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ABSTRACT 
 
Given the limited effectiveness of strategies based solely on vector control to reduce dengue 
virus transmission, it is expected that an effective vaccine could play a pivotal role in reducing 
the global disease burden of dengue. Dengvaxia® from Sanofi Pasteur recently became the first 
dengue vaccine to become licensed in select countries and to achieve WHO recommendation 
for use in certain settings, despite the fact that a number of uncertainties about the vaccine’s 
efficacy and mode of action complicate projections of its potential impact on public health. We 
used a new stochastic individual-based model for dengue transmission to perform simulations of 
the impact of Dengvaxia® in light of two key uncertainties: statistical uncertainty about the 
numerical value of the vaccine’s efficacy against disease, and biological uncertainty about the 
extent to which its efficacy against disease derives from the amelioration of symptoms, blocking 
of dengue infection, or some combination thereof. Our results suggest that projections of the 
vaccine’s public health impact may be far more sensitive to biological details of how the vaccine 
protects against disease than to statistical details of the extent to which it protects against 
disease. Under the full range of biological uncertainty that we considered, there was nearly 
three-fold variation in the population-wide number of disease episodes averted. These 
differences owe to variation in indirect effects of vaccination arising from uncertainty about the 
extent of onward transmission of dengue from vaccine recipients. These results demonstrate 
important limitations associated with the use of symptomatic disease as the primary endpoint of 
dengue vaccine trials and highlight the importance of considering multiple forms of uncertainty 
in projections of a vaccine’s impact on public health. 
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INTRODUCTION 
 
Dengue is one of the most significant mosquito-borne viral diseases on the planet, having 
reemerged in the last few decades as a major burden on global health (1). To date, the control 
and prevention of dengue has relied exclusively on various forms of vector control (2), which 
have experienced success in certain cases but have not been sufficient to prevent the 
reemergence of this disease on a global scale (3). At the same time, several vaccine candidates 
for dengue have been under development for a number of years (4), with the Dengvaxia® 
vaccine from Sanofi Pasteur recently becoming licensed in some countries and recommended 
for use under certain circumstances by the World Health Organization (5). 
 
A number of concerns about Dengvaxia® arose during clinical trials, the results of which 
indicated relatively low efficacy overall (6). In particular, efficacy against disease was 
significantly lower for children under 9 years of age (44%) compared with children 9 years of 
age or older (65%). The vaccine also appeared to provide higher protection to seropositive than 
to seronegative recipients, especially at young ages (2-5 years). Estimates of vaccine efficacy 
appeared to vary among the four serotypes, with lower efficacy reported for serotype 2 (6). We 
refer to these collective uncertainties about the numerical value of vaccine efficacy as “statistical 
uncertainty.” 
 
Another major source of uncertainty associated with the Dengvaxia® vaccine has to do with the 
clinical nature of the trial endpoints. Specifically, the primary endpoint for all clinical trials was 
virologically confirmed dengue among trial participants who experienced acute febrile illness: 
i.e., a fever of ≥38 °C for at least two consecutive days (6). This choice of endpoint is potentially 
problematic, because a large proportion of dengue infections result in either mild symptoms or 
no detectable symptoms whatsoever (7) yet are nonetheless capable of infecting mosquitoes 
(8). Thus, it is completely unclear whether Dengvaxia® confers any form of protection to 
individuals who would not have experienced acute febrile illness in the first place. Among those 
for whom acute febrile illness was averted due to vaccination, it is unclear whether the vaccine 
blocked dengue virus infection altogether or ameliorated symptoms but still allowed for infection 
and onward transmission. We refer to this combination of unknown factors as “biological 
uncertainty.” 
 
