predicted cancer type. A perfectly-specific classifier should not generate 

any non-diagonal entries.  A perfectly-sensitive classifier should not generate any entries in the 

“Other” category. As can be seen, the binarized isomiR profiles can clearly discriminate among 

cancer types and to correctly classify each sample to its correct origin. There is one notable 

instance of seemingly diminished performance that involves several rectum adenocarcinoma 

(READ) tumors that were misclassified as COAD tumors. In reality, this is not unexpected 

considering that READ and COAD tumors are molecularly similar and their distinction is largely 

driven by anatomy (46). Supp. Table S5 contains an example of the probability vectors for the 

test samples as well as the confusion matrix from one of the 1,000 iterations. It is evident that the 

probabilities for the correctly assigned samples were considerably high, most of them being ≥ 0.9. 
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We also note that the 1,000 iterations built SVM models that were fairly similar to one another 

(Supp. Fig. S3A and S3B), indicating high stability in the potential presence of extreme outlier 

samples. 

Fig. 3B shows an analogous heatmap that summarizes the average prediction performance of 

the SVMs that are built using the binarized miRNA-arm profiles. As can be seen, the 

classification remains largely successful. This suggests that simply interrogating whether a 

miRNA arm produces isomiRs can provide good performance when classifying cancer samples.  

Finally, we quantified the performance of the 1,000 SVM models by building the distribution 

of the respective sensitivity and False Discovery Rate (FDR) scores. We did this separately for 

the binarized isomiR and miRNA-arm SVM models. Fig. 3C shows the resulting distributions for 

sensitivity and Fig. 3D for FDR. It is evident that binarized isomiR profiles are considerably more 

effective in correctly classifying tumor samples showing a mean sensitivity score of 93%. Even 

though lower (87%), the average sensitivity of the SVMs that were based on the binarized 

miRNA-arm profiles is fairly high in absolute terms. Indeed, one should consider here the 

magnitude of the task and how little information is actually used in this case when building these 

SVM models. The FDR scores also supported the effectiveness of the SVM-based classification. 

Specifically, the “binarized isomiR profiles” exhibited a mean FDR of 3% whereas the “binarized 

miRNA arm profiles” exhibited a mean FDR of 5%. 

 

Validating the resulting SVM classification 
To ensure that the achieved SVM classification is not artificial, we carried out two tests. In the 

first test, we kept the number of ‘present’ isomiRs constant but randomly rearranged them in each 

sample. We then proceeded with building our 1,000 isomiR-based SVM models and tested them 

with the “correct” test samples. As expected, all of the test samples, in all 1,000 iterations, were 

assigned to the ‘Other’ category (Supp. Fig. S3C).  

In the second test, we shuffled the labels of the training samples prior to training each SVM 

model with the binary isomiR profile. As before, we built 1,000 SVM models and tested them 

with the “correct” test samples. Doing so resulted in the complete collapse of the model, 

consistent with our first step (Supp. Fig. S3D).  

We also note that there is a weak correlation between the observed sensitivity and FDR 

scores with the number of samples in each cancer type (Supp. Fig. S4), indicating that the success 

or failure of classification is not driven by the uneven sample sizes. 
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Based on the outcome of these two tests, we conclude that the classification results depicted 

in Fig. 3 are not driven by random or accidental events. Instead, the binarized isomiR and 

miRNA-arm profiles appear to carry actionable information.  

 

The most discriminatory isomiRs and miRNA arms are not among those 
frequently-studied 
As the SVM attempts to identify the best-separating hyperplane in the multi-dimensional space, 

some of the features are given more weight than others. In our case, these features would be 

tantamount to specific isomiRs and specific miRNA arms respectively.  

To identify those isomiRs that were deemed most significant in separating the various cancer 

types, we ran the SVM method using as training set the whole TCGA dataset and extracted the 

variable importance (VI) score for each variable as the mean of the squares of the feature weights 

(47) of all pair-wise comparisons (Supp. Table S6). We repeated the same analysis for miRNA 

arms and identified those with the highest VI values (Supp. Table S7).   

Among the isomiRs, we found that two isomiRs from the 5p arm of miR-205 were deemed 

most important by the isomiR-based SVM classifiers (Supp. Table S6). These were followed by 

several isomiRs from both arms of miR-141. Notably, we observed a trend for agreement 

between the SVM models built on isomiR profiles and miRNA-arm profiles respectively with 

regard to the miRNA loci that the two models deem important (Supp. Tables S6 and S7). The loci 

include miR-205, miR-141, and miR-200c.  

