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Abstract	

Tumor genomes evolve through a selection of mutations. These mutations may 

complement each other to promote tumorigenesis. To better understand the functional 

interactions of different processes in cancer, we studied mutation data of a set of tumors and 

identified significantly co-mutated pathways. Fisher’s exact test is a standard approach that can 

be used to assess the significance of the joint dysregulation of pathways pairs across a patient 

population. We developed a robust test to identify co-occurrence using DNA mutations, which 

overcomes deficiencies of the Fisher’s exact test by taking into account the large variability in 

overall mutation load and sequencing depth. Applying our method to a study of six common 

cancer types, we identify enrichment of co-mutated signal transduction pathways such as IP3 

synthesis and PI3K and pairs of co-mutated pathways involving other processes such as 

immunity and development. We observed enrichment of clonal co-mutation of the proteasome 

and apoptosis pathways in colorectal cancer, which suggests potential mechanisms for immune 

evasion. 	
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Introduction	

In some cancers, tumor cells sequentially acquire a set of deleterious mutations, which 

contribute to tumor progression(1-3). Currently, very few pairs of co-mutated genes and the 

order in which they are altered during tumorigenesis and tumor progression are known. In 

colorectal cancer, mutations in the driver genes APC, KRAS, and PIK3CA are accumulated 

sequentially and provide selective growth advantage over normal epithelial cells(4,5). However, 

it is yet unknown for most cancers whether any mutation would affect the likelihood of 

appearance of co-mutations in other genetically interacting genes or pathways and whether co-

mutations of a pair of pathways would alter the biological behaviors in cancer such as organ 

specific metastasis and growth rate of cancers. 	

Masica and colleagues genotyped 238 known oncogenic mutations in 1000 cancers of 

17 different types and used the Fisher’s exact test (FET) to study the association between 

mutations of pairs of driver genes(6). By applying FET, they found that oncogenes that activate 

the same pathways often occurred mutually exclusively. In addition, they discovered significant 

co-occurrence of mutations in KRAS and PIK3CA, which were known to interact at the pathway 

level. Similarly, Kandoth et al.  collected over 3000 samples with whole exome-sequencing 

(WES) across 12 major cancer types, and used the FET to identify pairs of mutated genes 

(SMG) with significant co-occurrence or mutual exclusivity(7). They found that co-occurring or 

mutually exclusive mutations are usually associated with specific cancers types or tissues of 

origin.	

There are some limitations to the aforementioned studies. First, the power to detect co-

occurring mutations is limited by the sample size and inter-tumor heterogeneity(8-10). Mutations 

in genes of the same biological process typically confer similar effects in tumor 

progression(8,11,12). Therefore, we propose to aggregate mutations at the pathway level to 
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investigate the prevalence of co-mutation of pairs of pathways. Second, the null hypothesis for 

FET is that two variables are independent of each other. However, in cancer genomics data, 

multiple sources of variation such as overall mutation load, gene length, or sequencing depth, 

could bias this assumption.	

Here we propose a new method for detecting significant co-mutated pairs of pathways or 

gene-sets in cancer mutation datasets. Previously, a patient-specific method was proposed to 

discover significant single mutated pathways/gene-sets(13). Due to the large variability in the 

number of mutations between cancer samples, the importance of a mutated pathway in a given 

tumor is quantified by a score which takes into consideration the overall mutation load of the 

sample. An enriched mutated cancer pathway was detected if the aggregative score across all 

the patients was significantly higher than expected. Here we used the Poisson binomial 

distribution as a null model to detect the co-mutations of two pathways using a patient-based 

score for each pair of pathways. We simulated two datasets with different background 

distributions of overall mutation load modulated by spike in of mutations in several single 

pathways and co-mutated pathways and compared the performance of Fisher’s Exact test with 

our method. Our method was also applied to six different types of cancer from the TCGA project 

and we identified unique co-mutated pathways in these cancers. In colorectal cancer, we 

detected co-occurrence of mutations in the proteasome pathway and the extrinsic apoptosis 

pathway, suggesting a potential synergistic mechanism for immune evasion due to defects in 

the apoptosis pathway(14) and decreased neoantigen presentation resulting from defects in the 

proteasome pathway(15). 
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Materials and Methods:	

Simulated dataset:	

We simulated 100 datasets with 300 samples and 180 pathways under two different 

scenarios (Figure S1). In the first scenario, a desired number of mutated pathways in each 

sample was generated from a normal distribution with a mean of 30 and standard deviation of 

10. In the second scenario, the number of mutations N was generated from a function N=2
g 

where g followed a normal distribution with a mean of 4 and standard deviation of 1: g~N(4,1). 

For each scenario, we spiked in 25 pairs of co-occurring pathway mutations: the mutation 

frequencies P(A) of the first pathway in each pair were 0.1, 0.15, 0.2, 0.25 and 0.3 and the 

conditional mutation frequencies of the second pathway in each pair given the first pathway, 

P(B|A), were 0.1, 0.3, 0.5, 0.7 and 0.9, respectively. In addition to mutations in the above 25 

pairs of co-mutated pathways, 14 other pathways were singly mutated with frequencies of 0.05, 

0.05, 0.1, 0.1, 0.13, 0.13, 0.16, 0.16, 0.2, 0.2, 0.25, 0.25, 0.3, and 0.3, respectively. Finally, 

random numbers of mutations were assigned with equal probability to 180 pathways to fill out 

the total desired number of mutations in each sample. For each sample for which the number of 

single and co-mutated pathways exceeded the total desired number, we randomly turned 

mutated pathways into wildtype to reduce the numbers of mutated pathways until the desired 

numbers were reached.  