In addition to fundamental challenges that biological uncertainty poses for the estimation of 
vaccine efficacy from trial data (9), its implications for projections of vaccine public health impact 
are also potentially quite substantial. In the event that the vaccine achieves its clinically 
observed efficacy by ameliorating symptoms but has no impact on infection and onward 
transmission, its public health impact would be readily predictable: vaccine recipients would 
experience direct effects in the form of reduced incidence of disease and everyone else would 
experience the same incidence of disease as they would have in the absence of the vaccine. To 
the extent that the vaccine blocks infection, it is possible that the vaccine could also confer 
indirect effects at a population level by preventing onward transmission from vaccine recipients. 
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To assess the relative impact on public health of vaccines that differ in these ways, we 
simulated dengue transmission in the presence and absence of routine vaccination with 
vaccines representing a wide range of joint statistical and biological uncertainty. We performed 
these simulations with a new individual-based simulation model of dengue transmission that we 
developed for the city of Iquitos, Peru, which has had ongoing studies of dengue epidemiology 
for nearly two decades (10,11). One advantage of our new model relative to existing simulation 
models of dengue transmission (12,13) is that it features the most realistic model available for 
fine-scale human movement in a dengue-endemic area (14), which is an essential feature for 
realistic quantification of the potential indirect effects of vaccination. 
 
METHODS 
 
Model overview 
 
We developed a stochastic, individual-based model for simulating dengue transmission that is 
parameterized in a number of respects around studies of dengue epidemiology conducted in 
Iquitos, Peru. The model simulates dengue transmission in a population of approximately 
200,000 people residing in the core of the city of Iquitos, which consists of 38,835 geo-
referenced houses and 2,004 other buildings (15). Events such as mosquito biting, mosquito 
death, and movements by humans and mosquitoes are scheduled to occur at continuous time 
points throughout the day (Fig. 1), with updating of individuals’ statuses with respect to infection, 
immunity, and in other respects occurring once daily. We described the model in full detail in the 
Supporting Information, following the ODD (Overview, Design concepts, Details) Protocol 
(16,17) for describing individual-based models. In the three paragraphs below, we highlight key 
features of the model pertaining to humans, mosquitoes, and viruses, respectively. 
 
Humans are populated in the city consistent with national age and gender distributions for Peru 
and in individual houses consistent with demographic data collected over the course of studies 
in Iquitos. Birth and death processes are parameterized so as to result in a demographically 
stable population, with individuals who die being replaced by a newborn in the same house. 
Aging involves the acquisition of lifelong, serotype-specific immunity as one is exposed and sex-
specific growth of an individual’s body size over the course of childhood. Each individual human 
possesses a unique “activity space,” which is defined as an average pattern of time allocation 
across all the locations that they frequent (18). Individuals move about this activity space in a 
manner previously described in detail by Perkins et al. (14). 
 
The number of adult female mosquitoes in the area is determined by two model parameters: a 
daily per-building emergence rate, and a daily per-capita mortality rate. Mosquitoes move from 
their current location to a nearby location with a fixed probability each day (19). They engage in 
biting at a constant rate (20) and select an individual on whom to blood feed based on who is 
present at a location at the time that a mosquito bites and what each person’s body size is 
(14,21). Because the emphasis of the present analysis is on vaccination rather than vector 
control, we have deferred the inclusion of a number of other entomological details for future 
work. 
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The model allows for the transmission of four dengue serotypes, which are assumed to be 
identical in the following respects based on empirical studies: infectiousness (8,22), incubation 
period (23), and rate of symptomatic disease (7). Although there is evidence that vaccine 
efficacy differs by serotype (6), no data have been published to date that indicate how serotype-
specific effects might manifest differently in individuals of different ages and serostatuses. 
Because serostatus-specific effects are most concerning from a safety perspective (24) and 
because of clear age-serostatus interactions (6), we prioritized those effects and assumed in the 
model that efficacy applies equally to each of the four serotypes. Viruses of each serotype are 
seeded into the population at a constant rate through a constant “force of importation” 
parameter, which is intended to mimic the introduction of the virus into the city from surrounding 
areas (25). Individual people can experience up to four distinct infections over the course of 
their lifetimes, as they experience lifelong immunity to each serotype to which they have been 
exposed and temporary cross immunity to all serotypes following exposure (26). 
 
Vaccine efficacy 
 
The mode of action of the Dengvaxia® vaccine is unclear, given that there are multiple 
mechanisms by which clinical trial data could have come about (27). We modeled vaccine 
efficacy against disease (i.e., the primary trial endpoint) as a function of age and serostatus, 
which is consistent with one hypothesis for how the vaccine achieves its efficacy (6,27). 
Specifically, for a given serostatus, we modeled the relationship between age and vaccine 
efficacy against disease as 
 

𝑉𝐸#$%(𝑎𝑔𝑒) 	= 	1	 − 	 /
01234(	5	(/62	7	8))

 (1) 

  
using serostatus-specific values of a, b, and c. To obtain point estimates of a, b, and c for both 
seropositive and seronegative vaccine recipients, we fitted eqn. (1) under different values of 
these parameters to mean estimates of VEdis for 2-9 and 10-16 year olds reported in Fig. 2 of 
Hadinegoro et al. (6) on the basis of least squares using the optim function in R (28). These 
calculations assumed an even age distribution within each age class in the trials. 
 
