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Abstract 1 

To infer the histories of population admixture, one important challenge with methods based on the 2 

admixture linkage disequilibrium (ALD) is to get rid of the effect of source LD (SLD) which is directly 3 

inherited from source populations. In previous methods, only the decay curve of weighted LD between 4 

pairs of sites whose genetic distance were larger than a certain starting distance was fitted by single or 5 

multiple exponential functions, for the inference of recent single- or multiple-wave of admixture. 6 

However, the effect of SLD has not been well defined and no tool has been developed to estimate the 7 

effect of SLD on weighted LD decay. In this study, we defined the SLD in the formularized weighted LD 8 

statistic under the two-way admixture model, and proposed polynomial spectrum (p-spectrum) to study 9 

the weighted SLD and weighted LD. We also found reference populations could be used to reduce the 10 

SLD in weighted LD statistic. We further developed a method, iMAAPs, to infer Multiple-wave 11 

Admixture by fitting ALD using Polynomial spectrum. We evaluated the performance of iMAAPs under 12 

various admixture models in simulated data and applied iMAAPs into analysis of genome-wide single 13 

nucleotide polymorphism data from the Human Genome Diversity Project (HGDP) and the HapMap 14 

Project. We showed that iMAAPs is a considerable improvement over other current methods and further 15 

facilitates the inference of the histories of complex population admixtures. 16 

Keywords: Population admixture; Admixture Linkage Disequilibrium (ALD); Source Linkage 17 

Disequilibrium (SLD); Admixture dating; Polynomial spectrum.  18 

 19 

Introduction 20 

The “Out of Africa” human migrations result in population differentiation in different continents, while 21 

subsequent migrations that have occurred over the past millennia led to gene flow among previously 22 

separated human sub-populations. As a consequence, admixed populations come into being when 23 

previously mutually isolated populations met and intermarry. Population admixture has received a great 24 

deal of attention recently. Many studies based on genome-wide data have shown that gene flow is 25 

common among inter-continental and intra-continental populations and that admixture of populations 26 

often leads to extended linkage disequilibrium (LD), which can greatly facilitate the mapping of human 27 

disease genes (McKeigue 2005; Reich and Patterson 2005; Smith and O’Brien 2005). 28 

The high levels of LD are produced by admixture at loci that have different allele frequencies among 29 

the involved populations (Nei and Li 1973). Because of recombination, this particular type of admixture 30 

LD, or ALD, decays as a function of time since admixture. Consequently, it is possible to infer population 31 

admixture by modeling the dynamic changes of ALD. Moorjani et al. proposed such an approach by 32 
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aggregating pairwise LD measurements through a weighting scheme (Moorjani et al. 2011) and its 1 

software ROLLOFF was fully explained by Patterson N. et al. (Patterson et al. 2012), which was further 2 

developed by Loh et al. (Loh et al. 2013) and by Pickrell et al (Pickrell et al. 2014). This ALD-based 3 

approach is particularly useful for admixture dating.  4 

Under the hybrid isolation (HI) model, the expected value of LD decreases at the rate of 1 � � 5 

(Chakraborty and Weiss 1988; Pfaff et al. 2001), where � is the genetic distance (in Morgan) between 6 

two sites. And after g generation, the LD decays to �1 � ��� of its original value, assuming that the 7 

admixed population is engaged in random mating and has infinite effective population size (Hill and 8 

Robertson 1966). Recently, Pickrell et al. considered the situation of multiple waves of admixture from 9 

different source populations and showed that LD was comprised of multiple exponential terms, each of 10 

which refers to a single admixture event (Pickrell et al. 2014). Zhou et.al confirmed the polynomial 11 

expression (taking ���� as approximation of �1 � ���) for each wave of admixture and added the effect of 12 

source LD (SLD) from source populations into the LD’s expression under the general admixture model 13 

(Zhou et al. 2016). Based on this LD framework, dating admixture becomes a problem of fitting the 14 

polynomial terms in the ALD decay. 15 

When dating admixture in empirical populations, two major factors affect the accuracy of estimation: 16 

background LD (or SLD in the context of this work) and representative reference populations. Pickrell et 17 

al presented a method based on weighted LD to deal with multiple-wave admixture. In their method, they 18 

used starting distance strategy (abandon loci whose genetic distance are shorter than a certain distance) to 19 

reduce the bias caused by SLD and they scanned global populations to find out the best pair of reference 20 

populations for each wave of admixture (Pickrell et al. 2014).The key assumption of their method is that 21 

the only effect by different pairs of reference populations was resulted from the relative value of 22 

exponential/polynomial coefficients of weighted LD decay. However, they neither validated this 23 

assumption nor considered the possible effect from SLD. Here, we introduced the polynomial spectrum 24 

(p-spectrum), the fitting results with polynomial functions, to reveal polynomial property of the weighted 25 