 

TCGA dataset:	

We downloaded the somatic mutations calls of 1284 tumor samples from six types of 

cancer including uterine corpus endometrial carcinoma (UCEC N=224), colon/rectum 

adenocarcinoma (COAD/READ n=224), stomach adenocarcinoma (STAD n=151), skin 

cutaneous melanoma (SKCM n=253), lung adenocarcinoma (LUAD n=230), and lung 

squamous cell carcinoma (LUSC n=178) from the Synapse workspace syn1729383 

(https://www.synapse.org/#!Synapse:syn1729383)(7). Each somatic mutation was annotated by 
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a C score developed by Combined Annotation Dependent Depletion (CADD)(16) 

(http://cadd.gs.washington.edu/score). 	

We downloaded transcriptional profiles from the TCGA data portal (https://tcga-

data.nci.nih.gov/tcga/). We studied expression levels in terms of transcripts per million (TPM) 

generated using the RSEM algorithm from the RNAseqV2 data archive files. The cytolytic 

activity and number of predicted neoantigens of the colorectal cancer set were obtained from 

previous data analysis on the same TCGA samples(14).	

 

Pathway databases:	

For the analysis of the pan-cancer and colorectal cancer, we used EnrichmentMap 

pathway repository that consists of 2921 pathways 

(http://download.baderlab.org/EM_Genesets/January_28_2015/Human/symbol/ 

Human_AllPathways_January_28_2015_symbol.gmt). For the development of the permutation 

test, we employed a subset of this repository from the BIOCARTA database. The BIOCARTA 

database consist 217 pathways.	

 

Evaluating the significance of co-mutated pathways using Fisher’s exact test:	

Filtered mutations were aggregated at the pathway level. We hypothesized that a 

pathway is dysregulated if there is at least one deleterious mutation in any of its gene members. 

For any pair of pathways, we used the one-sided Fisher’s exact test to determine the 

significance of their co-mutation. For pairs of pathways with no overlapping genes, we used the 

mutations in all genes of both pathways to test for co-mutations.  For any pair of pathways that 

share common genes, we first removed the common genes and the samples mutated in the 

common genes, and assessed the significance of co-mutation of this pair of pathways by 

employing only their lists of non-overlapping genes. 	
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Pathway co-mutation analysis using the permutation test: 

To test the significance of co-mutation between any two pathways, we organized the 

original Yale melanoma mutation dataset in a matrix form(17,18). We simulated 1000 matrices 

by permuting the entries of the original data. For each matrix, we randomly shuffled the original 

data 100,000 times such that the number of mutations per sample and per gene remained the 

same as in the original data. The p-value of co-mutation of a given pair of pathways was 

evaluated by the fraction of these 1000 permuted matrices for which the number of co-mutations 

exceed the number of co-mutations in the actual (unpermuted) data. 

 

Co-occurrence mutation analysis at the pathway level by a patient-specific method: 

In this section, we describe the statistical method for assessing the significance of co-

mutated pathways used throughout the other parts of the manuscript. 

Let	the	sets	G={gi;	i=1,…,n},	S={sj;	j=1,…,m}	and	Q={qk;	k=1,…,r}	represent	the	lists	of	

genes,	samples(patients)	and	pathways	respectively. Let Ci,j be a binary random variable, 

getting the value 1 if gene i is mutated in patient j. We refer to our data matrix C as the matrix of 

observed values of the Ci,j variables, that is, C = (ci,j).  

In addition, we use the indicator variable Zk,j , such that Zk,j = 1 if sample sj has a 

mutated gene in pathway qk and Zk,j = 0 otherwise. We assume that the presence/absence of 

mutations in pathway qk in a given sample sj is independent on presence/absence of mutations 

in this pathway in any other sample sj’, that is, for every pathway qk, Zk,j is independent of Zk,j’, 

where we used j and j’ to indicate indices of two different patients. Note that Zk,j is a Bernoulli 

random variable. Denote its parameter by pk,j. We describe two possible approaches to estimate 

pk,j: The success probability of this Bernoulli distribution represents the probability that pathway 

qk is mutated in sample sj and denote this probability by pk,j. We describe two possible 

approaches to estimate pk,j:  
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• We first assume that probability of a single random mutation in pathway qk is 

identical in all samples and denote this probability by fk. The mutation probability 

of pathway qk in sample sj depends on the total number of mutations in this 

sample. Let nj be the number of mutations in sample sj. Then pk,j can be modeled 

by  

!",$ = 1 − (1 − )")+, 

To estimate fk, we divided the total number of mutations in pathway qk by the 

total number of mutations in all genes across all samples. 

• Estimate pk,j  using logistic regression. Specifically, we consider a standard 

logistic regression model without interaction where pk,j  depends on the patient sj  

and pathway qk through the coefficients aj and dk respectively, i.e.,  

!",$ = -(. + 0$ + 1") 

where b is the bias term and s(u) is the sigmoid function: s(u)=(1+e
-u

)
-1.  