We modeled statistical uncertainty around estimates of VEdis with a parameter 𝜎 that describes 
the standard deviation of the log of the risk ratio, defined mathematically as 
 

𝜎(𝑙𝑛(𝑅𝑅#$%)) 	= 	 (1/(𝑑 + 𝑒) + 1/(𝑑(1 − 𝑉𝐸#$%) + 𝑒))0/@ .	 (2) 
 
To fit values of d and e, we used a method based on the assumption of asymptotic normality of 
the log of the ratio of Poisson rates (29), applied to standard errors presented in Fig. 2 of 
Hadinegoro et al. (6). To then take a random draw of VEdis for a given instance of the simulation 
with statistical uncertainty consistent with that reported by Hadinegoro et al. (6), we drew a 
random normal variable with mean 0 and standard deviation 1, multiplied it by 𝜎(𝑙𝑛(𝑅𝑅#$%), 
added the result to ln(1-VEdis), exponentiated the result, and subtracted it from 1 (6). 
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In a given simulation, we applied the same standard normal random draw to the calculation of 
VEdis for all seropositive and seronegative vaccine recipients. We furthermore assumed that the 
vaccine is leaky, meaning that an individual has some chance of becoming infected each time 
they are exposed and has some chance of developing disease each time they are infected. The 
chances of those events happening in a vaccine recipient are lowered proportional to relative 
risk; specifically, RRinf|exp and RRdis|inf, respectively (Table 1). 
 
Numerical experiments 
 
Parameter sweep 
To characterize basic relationships between free parameters in our model and epidemiological 
metrics of interest, we performed 1,000 simulations across different combinations of the 
following ranges of four unknown parameters sampled with the sobol function in the pomp 
package (30) in R (28): mosquito emergence rate (0.01-1.99 mosquitoes per day per building), 
average adult mosquito lifespan (3-10 days), infectiousness of mosquitoes to people (0.01-
0.99), and “force of importation,” defined as the per capita rate at which susceptible people 
acquired infection from outside the simulated population (10-7-10-4). In each simulation in the 
parameter sweep, we recorded the average age of first infection (a standard metric for 
transmission intensity, (31)) and seroprevalence among 9 year olds (a highly relevant metric for 
deployment of the Dengvaxia® vaccine, (5)). 
 
Vaccine impact projections 
To focus on uncertainties related to vaccine efficacy, we constrained uncertainties about other 
model parameters by adopting previously used values for infectiousness of mosquitoes to 
people (0.9, (32)) and daily adult female mosquito mortality rate (0.11, (33)). Because force of 
importation is a more difficult parameter to estimate or to extrapolate from other modeling 
studies, we set the value of this parameter to a value of 5.0x10-5 per person per day, which is 
the midpoint of the range of values that we explored in the parameter sweep. To select a value 
for the rate of emergence of new adult female mosquitoes, we first specified a target age-9 
seroprevalence of 50% and then selected an emergence rate of 0.226 mosquitoes per location 
per day based on relationships between parameters and metrics identified in the parameter 
sweep. These choices resulted in a single set of parameters for all aspects of our model, other 
than properties of the vaccine. 
 
For the parameter values specified above, we performed 2,500 pairs of simulations with random 
draws of p (biological uncertainty) and q (statistical uncertainty) from uniform distributions 
between 0 and 1 sampled across simulation pairs with the sobol function in the pomp package 
(30) in R (28) to maximize coverage of the p-q parameter space. For each such scenario, we 
performed one simulation with 40 years of no vaccination and then 40 years of routine 
vaccination at age 9 at 90% coverage. In the other simulation in the pair, we simulated 80 years 
of no vaccination, the first 40 years of which were identical to the other simulation in the pair due 
to the fact that they shared the same random number seed. For all simulations, we recorded the 
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following in the population as a whole: numbers of infections averted and disease episodes 
averted in each year. 
 