To validate these findings, we used the RandomForest algorithm, which has been shown able 

to identify significant variables for classification (48). We found the VI scores from 

RandomForest to be strongly and positively correlated with the VI scores from the SVM models 

(Supp. Table S6): Spearman rho correlation coefficient 0.886 (P-val<0.01). The correlation 

improves further to 0.932 (P-val<0.01) when we compare the VI scores obtained from the 

binarized miRNA-arm models (Supp. Table S7). The fact that a second independent algorithm 

validates the SVM conclusions adds further support to the relevance of using binarized profiles.  

Having confirmed with two independent machine-learning tools the VI scores, we associated 

the corresponding molecules with the number of PubMed. For this step, we specifically used 

those miRNA loci that have entries in the Gene database of NCBI and retrieved the number of 

PubMed entries associated with each miRNA gene (see Methods). Fig. 4A shows the result of 

this association for SVMs whereas Fig. 4B shows the analogous results for RandomForest. We 

observed a mean of 52 publications per isomiR and 30 publications per miRNA arm. A striking 

result of this analysis is that both arms of the mir-21 precursor are each associated with the 
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highest number (689) of publications. However, with regard to their ability to classify cancer 

samples, both the SVM and RandomForest models assign them a considerably low VI score (little 

discriminatory power). It is also important to underline that both the SVMs and the 

RandomForest deemed miR-944 to be among the most important miRNAs for cancer 

classification: miR-944 currently has only six PubMed entries (Supp. Table S7). Other examples 

of discriminatory miRNAs with few PubMed entries include miR-429 (87 entries), miR-192 (46 

entries), miR-194 (10 entries), and miR-135b (40 entries). Lastly, we note a similarly weak 

correlation between the number of PubMed entries and the number of times the miRNA arm is 

found differentially present between two cancer types (Fig. 4C).  

Lastly, we repeated the above analysis with one change. Specifically, we examined the 

correlation of the VI score with the number of times that the isomiR, or miRNA arm respectively, 

is found to differentially present in a pairwise comparison. We found that those of the isomiRs 

and miRNA arms that had the most impact on cancer classification were the ones found to be 

differentially present among many cancer types (Supp. Figs. S5A and S5B). I.e. those isomiRs 

and miRNA arms that are uniquely present or absent in one cancer type are not the most 

impactful ones. We obtained similar results for both isomiRs and miRNA arms under the 

RandomForest model as well (Supp. Figs. S5C and S5D). 

Summarily, the above findings suggest that the current body of literature includes  a limited 

number of studies of miRNAs that, as per our analysis, have the most potential to serve as cancer-

specific biomarkers. 

 

Use of a reduced set of features preserves the ability to classify with binarized 
profiles 
The above-mentioned SVM and RandomForest models considered all 7,466 present isomiRs 

(isomiR profiles) or all 807 present miRNA arms (miRNA-arm profiles). As we discussed in the 

previous section, only a relatively small number of isomiRs and miRNA-arms are of considerable 

value in cancer classification. Based on these observations, we investigated the possibility that we 

could obtain reasonable classification results using a reduced set comprising the most important 

features (isomiRs or miRNA arms, Fig. 5A and 5B, respectively).  

We intersected the top 10% most important isomiRs of the SVM model with the top 10% 

isomiRs of the RandomForest and obtained 456 isomiRs (Supp. Table S8). Using these 456 

features (instead of the original 7,466) we repeated the multi-cancer SVM-based training and 

classification. We found that even with this reduced set of isomiR features we maintained our 

ability to correctly classify samples (Fig. 5A) – the concomitant sensitivity following 1,000 
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training/testing iterations decreased by a mere 3% to 90% (Fig. 5C) and the FDR by a mere of 1% 

to 4% (Fig. 5D). Much of the error originated from the higher uncertainty of the method to 

classify samples, as evidenced by the higher number of samples clustered as “Other” (Fig. 5A). It 

is important to stress here that the diagonal of the heatmap shown in Fig. 5A attracts the vast 

majority of the tested samples (correct classifications) and supports the use of isomiR-profile-

based SVMs in cancer classification. 

We also repeated the analysis using a reduced set of most important miRNA-arm features to 

build our SVM models. We intersected the top 10% most important miRNA arms of the SVM 

model with the top 10% miRNA arms of the RandomForest and obtained 47 arms (Supp. Table 

S8). This signature of miRNA arms was sufficient to classify the samples to their respective 

cancer type (Fig. 5B) at the expense of a modest penalty in sensitivity (decreased to 78% from 

87% when all features were used) and FDR (increased to 8% from 5% when all features were 

used) as seen in Figs. 5C and 5D, respectively. These results suggest that the reduced set of 

miRNA arm features retains a considerable ability to classify cancer samples; however, it does 

not reach the levels achieved by isomiRs. On the other hand, the miRNA-arm-based SVMs 

achieve these results using ten times fewer features than isomiRs. 