In our experiments, we found that both approaches often perform very similarly. The results 

reported in this manuscript were obtained using the first approach. 

Importantly, since we analyze co-mutation of pathways, for every pair qk, qk’ of pathways 

that share genes, the genes in the intersection must be excluded from the analysis. Hence, we 

modified our estimate !",$ by multiplying it by the proportion of patients that had mutations 

outside the intersection in that pathway.  

Our null model is that for every given sample j, Zk,j, Zk’,j are independent. This implies 

that Zk,k’,j := Zk,jZk’,j is also a Bernoulli random variable with parameter pk,k’,j := pk,jpk’,j, being a 

product of independent Bernoulli random variables. Our test statistic is therefore 

2","3 = 4",$4"3,$
5

$67
 

that is, the number of samples in which both pathways were mutated. Under our null model, Tk,k’ 
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is a sum of independent (but not identically distributed) Bernoulli random variables, also known 

as a Poisson-binomial random variable. Given the parameter of each Bernoulli random variable 

in the sum, the Cumulative Distribution Function (CDF) Fk,k’ of a Poisson-binomial random 

variable can be computed iteratively(19). Let tk,k’ be the observed value of Tk,k’. The p-value for 

the test is then obtained by 

p-value (tk, k’) = 1 − Fk,k’ (tk,k’−1). 

The statistical test was performed in the statistical language R using the poibin package. 

 

Clonal evolution analysis of co-mutated pathways:	

We downloaded the alignment file of Exome sequencing from cghub 

(https://cghub.ucsc.edu/) using the gtdownload. For each mutation in significantly co-mutated 

pathways, we extracted the reads covering the genomic regions associated with the mutations 

and quantified the allele frequency using samtools 2.1.13. The R package Sciclone(20) was 

used to infer clonality by clustering variants of similar mutant allele frequency in a single sample. 

Here we only selected mutations with minimum depths of 10 and mutant allele frequency of less 

than 0.6 to exclude mutations in CNV regions. Variants were clustered by a Bayesian binomial 

mixture model in Sciclone and each cluster represents one separate clone in the tumor. 	

 

Statistical analysis:	

Pearson correlation coefficient was calculated between p-values generated by the 

Fisher’s exact test with the empirical p-values computed using the permutation test.  The 

correlation between the patient-specific method and the empirical p-values was computed in the 

same way. Wilcoxon rank tests were used to compare characteristics (CYT, number of 

neoantigens, FASLG expression) between samples of four different conditions, namely, 

mutations in both pathways, only in one pathway, only in the other pathway, or in neither of the 

pathways. 
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Results:	

Workflow of patient-specific analysis to identify significantly co-mutated pathways 	

We developed a patient-specific method to detect enrichment of co-mutated pathways. 

For each patient, we focused on deleterious mutations in the coding regions. We assigned each 

mutation a deleteriousness score (C-score) generated by the Combined Annotation–Dependent 

Depletion (CADD) method(16). Single nucleotide mutations with a C-score ≥ 20 and all indels 

were incorporated in the enrichment analysis (Figure 1A). Then we aggregated the deleterious 

mutations in each patient for 2921 pathways collected from the EnrichmentMap 

(http://baderlab.org/GeneSets) (Figure 1B). To detect significantly co-mutated pathways, we 

investigated cancer cohorts with sample size > 200 and filtered out pathways based on the 

following three criteria. Pathways that were mutated in less than 20 samples (first criterion) or 

above 50% of the entire cohort (second criterion) were excluded from the pathway co-mutation 

analysis. The rational to remove pathways with few mutations across the cohort population is 

due to their insignificant co-mutation with other pathways.  A pathway that is prevalently 

mutated (>50%) across the cohort population is significantly co-mutated with numerous other 

pathways and hence it is not indicative which of these co-mutated pathways might have 

synergetic interactions with this highly mutated pathway.  Finally, we removed pathways whose 

estimated and observed mutation frequency (third criterion) have substantial deviation from 

each other (see Methods) such that the estimated mutation frequency was <75% of the 

observed mutation frequency (Figure 1C). Under the assumption that mutation co-occurrences 

in a given pair of pathways are independent, the number of samples for which this pair is co-

mutated follows a Poisson binomial distribution. For pathways that pass the above mentioned 

three filtering criteria (shown in black dots in Figure 1C), we computed the significance of 

pathway co-mutation for any pair of pathways. This computation takes into consideration the 

deviation of the observed number of samples with mutations in both pathways relative to the 
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expected number of pathway co-mutation under the null hypothesis (for details see Methods). 

Furthermore, for pathways that share a subset of genes we implemented an additional criterion 

for computing pathway co-mutation. Specifically, we excluded the overlapping genes and 

removed the samples that have mutations in these overlapping genes (Figure 1D). Finally, we 

visualized the pairs of significantly co-mutated pathways (Figure 1E) and investigated their 

clonal co-occurrence in each sample.	