RESULTS 
 
Parameter sweep 
The four free parameters in the model were all correlated with age-9 seroprevalence and 
average age of first infection in the expected directions (positive and negative, respectively) 
(Fig. 2). In particular, the force of importation parameter in our model determined a minimum 
seroprevalence and maximum age of first infection. Values beyond those minima and maxima 
were accounted for by vectorial capacity, a composite metric of both free and fixed 
entomological parameters (Fig. 2). Overall, vectorial capacity and force of importation 
accounted for 90% and 7%, respectively, of variation in age-9 seroprevalence values (measured 
by R2 in a generalized additive model, (34)). Vectorial capacity and force of importation 
accounted for 76% and 15% of variation in age of first infection values, with an additional 6% of 
variation obtained by fitting a model with both variables simultaneously. 
 
Vaccine efficacy 
We obtained best-fit estimates of the parameters for vaccine efficacy (and likewise relative risk, 
since VE = 1 - RR) in eqn. (1) of a = 0.47, b = 0.148, and c = 9.17 for seropositive vaccine 
recipients and a = 1.26, b = 0.28, and c = 9.27 for seronegative vaccine recipients. We obtained 
estimates of the parameters determining the standard error of the log of the risk ratio in eqn. (2) 
of d = 100 and e = 0.5. Under this model and with these parameters, relative risk decreased 
steeply with age until around age 20, when it began to decrease more slowly towards almost no 
risk in older people (Fig. 3). As in the clinical trial data, relative risk under our model was several 
fold lower in seropositive than seronegative children, and relative risk in excess of 1 was likely 
only at ages well below 9 years (Fig. 3). 
 
Under our assumptions about how efficacy observed in trials derived from two separate types of 
protection, an assumption of equal parts protection against infection and protection against 
disease (i.e., p = 0.5) gave, on average, a relative risk of 48% for either infection or disease in 
seropositive 9-year olds and 80% in seronegative 9-year olds (Fig. 4). In the event that 90% of 
protection derived from protection against disease and only 10% from protection against 
infection (i.e., p = 0.1), then the relative risk for 9-year olds was 27% for disease and 87% for 
infection for seropositives and 68% for disease and 96% for infection for seronegatives (Fig. 4). 
 
Vaccine impact projections 
In twelve randomly selected pairs of simulations (Fig. 5), dynamics in the 40 years following 
vaccine introduction relative to a nearly identical simulation without vaccination varied 
substantially. In most cases, the number and severity of epidemics was reduced. In some 
cases, however, epidemics occurred earlier, or more severe epidemics occurred than would 
have otherwise (Fig. 5). This variability was also reflected across the full collection of 2,500 
pairs of simulations, with many simulations exhibiting a net increase in infections and disease 
for 10-20 years or more following vaccine introduction (Fig. 6A, 6B). 
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Although much of the variability in vaccine impact in our model was due to stochasticity, much 
was due to uncertainty in properties of the vaccine (Fig. 6C-F). With respect to cumulative 
infections averted in the 40 years following vaccine introduction, 50.6% of variation across the 
2,500 simulation pairs was accounted for by a generalized additive model of cumulative 
infections averted as smooth functions of p and q. Dropping q as a predictor from the model led 
to a loss of only 0.1% of variation explained. Even so, smooth terms of p and q were both 
statistically significant in the combined model (p: effective d.f. = 6.7, F = 327.5, P < 2x10-16; q: 
e.d.f = 1.0, F = 6.7, P < 0.01). Similar effects were observed with respect to cumulative disease 
episodes averted in the 40 years following vaccine introduction (p: effective d.f. = 5.9, F = 189.1, 
P < 2x10-16; q: e.d.f = 1.0, F = 5.3, P = 0.021), although the proportion of variation in cumulative 
disease episodes averted that the model accounted for was less (R2 = 0.35). 
 