LD decay. With simulated admixed population, we confirmed the weighted LD decay curves with 26 

different pairs of source populations had similar p-spectrum and we also found that starting distance 27 

strategy could only partly reduce the SLD (Figure 3).  28 

An alternative way to reduce SLD is to use derived source populations to estimate SLD (Zhou et al. 29 

2016). Based on this idea, a new approach is developed here to infer multiple-wave admixture, which has 30 

been implemented in iMAAPs. After evaluating this method under various admixture models, we applied 31 

it to the well-known admixed populations in HGDP (Rosenberg et al. 2002) and HapMap (The 32 
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International HapMap Consortium 2010) data and demonstrate that the current study has greatly 1 

facilitated the understanding of the admixture history of human populations. 2 

Materials and Methods 3 

Data sets 4 

Data for simulation and empirical analysis were obtained from two public resources: Human Genome 5 

Diversity Panel (HGDP) (Rosenberg et al. 2002) and the International HapMap Project phase III (The 6 

International HapMap Consortium 2010). Data filtering was performed within each population with Plink 7 

(Wigginton et al. 2005): Samples with missing rate > 5% per individual, SNPs with missing rate > 50% 8 

and SNPs failing in Hardy-Weinberg Equilibrium test (p-value < 1 � 10��) were permanently removed 9 

from subsequent analyses.  10 

The abbreviation of populations used in this study are: YRI: The Yoruba in Ibadan, Nigeria; LWK: 11 

Luhya in Webuye, Kenya; MKK: Maasai in Kinyawa, Kenya; ASW: African Ancestry in SW USA; CEU: 12 

U.S. Utah residents with ancestry from northern and western Europe; TSI: Tuscans in Italy; MXL: 13 

Mexican Ancestry in LA, CA, USA; CHB: Han Chinese in Beijing, China; CHD: Chinese in metropolitan 14 

Denver, CO, USA. Haplotypes used as source populations in simulations are from 113 unrelated 15 

individuals of CEU and 113 unrelated individuals of YRI. 16 

Simulations 17 

In order to evaluate our method in dating admixture, we employed forward-time simulations to generate 18 

haplotypes under variant admixture scenarios: HI model, two-wave model (including the cases of one 19 

donor population and two donor populations for the second wave admixture), and the model of isolation 20 

after a period of continuous admixture. Our simulations were under the framework of copying model that 21 

new haplotypes are assembled from the segments of the source populations’ haplotypes generation by 22 

generation (Li and Stephens 2003; Price et al. 2009), which has been used in previous work (Price et al. 23 

2009). In our simulation, no mutation was considered in generating new haplotypes.  24 

Under the HI model, the admixture events were set as having occurred 20, 50, 100, and 200 25 

generations ago. For the two-wave (TW) model, the simulated admixed population experienced two 26 

pulses of admixture, which were at 100 and 20 generations ago, respectively, and was isolated in the 27 

remaining time. For the recent admixture in the TW model, a scenario in which only one of the source 28 

populations donated genetic materials (TW-1 model) and the other scenario where both source 29 

populations provided gene flow (TW-2 model) were simulated.  30 
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We also simulated admixed haplotypes in the scenarios of continuous migration, in which only gene 1 

flow from source populations to the admixed population is allowed and after that the admixed population 2 

is isolated to the present. In our simulation, we used modified gradual admixture (GA) (Jin et al. 2012) 3 

and continuous gene flow (CGF) (Pfaff et al. 2001) models to shape the gene flow in the migration 4 

window, which separately resulted in GA-I model and CGF-I model. Under these two models, we set the 5 

window size of migration as 80 generations and the isolation duration as 20 generations for the long last 6 

migration, and we set the window size of migration as 30 generations and the isolation duration as 70 7 

generations for the short last migration.  8 

Source populations also evolved in isolation so that both the reference populations and admixed 9 

population were of the same age. The sample sizes for both source populations and admixed populations 10 

were set as 5,000. More details of parameters for simulation were given in Table S1–3. 11 

Weighted LD statistic and its estimator under the two-way admixture model 12 

Under the two-way admixture model (Figure 1), two source populations provide genetic materials to the 13 

newly formed admixed population. Following the notations of Zhou et. al (Zhou et al. 2016), the LD in 14 

the admixed population of �	 
 1�-st generation is composed of SLD and admixture produced LD: 15 

�� � 
 ����

�

�	


 �
�����
���� 
 ����




�	


�1 � ��� , Eq 1 

where ��  is the genetic proportion derived from the source population �, serving as the weight for linear 16 

combination of ��  (LD in source populations �) to form the SLD; �
���� is the allele frequency difference 17 

between population 1 and population 2 at site � and � is the genetic distance between site x and site y; 18 