	

Comparison of patient-specific method with Fisher’s exact test	

Fisher’s exact test (FET) is a standard statistical test for assessing the independence of 

events including co-occurrence of mutations in cancer. Analyzing whole-exome sequencing 

data from a cohort of 303 melanoma samples from the Yale SPORE in Skin Cancer 

project(17,18), we observed a large dispersion in the distribution of total number of mutations 

across samples (with mean of 273 and standard deviation of 394, Figure 2A). The 10th and 90th 

percentiles of total number of mutations for this cohort are 10 and 656, respectively. We assume 

that a pathway is dysregulated in a given sample if at least one of its genes is deleteriously 

mutated and refer to this pathway as a mutated pathway.  We applied the one sided Fisher’s 

exact test and our patient-specific statistical test to investigate the significance of co-mutations 

between all pairs of pathways in the BIOCARTA database, which consists of 217 pathways. The 

p-value distribution of our test was nearly uniform while that of FET was over-inflated with p-

values smaller than 0.05 for over 93% of the pairs (Figure 2B). To further investigate which test 

is more representative of the actual enrichment, we generated 1000 permuted datasets to 

calculate the empirical p-value of co-occurring mutations in all pairs of pathways. In each 

permuted dataset, we started from the original mutation matrix of all the samples by all the 

genes and then randomly shuffled the mutations 100,000 times while preserving the same 

number of mutations in each gene as well as in each sample. Subsequently we determined the 
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empirical p-value of co-mutation of any pair of pathways.  For each pair of pathways, we 

computed the fraction of these 1000 permutated datasets in which the number of samples with 

co-mutations for this pair of pathways is larger compared to the number of samples with co-

mutations for the observed (un-permuted) data (Figure S2). We compared the empirical p-value 

from the permutation test with that of the patient-specific method and FET respectively (Figure 

2C, 2D). Interestingly as shown in Figure 2C and Figure 2D, the p-value of our test was highly 

correlated with the empirical p-value (R=0.88, Kendall's tau coefficient t=0.68), while the 

correlation coefficient between the empirical p-value and FET p-value was much lower (R=0.15, 

t=0.33).  

	

Comparison of the patient-specific test and Fisher’s exact test in simulated data 	

 

To examine the performance of the patient-specific method and the FET, we simulated 

two scenarios: database with two different background distributions of overall mutation load 

each modulated by spike in of mutations in 14 single pathways as well as 25 co-mutated 

pathways. The database in each of these two scenarios consisted of 100 independent simulated 

datasets with size of 300 samples and 180 pathways (Figure S1). In the first scenario the total 

number of mutations per patient (from background and spike in mutations) is normally 

distributed with a small dispersion (Mean=30, Sd=10, Figure 3A), and in the second scenario 

the total number of mutations per patient is a log-normal distribution with large dispersion 

(Mean=4, Sd=1, Figure 3B).  Spike in mutations of the 14 singly-mutated pathways and 25 co-

mutated pathways pairs were added to the background mutation as follows: For each dataset, 

mutations were assigned to each patient such that the singly-mutated pathways were mutated 

with a different mutation probability within the range of 0.05 to 0.5. Similarly, co-mutations were 

assigned to patients such that one pathway of each pair of co-mutated pathways (pathway A) 
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was mutated with a different mutation probability within the range 0.1 to 0.3 and the second 

member of the pathway pair (pathway B) was altered with a different conditional probability 

(conditioned on the mutation in pathway A) within the range of 0.1 to 0.9. A detailed procedure 

of our simulations is provided in the Methods section. Using these simulated datasets, we 

compared the patient-specific method and FET in terms of sensitivity (power) and precision. The 

25 spiked-in co-mutated pathways represent the positive events.  Positive events with 

significant co-occurrence based on the statistical test of choice are referred to as true positives. 

Significantly co-mutated pathways in the remaining pathway pairs represent the background 

noise and we refer to them as false positives. 	

In the first scenario, the precision of the FET (median=0.88) was significantly lower than 

that of the patient-specific approach (median=0.93) with an fdr threshold 0.05 (paired t-test p-

value=6*10-7, Figure 3B) over 100 simulations. In the second scenario the precision of the FET 

is significantly lower compared to that of the first scenario (median=0.02), while the precision 

values of the patient-specific method in both scenarios are similar (median=0.90). As shown in 

Figure 3E, the precision of the patient-specific method is significantly higher than that of the FET 

(paired t-test p value<2.2*10-16) over 100 simulations. Similar to the results shown in Figure 2B 

and Figure 2C, the FET does not differentiate between true and false positives in the scenario of 

over dispersed mutation distribution as shown in Figure 3D. Furthermore, we assessed the 

sensitivity of the patient-specific test to identify true co-mutated pathways with different intensity 

of mutation probability and conditional probability for the two scenarios with normal and over 

dispersed mutational load (Figure 3C, 3F).  In both scenarios, the sensitivity of the patient-

specific approach to detect pathway co-mutation increases as a function of the mutation 

probability P(A) and the conditional mutation probability P(B|A). We observed that even for 

moderate values of P(A) and P(B|A) the patient-specific method reached higher values of 

sensitivity in the second scenario as compared with the first scenario. For example, when the 
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conditional probability P(B|A) = 0.5 the sensitivity to detect significantly co-mutated pathways is 

100% even when the mutation probability P(A) is as low as 0.1.	