For simulation pairs in which vaccine efficacy derived entirely from protection against disease 
rather than infection, there were zero infections averted over a 40-year time horizon on average 
(Fig. 6C). As the proportion of vaccine efficacy derived from protection against infection 
approached 20%, the proportion of infections averted over 40 years increased sharply but then 
increased more slowly for values of p in excess of 20% (Fig. 6C). In contrast, 28% of cumulative 
disease episodes 40 years after vaccine introduction were averted when vaccine efficacy 
derived entirely from protection against disease (Fig. 6D). When vaccine efficacy derived 
entirely from protection against infection, 79% of cumulative disease episodes 40 years after 
vaccine introduction were averted (Fig. 6D). Thus, the indirect effects associated with 
vaccination--i.e., preventing onward transmission from vaccine recipients--were 182% larger 
than the direct effects of vaccination in our model on a 40-year time horizon. 
 
DISCUSSION 
 
We developed a new individual-based model for dengue transmission and applied it to 
questions regarding the impacts of uncertainty about different properties of the Dengvaxia® 
vaccine on projections of its public health impact. This analysis was not intended to represent a 
comprehensive assessment of the suitability of this vaccine as a public health tool or to make a 
recommendation about its use. Instead, the value of this analysis is that it provides a theoretical 
assessment of the extent to which different sources of uncertainty about the vaccine, of which 
there are many (27), might affect more detailed projections of public health impact that will 
inevitably follow. In summary, our results suggest that future projections of the vaccine’s impact, 
applied either in specific settings or in generalities, should simulate across a range of multiple 
uncertainties about the vaccine’s properties, particularly its mode of action. Limiting such 
projections to a specific set of assumptions about the vaccine’s mode of action could result in 
the communication of recommendations to decision makers that convey a false sense of 
confidence. 
 
Our results were unambiguous in their suggestion that the projected public health impact of 
Dengvaxia® is far more sensitive to biological uncertainty about the vaccine’s mode of action 
than it is to statistical uncertainty about the numerical value of its efficacy against disease. 
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These results echo a previous analysis that highlighted fundamental problems that this type of 
biological uncertainty poses for estimates of the numerical value of efficacy against disease 
itself (9), which would effectively compound the biological uncertainty considered under our 
model. Between these two theoretical studies, it is clear that knowledge of both efficacy against 
disease and efficacy against infection would be extremely valuable. Even so, there are serious 
diagnostic limitations that impede the collection of the data that would be required to inform 
such estimates. There is extensive serological cross-reactivity of dengue and related viruses 
(35,36), and the same may also be true in the presence of vaccination. Similar challenges could 
plague the interpretation of Zika vaccine trial data, given that many Zika infections result in mild 
or asymptomatic infections (37) and may result in more severe disease among those with 
dengue antibodies (38). 
 
The extent of differences that we observed due to biological uncertainty are a direct reflection of 
the extent of indirect effects of vaccination. Such effects have been predicted by models (39) 
and observed empirically (40) for a variety of diseases. One property that is expected to affect 
the extent of indirect effects is coverage (41), with high coverage potentially compensating 
somewhat for low efficacy. For Dengvaxia®, it is difficult to generalize about what coverage 
level might be appropriate or feasible in what setting. Another property that is expected to affect 
the extent of indirect effects are contact patterns (42). In our model, we quantified contact 
patterns in a more realistic way than other dengue transmission models by leveraging 
published, data-driven models pertaining to human movement (14) and human-mosquito 
contact (21) in Iquitos, Peru. Realistically modeling contact patterns, vaccine coverage, and 
other parameters of relevance to indirect effects are all important considerations for projections 
of public health impact, given the influence of indirect effects on cost-effectiveness calculations 
(43). 
 