���� is a natural admixture indicator whose positive value means that admxiture happend at l generations 19 

ago: 20 
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���� �, 21 

where ��

��� is the total genetic contribution from source population � in the admixed population ����. 22 

Using allele frequency difference �
�����
���� as weight, the weighted LD statistic is defined as the 23 

average of LD with the weight over a set holding pairs of SNPs whose pairwise genetic distance is � (Loh 24 

et al. 2013): 25 
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where 1 
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, ��: � � �
2 � |
 � �| �  � � �

2�, 

and � is a discretization parameter inducing a discretization on �. By taking average with weight on both 2 

sides of Error! Reference source not found. over the set 
���, we have 3 

����� � � �������
�

�	�
� ���� � ��
�

�


	�

�1 � ��
 , Eq 2  

where 4 

���� � ∑ �	���
�	�����������

|
���| . 

And the estimators for the weighted LD statistic for admixed population and source populations are given 5 

by Loh P. R. et. al (Loh et al. 2013): 6 

������ � ∑ � !�", #�� 	���
�� 	������
����

|
���| , $ � 0, 1, 2;   

	���
��  is the observed allele frequency difference and � !�", #��  is the esimator of ��  between site 
 and 7 

site �. For the source populations, $ � 1 or 2, and ������  defined above is a biased estimator when the 8 

same group of samples are used for calculating both LD and the weight for the LD. Fortunately, two ways 9 

can be used for eliminating the bias: 1), divide the target population into two groups, one group is used 10 

for calculating the allele frequency difference, while the other group is used for calculating the LD 11 

(Moorjani et al. 2011); 2), employ the unbiased statistics (Loh et al. 2013). In this study, we used the 12 

second method to correct the bias in the SLD estimation. Besides，���� can be independently estimated 13 

by: 14 

����� � ∑ �	���
�� 	������ ������

|
���| . 

Here, we separated ���� from the coefficients of polynomial functions to avoid the possible effect to the 15 

process of polynomial fitting. 16 

Factorizing of weighted LD statistic with polynomial functions 17 
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Based on formula of weighted LD statistic in the admixed population (Eq 2), admixture events are 1 

recorded in the polynomial function ∑ ��
��

	� �1 � ��
 , where positive value of ��
�  indicates the 2 

admixture at 'th generation before present. So the direct way to date the admixture is to find out the 3 

positive value of ��
� . However, two possible risks may affect the results when fitting �����  with 4 

polynomial functions: one is �����, $ � 1, 2, which represents the SLD; the other is ����, which is a 5 

function decaying as � increases (Figure S3). Inspired by the Weierstrass approximation theorem, which 6 

says continuous function can be approximated by polynomial function, we used polynomial function to 7 

approximate �����, $ � 0, 1, 2, and ���� to explore the posssible interaction between them. Actually, by 8 

fitting the decay curve with polynomial function ∑ (�
��1 � ��


��
, we got the spectrum that the (�
� 9 

values on set 
� , which we defined as polynomial spectrum (p-spectrum) (Figure 3). In the polynomial 10 

fitting, (�
�  needs to be non-negative and 
�  is a finite set holding the candidate time points for the 11 

possible admixture signals. This numeric method to generate the p-spectrum is illustrated in Appendix. 12 

Replacing  �����, $ � 1, 2, and ���� with polynomial functions 13 

����� �  � (���
��1 � ��



��

, $ � 1, 2 

���� � � (��
��1 � ��



��

, 

����� turns to be 14 

����� � � ���(���
� � ��(���
���1 � ��



��

� ���� � ��
�
�


	�

�1 � ��
 . 

This expression of ����� tells us that SLD, linear combination of �����, $ � 1, 2, would bring in false 15 

positive admixture signals while ���� has the potential to destroy the admixture time inference when we 16 

try to fit ����� directly with polynomial functions. So it is essential to evaluate the effect from �����, $ �17 

1, 2, and ����. Fortunately, �����, $ � 1, 2, and ���� can be estimated with the source populations so 18 

that the effect can be evaluated. 19 

To evaluate the effect from �����, $ � 1, 2, and ����, we simulated a 100-generation-old admixed 20 

population under HI model and the simulated admixed population was initiated with the haplotype of YRI 21 

and CEU of the proportion 50%:50%. Derived source populations of YRI and CEU were also generated, 22 

separately. Based on the simulated genotype data in both source populations and admixed population, 23 

both ������  and �����  can be calculated through a Fast Fourier Transform algorithm, which is able to 24 

increase the computational efficiency (Loh et al. 2013). After that, the p-spectrum was constructed on a 25 
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time set ranging from 0 to 2000 generations accordingly. In the spectrum of ������ , we found three 1 

bunches of signals: two sharp bunches appeared around 100 and 1,250 generations and one flat bulb lay 2 

around 180 generations (Figure 2). Both in the spectrum of ������  and the spectrum of ������ , we found 3 

signals around the value 1,250 generations and signals close to 250 generations (Figures S1, S2). And in 4 

the p-spectrum of ����� , we found only a strong peak on the time 0 and two weak signal peaks over 250 5 

generations ago, which explained the sharp decay in its decay curve (Figures S3), suggesting that we need 6 

to consider this effect to precisely resolve admixture. In the time spectrum of ������ , signals around 100 7 

could be explained easily by the designed admixture and both signals around 1250 and signals around 180 8 

are probably introduced by the SLD. To test this explanation, we directly constructed )��� as  9 