 

 

DISCUSSION 
In this study, we examined the relevance of binary isomiR and miRNA-arm profiles in 

distinguishing amongst multiple cancer types. This work was spurred by previous observations 

that miRNA expression profiles can be tissue-specific (28,29,37,49) and tissue and cell type 

differences can be adequately described by only the presence or absence of RNA transcripts 

(39,40). We centered this work on isomiRs, miRNA isoforms whose importance we demonstrated 

in recent publications (31,35). Specifically, we sought to determine how well binary profiles of 

isomiRs, and of miRNA arms, can describe cancer types. To this end, we leveraged the TCGA 

datasets due to the standardized protocols and data availability (36).  

A first result that emerged from our analysis was the identification of several instances of 

cancer-specific presence or absence of expression for isomiRs or for their corresponding hairpin 

arms. The most striking example is miR-9 whose isomiRs are uniquely present in LGG tumor 

samples. This miRNA is highly expressed in the nervous system and has evident important roles 

in neuronal development and diseases (50,51) supporting our findings of its tissue-specificity. 

Another miRNA that also exhibited similar characteristics in LGG was miR-219 and, 

intriguingly, this miRNA has been implicated in neural differentiation processes (52). We were 
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also able to identify additional miRNAs that have almost unique expression in some tissues, like 

the liver-specific arms of miR-122 (53). Our unbiased global approach also identified potential 

cancer-type-specific miRNAs: examples include miR-671 for ovarian cancer, and our novel 

miRNA ID00737-3p for THCA (Supp. Tables S3 and S4). Ovarian cancer was also an interesting 

because a relatively high number of isomiRs and miRNA arms were absent compared to other 

cancer types. The opposite was true for TGCT tumor samples where several isomiRs were 

present exclusively, e.g. isomiRs from the miR-302 family (Supp. Tables S3 and S4) that has 

important roles in stem cell pluripotency and cell reprogramming (54,55). 

It is important to stress that causative links for the above observations cannot be identified 

based on our analysis. Also, the cancer-specific expression can not be guaranteed as the isomiRs 

and the miRNA arms can preserve tissue-specific expression trajectories, even in the cancerous 

state. This is not unexpected considering that cellular context matters in cancer biology (56) and 

could be contributing to cancer-type differences. As the TCGA projects were largely focused on 

tumor classifications, limited normal samples were collected by the various consortia. Further 

studies with adequate numbers of normal samples will be needed to decouple the “normal” from 

the “cancer” signal, similarly to what was done previously (28). 

From a biomarker perspective, tissue specificity is of great importance, as miRNAs that are 

ubiquitously expressed in multiple tissues are not appropriate candidates for this role. In this 

regards, our work represents a first and much-needed step towards a global assessment of the 

usefulness of miRNAs and their isoforms as biomarkers. Two characteristic examples here are the 

mir-21 locus – the miR-21-5p miRNA has the highest number of publications, and the let-7 

family several members of which are present in all the samples and all the cancer types of our 

study. These observations suggest that these miRNAs are not adequately specific to be 

biomarkers (57). Such complications led several groups to suggest the use of “miRNA panels” as 

biomarkers rather than using one or a handful of miRNA molecules (58-60). 

Having established that qualitative differences among cancer types exist and are meaningful, 

we employed multivariate and machine learning tools to build classification models and predict 

the cancer type solely based on binary expression information of isomiRs or miRNA arms. We 

found that building SVMs from the isomiR binary profile were capable of correctly predicting the 

cancer class with more than 90% sensitivity with an FDR < 5% (Fig. 3). SVMs built from 

isomiRs outperformed SVMs built from miRNA-arm profiles (Fig. 3), even when we reduced the 

number of isomiR features by one order of magnitude (Fig. 5). When we focused only on the 

most important miRNA arms, we observed lower prediction rates, which suggests that a 

proportionally large number of miRNA arms is necessary for multi-cancer classification 
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purposes. Independent evidence that isomiRs have higher discriminatory power that miRNA arms 

is currently limited. In a recent work, Koppers-Lalic et al. found that miRNA isoforms are able to 

improve the specificity in prostate cancer detection, including isomiRs from the miR-204-5p, 

miR-21-5p and miR-375-3p arms (61). In addition, our previous work in breast cancer showed 

that isomiRs can better distinguish normal breast tissue from BRCA tumors by comparison with 

archetype miRNAs (35). A potential explanation for the higher predictive value of isomiRs can 

be that quantification and modeling at the miRNA arm level inherently discards information, 

which can be rooted in biological mechanisms that may specifically affect isomiR levels (62-64). 

A potentially significant contribution of the current work can be in the field of cancers of 

unknown primary site (CUP) (65-68). MiRNA profiling has evidently allowed for the 

identification of the primary sites of metastatic cases (69). Screening for the presence or absence 

of isomiRs or miRNA arms that were found significant in our analyses could further enchance the 

prediction accuracy. 