	

Enriched co-mutated pathways in specific cancers and across multiple cancers	

Mutations from TCGA were processed and filtered to obtain a data set representing 

1284 tumors from 6 different cancer types including uterine corpus endometrial carcinoma 

(UCEC N=224), colon/rectum adenocarcinoma (COAD/READ n=224), stomach 

adenocarcinoma (STAD n=151), skin cutaneous melanoma (SKCM n=253), lung 

adenocarcinoma (LUAD n=230), and lung squamous cell carcinoma (LUSC n=178) profiled by 

whole-exome sequencing (Figure S3). A total of 281,979 deleterious somatic mutations in 

20,817 genes were used for this analysis and 2321 out of 2921 pathways were selected using 

filtering steps shown in Figure 1C. The distribution of the number of mutations in each cancer 

type as well as in the entire cohort exhibits large dispersion (Figure S4). The number of 

mutations and selected pathways of each cancer type are shown in Table S1. We applied our 

patient-specific method to all the samples and to each cancer type to identify significantly co-

mutated pathways with a p-value <5x10-5. Since the pathway datasets were collected from 

multiple sources, there was some redundancy in overlapping pathways. To eliminate these 

redundant pairs of pathways, we discarded from the analysis any pair for which the number of 

overlapping genes exceeds 50% in one or both pathways.  We identified 283 significantly co-

mutated pathways in a combined dataset consisting six cancers from the pan-cancer dataset12, 

and 0 - 88 significantly co-mutated pathways in these six individual cancers (Figure 4A, 

TableS2). Interestingly, the number of significantly co-mutated pathways in these six cohorts 

was not related to their sample size. 	

We applied the patient-specific method to the pan-cancer database and observed that 

the most significantly co-mutated pathways (p value=0) were IP3 metabolism (superpathway of 
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D-myo-inositol (1,4,5)-trisphosphate metabolism) and the PI3K (3-phosphoinositide 

biosynthesis) pathway. Interaction between these two pathways and their relevance to cancer 

progression is well documented(21). Out of 1284 samples, 286 (22.3%), 110 (8.6%) and 315 

(24.5%) samples had mutations in both pathways, IP3 metabolism pathway only and PIK3 

pathway only respectively (Figure 4B). The most frequently mutated gene associated with the 

IP3 metabolism pathway was PTEN, which is involved in the removal of phosphate from PIP3 

and hence with its degradation, and the top two most frequently mutated genes in the PI3K 

pathway were PIK3CA and PIK3R1. Notably, other genes in these pathways were mutated and 

different pairs of genes were co-mutated in different patients, indicating heterogeneity within co-

perturbed pathways. The cross-talk between these two pathways involves phosphatidylinositol 

(3,4,5)-trisphosphate (PIP3)(22-24). Both gain-of-function mutations in the PI3K pathway and 

loss-of-function mutations in the IP3 metabolism pathway increases PIP3 level and therefore 

activates the downstream AKT/mTOR pathways, which are critical for cell survival and 

proliferation during cancer progression. (Figure 4C). 	

Another way to study co-mutated processes in cancer is by mapping significantly co-

mutated pathways to eight important cancer characteristic processes termed the hallmarks of 

cancer(25). Pathways with ambiguous assignment to one of these eight categories were 

assigned to an additional category labeled “other” (Table S3). To determine the enrichment of 

co-mutated hallmarks of cancer, we computed the pair-wise enrichment score by the total 

number of significant pairs normalized by the total number of pathways in each category (Figure 

4D). In the multi-tumor type analysis, pathways in immune, signaling, Cellular component and 

development categories were more likely to be co-mutated among themselves. The top two 

enrichment signals were between signaling and development categories and between signaling 

and cellular component categories. While co-mutations between pairs of hallmarks of cancer 

such as ‘DNA Damage’ and ‘Proliferation’, were less frequent.	
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Co-mutation of the proteasome and extrinsic apoptosis pathways in colorectal cancer 

suggests an immune escape mechanism 

In the TCGA colorectal cancer data set, the degradation of GLI1 by the proteasome 

(proteasome pathway) and the negative effector of the FAS and TNF-a pathway (apoptosis 

pathway) were significantly co-mutated (p-value =3.5*10-5). Out of 224 samples, 29 (12.9%), 24 

(10.7%) and 4 (1.7%) samples had mutations in both pathways, the proteasome pathway only 

and the apoptosis pathway only, respectively (Figure 5A).  

Association between mutations in the apoptosis pathway and immune escape: The apoptosis 

pathway includes the cancer driver gene CASP8, which can be mutated in cancer, resulting in 

immune evasion via inhibition of FasL- or TRAIL-induced apoptosis. In the proteasome 

pathway, different subunits of the proteasome were mutated across different samples. The 

patterns of mutation in both pathways were spread over different positions in different genes 

rather than in a small number of hotspots. This suggests that most of these mutations are loss 

of function mutations(7,14,26). The proteasome degrades mutated proteins and generates 

peptides carrying neo-antigens. We therefore hypothesized that co-mutation of the proteasome 

and apoptosis pathways leads to immune escape by decreasing the presentation of 

neoantigens and/or by decreasing the susceptibility of the cells to apoptosis.  