���� � ������∑ ��������
���

����
� ∑ ��	�


	�� �1 	 ��	,  

which can be estimated with the simulated admixed population and derived source populations by 10 

����
 � �����
 �∑ �������
�
���

����

. Eq 3 

In the p-spectrum of )���� , the relative strength of noise-like signals outside the bunch of signals around 11 

100 generation become much weaker than that in the p-spectrum of ������  (Figure S4). This result 12 

confirms our explanation on the p-spectrum of ������  and indicates source populations can be used to 13 

reduce effect of SLD. 14 

Time inference for multiple-wave admixture 15 

Because ��
� is a natural indicater for admixture event, the natural extension for the p-spectrum is to infer 16 

the admixture time. In this section, we are going to present the time inference method based on p-17 

spectrum. In empirical populations, both the ������ , $ � 0,1, 2 and �����  can be calculated based on the 18 

genotype data of the admixed population and reference populations. Meanwhile, the population admixture 19 

proportions are estimated by 20 

��* � ∑ 	���
�� 	���
��
�

∑ �	���
�� ���

, ��* � ∑ 	���
�� 	���
��
�

∑ �	���
�� ���

, 

then )����  can be calculated so as its p-spectrum +����,
����

. 21 

Next, we are going to date admixture and evaluate the existence for each wave of admixture with a 22 

Jackknife-based method. Suppose we have 22 autosomes for the target admixed population, and each 23 

chromosome is excluded one at each time to calculate decay curve of )����  (Loh et al. 2013). This means 24 
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when chromosome $  is excluded, the remaining 21 chromosomes are used to calculate )�-  and the p-1 

spectrum ����
��
����

. Then the p-values are attained on each ' by testing whether the values in the set 2 

����
��
�	�,..,��

 is bigger than zero, and we used ���
� , the median of ������.
���,…,��

, as the summary p-3 

spectrum for the target population. We could also use the mean value to construct ���
�, but it would lead 4 

to more false admixture signals. Based on the summary p-spectrum, ' with positive values of ���
�  are 5 

gathered as the candidate admixture time points and then they are clustered into groups as different waves 6 

of admixture, say 
���� for kth wave of admixture. Once these time points are grouped, the mean and 7 

variance of the time for that wave of admixture can be calculated by 8 

�0�1�2���� �
∑ ' 3 ���
�����

���

∑ ���
�����
���

, 

!�4�2���� �
∑ 5' � �0�1�2����6� 3 ���
�����

���

∑ ���
�����
���

. 

Meanwhile, we used the minimum p-value on each time point in that group to measure the 9 

significance for each wave of admixture. In this way, we could date multiple-wave admixture and 10 

measure the significance of each wave of admixture. This method has been implemented in the Software 11 

named iMAAPs, which is available at http://www.picb.ac.cn/PGG/resource.php 12 

Results 13 

Dating multiple-wave admixture with weighted LD statistic 14 

There are two main difficulties for dating admixture in empirical analysis: reference populations selection 15 

and SLD reduction. To deal with these two difficulties, Pickrell et. al claimed that different pairs of 16 

reference populations often have different relative values but always have the same sign of the coefficient 17 

of �1 � ��
 so that they can traverse all pairs of reference populations to test the presence for the possible 18 

admixture and estimate the time for each wave of admixture. And they used the LD whose pairwise 19 

genetic distance is longer than 0.5 centiMorgans (cM), which was supposed to reduce the effect of SLD. 20 

Meanwhile, they also claimed that their algorithm was not very powerful in detecting multiple admixture 21 

(Loh et al. 2013; Pickrell et al. 2014). Under our framework of weighted LD (Eq 2), we confirmed that 22 

��	� is an admixture determined constant that it is independent to the selection of reference populations; 23 
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we pointed out both the �����, $ � 1,2 and ���� have the potential to affect the p-spectrum of �����, 1 

which directly affect the estimation of the coefficient of �1 � ��
; we also noticed that the effect of SLD 2 

reduction with starting distance was also not evaluated in Pickrell et. al’s work, which may be the reason 3 

that their method is not so powerful in detecting multiple admixture. To verify our conjecture, we 4 

constructed the summary p-spectrum for weighted LD decay curves on a simulated admixed population 5 

with different pairs of reference populations.  6 

A 100-generation-old admixed population was generated under HI model, with YRI and CEU as 7 

source populations of admixture proportion 0.5:0.5. Total 55 pairs of HapMap populations (YRI, LWK, 8 