In summary, our paradigm of binary expression signature of isomiRs further extends the 

current literature on cancer classifications that are based on small ncRNAs. Compared to earlier 

work in the field, one notable difference is that previous studies relied on continuous multi-valued 

expression signatures to classify samples (27-29) whereas we use a binary input. Another 

difference is that our models were trained with a higher number of samples and can discriminate 

amongst a larger number of cancer types. We also score the “importance” of each isomiR or 

miRNA arm vis-à-vis its contribution to the multi-cancer classification, which we calculate from 

two independent models. Finally, we provide a framework for cancer-type-specific isomiR and 

miRNA signatures that can be readily utilized for specific biomarker discovery and also for 

hypothesis generation on the tissue-specificity of this class of small ncRNAs.  
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FIGURE LEGENDS 
 

Fig. 1 Differentially present isomiRs among different cancer types. (A) Heatmap of the 

number of isomiRs per miRNA arm. The darker the color of each cell, the higher the 

number of isomiRs that the respective arm (rows of the heatmap) produces in the 

respective cancer type (columns of the heatmap). (B) Differential presence of isomiRs in 

lower grade glioma (LGG) tumor samples as compared to the rest of cancer types. Red 

indicates that the isomiR (row) was found as ‘present’ in LGG as compared to the 

respective cancer type (column), while green indicates ‘absence’ in LGG. The data from 

all possible pairwise comparisons is included in Supp. Table S3. (C) Overlap between 

miRNA arms and isomiRs in the comparison of colon adenocarcinoma (COAD) with the 

rest of the cancer types. Red indicates that both the isomiR and arm were ‘present’ in 

COAD as compared to at least one other cancer type, green indicates they were 

‘absent’. For example, miR-205-5p was ‘absent’ in COAD as well as its five isomiRs, 

miR-205-5p|0|0, miR-205-5p|0|-3, miR-205-5p|0|-2, miR-205-5p|0|-1 and miR-205-

5p|0|+1. (D) Hierarchical clustering (complete method) considering the number of 

differentially present isomiRs as the distance between cancer types. Colored clusters 

are described in the main text. 

 

Fig. 2 Multivariate hierarchical clustering on the binary expression vectors. (A and B) 

Hierarchical clustering (hamming distance as metric) on the isomiR (A) or miRNA arm 

(B) profile of samples from different cancer types. The leaves of the dendrogram are 

tumor samples. The colored bar indicates the cancer type of the respective sample. (C 

and D) Networks of all potential pairwise discriminations using hierarchical clustering 

(hamming distance as metric) on the isomiR (C) or miRNA arm profile (D). Two nodes 

(cancers) are connected if and only if the corresponding samples were found to form two 

separate clusters, with the samples of one cancer clustered distinctly from the other. 

 

Fig. 3 Support Vector Machines correctly classify 32 cancer types. SVM classification 

using the binarized isomiR (A) or the miRNA arm (B) expression profile. Each row of the 

heatmap represents the original and each column the predicted cancer class. The color 

of each cell in the heatmap is proportional to the percentage (%) of samples originally as 

the cancer type in the respective row to be predicted as the cancer type of the respective 

column. The % is calculated as the average across 1,000 iterations. (C-D) Sensitivity (C) 
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and FDR (D) scores for the SVM models built using the binarized isomiR (magenta) or 

miRNA arm (yellow) expression profiles. 

 

Fig. 4 Number of publications does not correlate with importance in classification. 

Number of publications against the variable importance (VI) score as calculated in the 

SVM (A) or RandomForest (B) classification model based on miRNA arms. Spearman 

correlation coefficients: for SVM: 0.303, for RandomForest: 0.266. Number of 

publications against the times each miRNA arm was found differentially present (Supp. 

Table S4). Spearman correlation coefficient: 0.215. 

 

Fig. 5 Support Vector Machines classification with a reduced list of isomiRs is more 

robust than one of miRNA arms. SVM classification using the reduced list of 456 

isomiRs (A) or 47 miRNA arms (B). Each row of the heatmap represents the original and 

each column the predicted cancer class. The color of each cell in the heatmap is 

proportional to the percentage (%) of samples originally as the cancer type in the 

respective row to be predicted as the cancer type of the respective column. The % is 

calculated as the average across 1,000 iterations. The numbers in parenthesis show the 

number of test samples in each cancer type. (C-D) Sensitivity (C) and FDR (D) scores 

for the SVM models built using the reduced binarized isomiR (top graph) or miRNA arm 

(bottom graph) expression profiles. The distributions with the full isomiR and miRNA 

profiles are shown in gray. 
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