Tumor sub-setting based on mutations in apoptosis or proteasome pathways and association 

with neo-antigens and intra-tumoral cytolytic activity: We categorized the entire cohort into four 

groups: (i) tumors with mutations in both pathways, (ii) tumors with mutations in the apoptosis 

pathway only (iii) tumors with mutations in the proteasomal pathway only and (iv) tumors without 

mutations in either. To explore whether these four groups are associated with distinct immune 

activities we applied the Wilcoxon rank test between each pair of these four groups to compare: 

a) the prevalence of their predicted neoantigens, b) the cytolytic activity (CYT) associated with 

the tumor. Tumors with mutations in the proteasome pathway alone had significantly more 

predicted neoantigens than the WT tumors (p-value= 0.002). However, there was no significant 
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difference in their associated cytolytic activity (p-value=0.53), indicating that fraction of the 

predicted neoantigens were not presented, which could be attributed to impaired proteasome 

function (Figure 5B, 5C). Tumors with mutations in both pathways had significantly more 

predicted neoantigens (median = 118) compared to tumors with mutations in the apoptosis 

pathway only (median =5, p-value=0.01), in the proteasome pathway only (median=17, p-

value=7*10-4) or with no mutations in either of these two pathways (median=8, p-value=1.2*10-

9). Interestingly, tumors with mutations in both pathways showed higher cytolytic activity 

(median=16.9) than the other three groups of tumors (Figure 5B, 5C). Specifically, cytolytic 

activity was significantly lower in tumors with mutations in the proteasome pathway only 

(median=2.5, p-value=0.02), the apoptosis pathway only (median=6.3, p-value=9*10-4), and 

neither pathway (median=5.4, p-value=1.1*10-6).  Samples with mutations in the proteosome 

pathway but not in the apoptosis pathway had more predicted neoantigens compared with 

samples that have no mutations in either pathway (WT). However, the cytolytic activity in these 

samples is similar. This could be attributed to the mutations in proteasome genes that prevent 

the proteasome to properly present the neoantigenes. 

Seeing that cancer cells can potentially evade FasL induced apoptosis by acquiring 

mutations in the apoptosis pathway, we studied the association with mutations in the 

proteasome and apoptosis pathways. Tumors with mutations in both pathways exhibited 

significantly higher expression of FASLG compared to proteasome only (p-value=5*10-4) and 

WT group (p-value=9*10-6 Figure 5D). There was no difference in FASLG expression between 

the tumors in the group that has no mutations in this pair of pathways and the group that has 

mutations only in the proteasome pathway (p-value=0.62). We therefore hypothesize that 

tumors with mutations in both pathways can evade the immune system by either reducing the 

presentation of neoantigens or evading extrinsic induction of apoptosis. The detailed information 

on predicted neoantigens, cytolytic activity and FASLG of each sample is included in TableS4.  
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Co-mutation of	the	proteasome and extrinsic apoptosis pathways and immune evasion in 

other cancer types 

Co-mutation of	the	proteasome and extrinsic apoptosis pathways in the other five cancer types 

of the pan-cancer database is not enriched. Nevertheless, we investigated whether the trends 

we observed in colorectal cancer generalized to these five tumor types such that tumors with 

co-mutations in this pair of pathways were more likely to evade immune surveillance. The 1060 

samples of these five cancers include 105 (9.9%), 97 (9.1%) and 196 (18.5%)samples with 

mutations in both pathways, the apoptosis pathway only and the proteasome pathway only, 

respectively. By one-way ANOVA, cases with co-mutation show significantly more predicted 

neoantigens (p-value < 2*10-16), higher levels of cytolytic activity (p-value = 0.02) and FASLG 

expression (p-value = 0.001) compared to the WT tumors across the five types of cancer.  

 

Clonality of pathway co-mutation	

To determine whether mutations in both pathways co-occur in the same clone, we 

extracted the variant allele frequency (VAF) of mutations in 29 samples with mutations in both 

pathways from the colorectal cancer. There is no clear difference in the VAF in co-mutated 

genes within the proteasome (median=0.30) and apoptosis pathways (median=0.28, Figure 5E). 

Some of these tumors had multiple mutations within a pathway, and we represented the VAF of 

the pathway using the variant with maximal VAF. For the majority of tumors with co-mutated 

pathways, the maximum VAF of both pathways was similar within the tumor, indicating that 

these co-mutations occur within the same clone (Figure 5F). To exemplify this point, we applied 

clonal decomposition to one of the TCGA-A6-2676 samples using the Sciclone package(20) and 

identified four clusters of mutations. Mutations assigned to the same cluster co-occur in the 

same clone. We therefore infer that during progression of the tumor, the PSMA4 pE181 del 

mutations in the proteasome pathway and BID p.D141N in the apoptosis pathway emerge in the 
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same subclone that stems from a clone with a mutation in TP53. This suggests that mutations in 

the proteasome and apoptosis pathways are not driver events in colorectal cancer, but are 

acquired during cancer progression, allowing cancer cells to evade immune surveillance.	