MKK, ASW, CEU, TSI, MXL, CHB, CHD, GIH, JPT) were used as references to calculate weighted LD 9 

����� for further p-spectrum construction. In the summary, p-spectrum with full weighted LD decay 10 

(Figure 3A) for nearly all pairs of reference populations arose three main peaks around 100, 180 and 1250 11 

generations. In the p-spectrum with weighted LD decay began at 0.5 cM (Figure 3B), the peak around 180 12 

and 1250 generations disappeared but a new peak around 120 generations arose, which was probably the 13 

remaining SLD and it may bias the time estimation of admixture. The remaining SLD should be the 14 

reason why ALDER did not work well for multiple admixture. Meanwhile, we also observed that 15 

weighted LD decay with the pairs of reference populations close to the true source populations would 16 

have similar p-spectrum to what we want to reveal (Figure 3), which indicated us to use populations not 17 

the exact but similar to the source populations as references to construct the p-spectrum. This observation 18 

also supported that using proper reference populations could increase the accuracy of ALDER in 19 

resolving weighted LD decay.  20 

Evaluation of iMAAPs 21 

In our p-spectrum based method iMAAPs, we used reference populations to estimate SLD and ����, and 22 

separated their effect from the weighted LD of admixed population. Thus, we could directly estimate the 23 

admixture determined parameters ��
� and the time and the waves of admixture. A workable method in 24 

empirical admixture analysis should be robust to the proxy source populations. We have observed the 25 

robustness of p-spectrum to different pairs of reference populations, so we will evaluate the performance 26 

of iMAAPs to different reference pairs. Here, with the simulated 100-generation-old African-European 27 

admixed population, generated by YRI and CEU, we showed that iMAAPs is very robust with African-28 

European pairs (YRI, CEU; LWK, CEU; MKK, CEU; LWK, TSI; YRI, TSI; MKK, TSI) as reference 29 

populations to infer the admixture time (Table S4). 30 

We also tested our method under various admixture model, iMAAPs is able to reconstruct the history 31 

of the admixture population well. For the one-pulse and two-pulse admixture models, iMAAPs gave the 32 
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time close to the true admixture; for the continuous migration models, it was able to place most of the 1 

signals in a particular migration time window (Figure 4, Figure S5-13). 2 

Empirical analysis 3 

The current method was first applied to a few well-known admixed populations from available public 4 

databases: HGDP (Rosenberg et al. 2002) and HapMap Project phase III (The International HapMap 5 

Consortium 2010). Our method is currently designed under the framework of two-way admixture and 6 

source populations or the populations similar to which are required in empirical analysis. Besides, two 7 

principles should be considered for interpretation:  8 

(1) Existence of estimations for longer than 500 generations indicates the SLD has not been well 9 

removed so that some of the admixture signals, especially for ancient ones, are probably generated by the 10 

SLD instead of the admixture. 11 

(2) Existence of estimations close to generation 1 is always considered as the result of the population 12 

substructure but not the admixture.  13 

Based on these principles, we first analyzed three well-known admixed populations: African 14 

American (57 ASW individuals from HapMap), Mexican (86 MXL individuals from HapMap) and Uygur 15 

(10 Uygur individuals from HGDP). We also used ALDER to analyze these admixed populations (Table 16 

S5). For each admixed population, we conducted three rounds of estimations. In the first round, we used 17 

all the populations in the full data set as the references to infer the admixture; in the second round, we 18 

used population pairs with the highest amplitude for each wave of admixture in the first round as the 19 

reference populations to re-run ALDER; in the last round, we selected populations according to the 20 

admixture pattern based on the population inference in the first round. That is to say, if CEU and YRI are 21 

inferred as the best pair of populations to explain the admixture, then we selected all populations that 22 

could represent European ancestries and African ancestries as reference populations in the third run of 23 

ALDER, which we believed would increase the estimation accuracy. 24 

In our analysis with iMAAPs, reference populations were selected based on the results of ALDER’s 25 

inference on each wave of admixture. CEU (n = 113) and YRI (n = 147) were chosen as the ancestral 26 

populations of ASW. YRI (n = 147), TSI (n = 102) and American Indian (7 Colombians, 14 Karitiana, 21 27 

Maya, 14 Pimas and 8 Suruis from HGDP) were used as the ancestral populations of MXL. Basque (n = 28 

24), Sardinian (n = 28), Japanese ( n = 28), Han (n = 34) and French (n = 28) were used as the ancestral 29 

populations of Uygur.  30 
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The estimation of admixture time for ASW is 5.4+/-0.4 generations ago and the SLD has been well 1 

reduced with YRI and CEU as reference populations (Table 1, Figure S15). In the meantime, ALDER 2 

gives us two different results: 12.0+/-4.4 generations with all populations in HapMap as references; 6.3+/-3 

3.3 and 77.0+/-65.9 generations with selected reference populations from HapMap (Table S4). In this 4 

estimation of ALDER, generation 6.3 is very close to our result, which can be interpreted as the 5 

admixture time of the population ASW. And the result on generation 77.0 reflects the failure of SLD 6 

reduction with starting distance of 0.5 cM.  7 

MXL seems to have experienced the main admixture of 7.0+/-0.2 generations ago with TSI and 8 

American Indian as reference populations; 8.2+/-0.4 generations ago with YRI and American Indian as 9 

reference populations (Table 1). More admixture time points would be detected using the mean to 10 

construct summary p-spectrum (Table S5), which needs to be confirmed by further studies. 11 

The Uygur population has been reported to have much longer admixture history than ASW and MXL 12 

(Xu and Jin 2008; Xu et al. 2008; Qin et al. 2015). The admixture is resolved at 33.3+/-0.5 generations 13 

ago with Han and French as reference populations. This admixture event has also been detected with 14 

Basque, Han, Sardinian and Japanese as reference populations, suggesting that the major admixture 15 

formatting ALD in the present population happened around 825 years ago. 16 

Loh et al. speculated that there could have been multiple waves of admixture in the history of MKK 17 

(Loh et al. 2013). Here, both our method and ALDER detected at least two waves of admixture (Table 1, 18 

Table S4, and Figure S15). We used reference pair of YRI and CEU and pair of YRI and TSI to resolve 19 

the admixture of the MKK. With YRI and CEU as references, admixtures around 16.2 and 68.4 20 

generations ago were detected; with YRI and TSI as references, admixtures around 17.9 and 70.3 21 

generations ago were detected. However, both detections have estimations longer than 500 generations 22 

ago, indicating that we need to take care of SLD when interpreting the time of admixture. 23 

Discussion 24 

Available methods based ALD for admixture dating have shown their robustness in dealing with 25 

genotype data (Loh et al. 2013) and complicated admixture history (Pickrell et al. 2014). However, the 26 

effect of SLD in these methods has not been well defined and efficiently reduced, which may bias the 27 

estimation. In this study, we defined the SLD in the weighted LD statistic of the target admixed 28 

population under two-way admixture model, and introduced the p-spectrum to study the weighted LD 29 

decay for both source populations and admixed population. We found that SLD pretends to have higher 30 

degree of p-spectrum than the LD introduced by recent admixture and using starting distance can partly 31 

reduce the effect of SLD (Figure 3). We also found that SLD can be well compensated by the LD of 32 
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source populations (Figure S5-S13), which motivated us to develop a new method iMAAPs to infer 1 

multiple wave admixture. In this method, we used reference populations to estimate the SLD and then 2 

reduced its effect and gave the accurate estimation. 3 

We applied both iMAAPs and ALDER to date several well-known admixed populations. When 4 

running ALDER, we conducted estimation in three rounds with different sets of reference populations. 5 

Based on the ALDER’s assumption of the effect of different pairs of reference populations on weighted 6 

LD, time estimations in these three rounds should be much close to each other. However, for the 7 

population of ASW, the result of first round is different from the results of other rounds, indicating the 8 

potential risk for using ALDER with global references. In the estimations of the second and third round, 9 

we found signals around 6 and 70 generations before present, and the signal around 70 generations should 10 

be the false admixture signal caused by the remaining SLD, because iMAAPs only detected the signal 11 

close to the 6 and the SLD was well reduced. And we found signals were close to 0 in all these three 12 

rounds of estimation, which, as we suggested, should be interpreted as population substructure instead of 13 

admixture time. We also ran iMAAPs in populations of MXL, Uygur, and MKK. We found MXL seems 14 

to experience admixture at 7 generations ago. For the Uygur, the major admixture happened at about 33 15 

generations ago.This date is a little ealier than the date with ALDER with three rounds, in which the most 16 

significant admixture is around 40 generations ago. The difference is probably caused by the remaining 17 

SLD with starting distance strategy. Both ALDER and iMAAPs confirmed the estimation that the 18 

population MKK experienced multiple waves of admixture, which had been predicted in the work of Loh 19 

et al. (Loh et al. 2013) 20 

One of the fundamental idea in this algorithm is to take advantage of proper representative reference 21 

populations to reduce the effect of SLD. Since using improper reference populations may bias the final 22 

estimation, it is crucial to carefully select reference populations in empirical analysis. Another issue that 23 

should be noticed is that this algorithm might give mulitple pulses of signals even though the true 24 

population history was long-last conituous admixture (Figure S5-8). Nevertheless, this work built the 25 

framework of weighted LD under two-way admixture and provided an alternative way to reduce the 26 

effect of SLD in estimation of admixture time.  27 
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Appendix 1 