	

Discussion	

We developed and evaluated a patient-specific test for finding enriched co-mutated 

pathways in both simulated datasets and patient datasets from specific cancers and across 

several cancer types. Through permutation testing, we verified that our approach generated 

more accurate p-values than Fisher’s exact test (FET), a standard approach to identify 

significant co-occurrence events. Specifically, we demonstrated that our method achieved high 

precision in simulated data with either small or large variation in mutation load. We applied our 

method to mutation data of several cancers and found that co-mutated pathways such as the 

PI3K and IP3 pathways are prevalent across cancers. We also found that co-mutations in the 

proteasome and apoptosis pathways were enriched in colorectal cancer, but not in other tumor 

types. Furthermore, we showed that co-mutation of the proteasome and apoptosis pathways is 

associated with elevated levels of predicted neoantigens, cytolytic activity and decreased 

apoptosis.  

When using FET, a large number of pairs of pathways were co-mutated. In FET, the 

assumption is that two events (mutations in two pathways) are independent of each other. 

However, this assumption is very likely to be violated if samples: a) have hyper-mutated 

phenotypes, b) are unevenly sequenced, and c) have variable tumor versus stromal cellularity. 

Specifically, genes are more likely to be mutated under a high overall tumor mutation load and 

mutations are less likely to be detected with low sequencing depth or large contamination of 

samples with normal or stromal cells. We therefore developed a patient-specific method to 

account for this variability. We showed that empirical p-values obtained by permutation tests, 
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which required prolonged computational time, were consistent with p-values generated using 

our Poisson binomial model based approach, but correlated poorly with p-values obtained by 

FET.  

By using spiked-in signals we simulated two datasets corresponding to scenarios with 

small or large variability in mutational load. As expected, both tests perform well in datasets with 

small variability in mutational load while FET over-estimated the significance of co-mutated 

pathways in datasets with large variability in mutational load between samples. In addition, we 

showed that the power to detect co-mutated events associated with a pair of pathways (A and 

B) in our patient-specific method depends on the mutation probability of pathway A and the 

conditional mutation probability of pathway B given the mutation status of pathway A. In all 

simulations, we used data that had been generated to have statistics similar to data from the 

Yale melanoma data set, demonstrating the value of our method in human cancer data sets.  

Given the success of the method with simulated data, we subsequently applied our 

method to six datasets of different cancer types from TCGA as well as to the pan-cancer 

dataset, which is an aggregate of these six cancer datasets. We used the p-values without 

correcting for multiple hypothesis testing. We note however, that due to significant overlaps 

between pathways collected from different manually curated databases, application of false 

discovery rate (FDR) for correcting the p-values is invalid.  

In the pan-cancer analysis, the most salient pair of co-mutated pathways was the PI3K 

and IP3 synthesis pathways. Co-mutation of these two pathways was observed across all 

cancer types. Previous studies have shown associations between PIK3CA mutations and PTEN 

mutations or between PIK3R1 mutations and PTEN mutations(7,27). By aggregating mutations 

at the pathway level, over 20% of the cancers had co-mutations in these two pathways. Co-

mutation in the PI3K and IP3 pathways results in increased PIP3, which activates the 

AKT/mTOR pathway to sustain proliferative signaling, the most fundamental trait of cancer 

cells(28,29). 
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In colorectal cancer, we identified significantly co-occurring mutations in the proteasome 

and apoptosis pathways. Several reports have implied that mutations in the proteasome 

pathway or the apoptosis pathway play a role in evading immune surveillance (14,15), but to the 

best of our knowledge this is the first study which implies that co-mutation of these pathways, at 

least in colorectal cancer, may lead to enhanced immune evasion. We hypothesized that these 

two pathways synergistically protect tumors from the immune system as they are key for 

degradation and immune system presentation of neoantigens, and for immunity mediated 

apoptosis. To support this premise, we assessed the association between the mutation status 

and additional features of tumor cell survival. Mutations in proteins associated with the 

proteasome had a negative effect on cytolytic activity and tumors with alterations in the 

apoptosis pathway accumulated Fas ligand. More interestingly, after applying clonal 

deconvolution, we discovered that mutations in the proteasome and apoptosis pathways 

belonged to the same subclone during clonal evolution. Since the tumors were probed only 

once in one anatomic region, we could not infer which of these two pathways was altered earlier 

in the process of cancer progression. However, there are many more cases mutated only in 

proteasome pathway than in apoptosis pathway, indicating that mutations in the proteasome 

pathway may occur first. To test this hypothesis, it would require sequencing measurements at 

multiple time points from the same tumor. Sampling at multiple time points could also inform us 

whether a subclone with co-mutation proliferates faster compared than subclones without.  

Cytolytic activity in samples where the proteasome and apoptosis pathways were co-

mutated was higher than in the other three groups.  A possible explanation is that a substantial 

subset of clones in tumors with co-mutation in the proteasome and the apoptosis pathways 

carry no mutations in the proteasome pathway. Due to the larger number of predicted 

neoantigens in samples with proteasome and apoptosis pathway co-mutations, this subset of 

clones is likely to be associated with a larger number of neoantigens compared with the number 

of neoantigens in the other three groups. Therefore, the subset of clones that carry no 
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proteasome mutations in the tumors that have co-mutation in proteasome and apoptosis may 

present many of the neoantigens properly and display overall increased cytolytic activity.   

However, this can only be assessed by single cell experiments or clonal deconvolution of the 

predicted neoantigens.  