Construct the p-spectrum for decay curve 2 

The decay curve of ���� can be fitted by a numerical routine known as the proximal gradient 3 

(Beck A. and Teboulle 2009) to minimize the objective function to fit out the parameter �: 4 

 min
��	
�� and ∑ ��	
��

�� 	 ���� , 

where � � ������, �����, … , �������, ������
�

 is a vector of ����  with different �  values. 5 

� � �����, ����, … , ��
���, ��
��� is the coefficient of the polynomial functions and all entries in 6 

vector �  are non-negative. The ��, ���� entry of the matrix ����
���  is ��� � �1 	 ����  ,where 7 

� � 0,1, . . , �. In empirical analysis, the value of � ranges from 0 to thousands, say 0 to 2000 in 8 

our analysis, which would lead the matrix ���  to be too large to computate effeciently. In order to 9 

increase the computation efficiency, we use the set � , a subset containing time candidates 10 

sampled from the range of 0 to 2000, as the �’s value set. With this method, it was possible to 11 

find the vector � so as the fitting curve ��. Next, we construct the p-spectrum from denoising the 12 

vector �. 13 

For the vector �, each entry represents the magnitude of the signal and large magnitude 14 

indicates that the signal contains information rather than noise. Based on this idea, only the top 15 

��	� values that together composed 99.9% of � were retained for the p-spectrum construction. 16 

This means that we need to find out the smallest set Ω ! �  subject to the condition 17 

∑ ∑ ��	�"�	�	
	�Ω

�
���

∑ ������
���

# 0.99, 

and then let ��	�,  % &  � \Ω, to be zero. In this way, we constructed the p-spectrum for the decay 18 

curve �. 19 

Clustering the candidate time points 20 

Suppose we have the candidate time points generated from summary p-spectrum as increasing 21 

series ���(���,�,…,", then we say ��  and ���� belong to the same cluster if only one of these two 22 

conditions stands: 23 
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���� 	 �� � 1; 

or 1 

���� � ��

���� � ��
� 0.1. 

Reference 2 

Beck A., Teboulle M., 2009 A Fast Iterative Shrinkage-Thresholding Algorithm for Linear 3 

Inverse Problems. {SIAM} J. Imaging Sci. 2: 183–202. 4 
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Table 1: Time of admixture (generations) determined using iMAAPs with selected reference 1 

populations. 2 

Admixed 

population 

Reference 

populations 
Time 1 Time 2 Time 3 Time 4 

ASW CEU;YRI 
0.0±0.0 

3.92 3 10���  

5.4±0.4 

4.15 3 10���  
  

MXL 
American 

Indian;TSI 

0.1±0.3 

8.69 3 10���  

7.0±0.2 

1.70 3 10���  
  

MXL 
American 

Indian;YRI 

0.0±0.0 

1.82 3 10���  

8.2±0.4 

8.15 3 10���  
  

MKK CEU;YRI 
1.0±0.0 

1.33 3 10���  

16.2±0.38 

1.10 3 10�� 

68.4±1.5 

5.47 3 10�� 

653.0±15.0 

3.43 3 10���  

MKK TSI;YRI 
1.1±0.3 

5.26 3 10���  

17.9±0.23 

7.11 3 10�� 

70.3±1.4 

4.29 3 10�� 

632.1±15.1 

3.36 3 10���  

Uygur Basque;Han 
0.0±0.0 

4.37 3 10�� 

2.4±0.5 

4.22 3 10�� 

30.0±0.0 

2.48 3 10�� 
 

Uygur French;Han 
0.0±0.0 

5.81 3 10���  

4.4±0.5 

4.54 3 10�� 

33.3±0.5 

6.23 3 10�� 
 

Uygur 
Sardinian; 

Japanese 

2.8±0.1 

9.71 3 10���   

34.0±0 

7.65 3 10�� 
  

In each time cell, the mean value ± standard derivation is listed with P-value for the significance 3 

of existence of that wave of admixture. 4 
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Titles and legends to figures 1 

Figure 1: Two-way admixture model with n waves of admixture. 2 

Figure 2: p-spectrum for ������  in a simulated admixed population. The observed weighted LD decay 3 

(gray points at top right) are fitted by hundreds of polynomial functions (gray curves in the bottom panel), 4 

and a few of them whose coefficients are positive (highlighted in heat color) and the amplitude for each 5 

positive coefficient are plotted along the value of l (generation before present) at top left. 6 