In summary, we developed a new method to identify co-mutated pathways from 

population-wise cancer genomic data at the pathway level. Attempts to discover SNP interaction 

epistasis effects in GWAS  have not been successful and currently there are no known 

observations of loci-loci or gene-gene interactions at the population level, even though the 

interactions exist at an individual level(30). This is mainly caused by the heterogeneous 

interactions and limited sample sizes. Similarly, there is high degree of heterogeneity in cancer 

and we tackled this by integrating mutations at the pathway level. While we focused initially on 

mutational data, this method can be extended to other types of genomic abnormalities such as 

CNV, DNA methylation, etc. Due to the heterogeneity between tumors, we expect to capture 

more low frequency co-mutated pairs of pathways by integrating alterations of different levels.  

Another future direction is to validate our findings using single cell RNA sequencing, inspecting 

whether co-mutated transcripts are expressed within single cell. This direct measurement does 

not rely on deconvolution methods such as Sciclone which can often have non-unique solutions. 

Furthermore, inferences of order in which mutations occur first during cancer evolution are 

superior to inferences based on deconvolution approaches. Detection of co-dysregulated 

processes and the order in which they evolve can inform treatment decisions in individual 

patients and advance personalized medicine.   
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Figure Legends: 

Figure 1 Workflow for identifying co-mutated pathways. A) Retain deleterious somatic SNV 

with CADD score ≥ 20 and somatic indels. B) Matrix representation for aggregating deleterious 

mutations into mutations at the pathway level C) Pathways represented by black dots were 

retained for the co-mutated pathway analysis. We filtered out pathways if they were: i) mutated 

in less than 20 samples (red), ii) mutated in above 50% of the samples in the cohort (grey), and 

iii) estimated mutation frequency was ≥25% below the observed mutation frequency (blue). D) 

Mutation probability of each pathway was estimated by the ratio between the mutation 

frequency of the pathway across the cohort and the total mutations in the cohort. For any pair of 

pathways (represented as pathway A and pathway B) we removed mutated genes common to 

both pathways (Nshared), as well as samples with mutations in these overlapping genes. E) 

Visualization of significantly co-mutated pathways. 

 

Figure 2 Distributions of p-values for pathway co-mutation using the patient-specific 

method and Fisher-exact test. A) Distribution of number of mutations in 303 Yale melanoma 

dataset. B) Distribution of p-values for pathway co-mutation using 217 pathways of the 

BIOCARTA database. C) Scatterplot of p-values of Fisher-exact test vs. p-values of a 

permutation test. D) Scatterplot of p-values of the patient-specific method vs. p-values of a 

permutation test. 

 

Figure 3 Performance of the patient-specific method and the Fisher-exact test in 

simulated datasets. A) Simulated mutation distribution with a small dispersion (first scenario). 

B) Precisions of Fisher-exact test and the patient-specific method in 100 simulated datasets 

(first scenario). C) Sensitivity of detecting the spiked co-mutated pathways with different 

mutation frequencies P(A) and conditional probabilities P(B|A) in 100 simulated datasets (first 

scenario). D) Simulated mutation distribution with a large dispersion (second scenario). E) 
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Precisions of Fisher-exact test and the patient-specific method in 100 simulated datasets 

(second scenario). F) Sensitivity of detecting the spiked co-mutated pathways with different 

mutation frequencies P(A) and conditional probabilities P(B|A) in 100 simulated datasets 

(second scenario).  

 

Figure 4 Pan-cancer and cancer type specific significant co-mutated pathways. A) 

Number of significantly co-mutated pathways in the pan-cancer analysis as well as in different 

cancer types. B) PIK3 and IP3 pathways were the most significantly co-mutated pathways in the 

pan-cancer analysis C) PIP3 is regulated by the PIK3 and IP3 pathways. D) Co-mutation 

frequency of cancer hallmarks in the pan-cancer data.  

 

Figure 5 Co-mutation of the proteasome and extrinsic apoptosis pathways in colorectal 

cancer is associated with immune escape. A) The proteasome and the apoptosis pathways 

were significantly co-mutated in colorectal cancer. B) Distribution of predicted neoantigens in 

tumors with mutation in both pathways, in proteasome alone, in apoptosis alone, and in WT 

(tumor with no mutations in these two pathways). C) Distribution of cytolytic activity (CYT) in 

tumors with mutations in both pathways, in proteasome alone, in apoptosis alone, and in WT. D) 

Distribution of FASLG expression in tumors with mutation in both pathways, in proteasome 

alone, in apoptosis alone and in WT. E) Distribution of variant allele frequency of mutations in 

the proteasome and apoptosis pathways in tumors with co-mutations in these two pathways. F) 

Scatterplot of maximum variant allele frequency of mutations in the proteasome and the 

apoptosis pathways in tumors with co-mutations in these two pathways. G) Clonal analysis of 

sample TCGA-A6-2676. PSMA4 and BID mutations were found in the same subclone. 
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Figure	2
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Figure	3
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Figure	5
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Figure	S1:	Procedure	for	generating	simulated	datasets	
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Figure	S2:	Procedure	for	generating	pathway	co-mutation	p-values	based	on	permutation	
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Figure	S3:	Sample	size	of	six	different	type	of	cancer	from	the	TCGA	project	
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Figure	S4:	Distribution	of	number	of	mutations	in	six	different	types	of	cancers	from	the	TCGA	project
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