Figure 3: Summary p-spectrum for ������  with all pairs of populations from HapMap. Spectrum with true 7 

source populations (CEU, YRI) is in red lines; spectrum with selected pairs of reference populations 8 

(CEU,LWK; CEU, MKK; TSI, LWK; TSI, YRI; TSI, MKK;) are in black lines; spectrums with other 9 

pairs of reference populations are in gray lines. A: Summary p-spectrum for full LD decay; B Summary 10 

spectrum for LD decay of starting distance 0.5 cM. 11 

Figure 4: The performance of iMAAPs under various admixture models. The black vertical dash lines 12 

represent the true simulated admixture time and gray areas represent the time window for continuous 13 

admixture. The summary p-spectrum of >����  for each simulated admixed population is plotted in heat 14 

color and the estimated admixture times are plotted in blue points, the mean values, and lines, the ranges 15 

of 3 times of standard derivation. 16 

Figure S1: p-spectrum for ������  in one of the reference populations (CEU). The observed weighted LD 17 

decay (gray points at top right) are fitted by hundreds of polynomial functions (gray curves in the bottom 18 

panel), and a few of them whose coefficients are positive (highlighted in heat color) and the amplitude for 19 

each positive coefficient are plotted along the value of l (generation before present) at top left. 20 

Figure S2: p-spectrum for ������  in one of the reference populations (YRI). The observed weighted LD 21 

decay (gray points at top right) are fitted by hundreds of polynomial functions (gray curves in the bottom 22 

panel), and a few of them whose coefficients are positive (highlighted in heat color) and the amplitude for 23 

each positive coefficient are plotted along the value of l (generation before present) at top left. 24 

Figure S3: p-spectrum for ����� . The observed �����  values (gray points at top right) are fitted by 25 

hundreds of polynomial functions (gray curves in the bottom panel), and a few of them whose coefficients 26 

are positive (highlighted in heat color) and the amplitude for each positive coefficient are plotted along 27 

the value of l (generation before present) at top left. 28 

Figure S4: p-spectrum for >���� . The observed >����  values (gray points at top right) are fitted by 29 

hundreds of polynomial functions (gray curves in the bottom panel), and a few of them whose coefficients 30 
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are positive (highlighted in heat color) and the amplitude for each positive coefficient are plotted along 1 

the value of l (generation before present) at top left. 2 

Figure S5: The performance of iMAAPs on 10 independent simulated admixed populations under CGF-I 3 

model (case 1). The gray area represents the time window for continuous admixture. The summary p-4 

spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 5 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  6 

Figure S6: The performance of iMAAPs on 10 independent simulated admixed populations under CGF-I 7 

model (case 2). The gray area represents the time window for continuous admixture. The summary p-8 

spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 9 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  10 

Figure S7: The performance of iMAAPs on 10 independent simulated admixed populations under GA-I 11 

model (case 1). The gray area represents the time window for continuous admixture. The summary p-12 

spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 13 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  14 

Figure S8: The performance of iMAAPs on 10 independent simulated admixed populations under GA-I 15 

model (case 2). The gray area represents the time window for continuous admixture. The summary p-16 

spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 17 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  18 

Figure S9: The performance of iMAAPs on 10 independent simulated admixed populations under HI 19 

model. The black vertical dash lines represent the true simulated admixture time. The summary p-20 

spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 21 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  22 

Figure S10: The performance of iMAAPs on 10 independent simulated admixed populations under TW-1 23 

model (case 1). The black vertical dash lines represent the true simulated admixture time. The summary 24 

p-spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 25 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  26 

Figure S11: The performance of iMAAPs on 10 independent simulated admixed populations under TW-1 27 

model (case 2). The black vertical dash lines represent the true simulated admixture time. The summary 28 

p-spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 29 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  30 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2016. ; https://doi.org/10.1101/082644doi: bioRxiv preprint 

https://doi.org/10.1101/082644
http://creativecommons.org/licenses/by-nc/4.0/


22 

 

Figure S12: The performance of iMAAPs on 10 independent simulated admixed populations under TW-2 1 

model (case 1). The black vertical dash lines represent the true simulated admixture time. The summary 2 

p-spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 3 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  4 

Figure S13: The performance of iMAAPs on 10 independent simulated admixed populations under TW-2 5 

model (case 2). The black vertical dash lines represent the true simulated admixture time. The summary 6 

p-spectrum of >����  for each simulated admixed population is plotted in heat color. The blue points 7 

represent the mean values, and the blue lines represent the ranges of 3 times of standard derivation.  8 

Figure S14: The performance of iMAAPs on empirical admixed populations. The summary p-spectrum 9 

of >����  for each simulated admixed population, calculated with the median, is plotted in heat color. The 10 

blue points represent the mean values, and the blue lines represent the ranges of 3 times of standard 11 

derivation.  12 
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