Although our model of vaccine efficacy is consistent with some findings from clinical trials of 
Dengvaxia® (6), such as serostatus- and age-dependent efficacy against disease, there are 
others that we have not accounted for. One notable feature of the vaccine is the appearance of 
possible serotype-specific efficacy, with low efficacy against disease resulting from serotype-2 
infection being of greatest concern (44). A previous modeling analysis suggested that 
Dengvaxia® may have a net positive impact on public health despite this shortcoming (45). 
Other notable features of the vaccine that we have not considered pertain to protection against 
severe disease. In particular, to the extent that vaccination serves as a “primary-like” infection in 
seronegative vaccine recipients (27), the incidence of severe disease could increase as the 
proportion of seronegative vaccine recipients increases as transmission is lowered by indirect 
effects of vaccination (46). At the same time, clinical trial data suggest that whatever protection 
against severe disease the vaccine does afford wanes within a few years of vaccination (6). It 
will be important for modeling analyses that seek to inform policy recommendations to account 
for the full complexity of Dengvaxia®’s mode of action (47), but for the present analysis we 
chose to limit our assumptions about the vaccine to those that are most pertinent to our driving 
questions and that can be quantified using published data. 
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In addition to limitations associated with how we modeled Dengaxia’s mode of action, there are 
a number of limitations of our transmission model. Perhaps most conspicuously, we did not 
account for seasonal transmission (11,48) and factors that give rise to it. Although we regard 
these details as nonessential for addressing our driving questions, accounting for seasonality 
will be a critical extension to the model if it is to be used for analyses that are intended to be 
directly relevant to specific locations and timeframes. We have also omitted a number of details 
about the ecology of Aedes aegypti mosquitoes, their encounters with humans, and how their 
contributions to transmission are affected by various types of vector control measures (2). 
Although such details may not be essential for analyses such as ours that focus solely on 
vaccines (49,50), they will be critical for realistic assessments of strategies that combine 
vaccination and vector control, which together offer the most promising strategy for abating the 
growing burden of dengue on global health (51). 
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TABLE 
 
Table 1. Definitions of key terms. 
 

Term Symbol Definition 

Relative risk of disease 
conditional on infection 

RRdis|inf Proportion of vaccine recipients that experience 
disease after becoming infected relative to the 
proportion of placebo recipients that experience 
disease after becoming infected. 

Relative risk of infection 
conditional on exposure 

RRinf|exp Proportion of vaccine recipients that become infected 
after being bitten by an infectious mosquito relative to 
the proportion of placebo recipients that become 
infected after being bitten by an infectious mosquito. 

Relative risk of disease RRdis Proportion of vaccine recipients that experience 
disease after being bitten by an infectious mosquito 
relative to the proportion of placebo recipients that 
experience disease after being bitten by an infectious 
mosquito. This is equal to the product of RRdis|inf and 
RRinf|exp. 

Vaccine efficacy against 
disease 

VEdis 1 - RRdis 

Proportion of protection 
against disease derived 
from protection against 
infection 

p This parameter relates RRinf|exp to RRdis according to 
the relationship RRinf|exp = RRdis

p. Likewise, it is implied 
that RRdis|inf = RRdis

1-p and RRdis = RRdis|inf x RRinf|exp. 

Quantile of RRdis estimate q Quantile between 0 and 1 applied to the uncertainty 
distribution of the RRdis estimate. 
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FIGURES 
 

 
 
Figure 1. Example of events that occur over the course of a single day at a single location. Red 
lines correspond to individual mosquitoes, with dashed and solid lines representing blood-
feeding and resting states, respectively. Blue lines refer to individual people, with thin dotted 
lines indicating that the person is at another location at that time and thick solid lines indicating 
their presence at the location at that time. The thickness of the solid blue lines indicates the 
relative attractiveness of each person to blood feeding by mosquitoes.  
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Figure 2. Relationships between free parameters in the model (emergence, average adult 
mosquito lifespan, mosquito infectiousness, force of infection due to importation), vectorial 
capacity (which depends on the first three parameters), and two epidemiological metrics (age-9 
seroprevalence, average age of first infection). Each point represents the value of the metric 
after 40 simulated years of transmission in a single realization of the model with no vaccination.  
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Figure 3. Relative risk of disease, RRdis, as a function of age and serostatus (blue = 
seronegative, red = seropositive) estimated from vaccine trial data (6). Each line represents a 
distinct random draw. Horizontal bars correspond to estimates of relative risk of disease in the 
trial for a given age group (2-9, 9-16) and serostatus.  
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Figure 4. Relative risk of infection conditional on exposure (dashed) and of disease conditional 
on infection (solid) for seropositive (red) and seronegative (blue) individuals of different ages. 
These relationships are shown for three different values of the parameter p that specifies the 
proportion of the overall efficacy against disease that is attributable to protection against 
infection conditional on exposure.  
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Figure 5. Example time series of annual incident infections simulated from the model. Each 
panel shows a pair of simulations with two common random number streams for (i) events 
related to the demography, movement, and mixing of mosquitoes and people, and (ii) events 
related to infection and disease. Each pair of simulations differs beginning in year 40, when 
routine vaccination commences in the simulation colored in red but not in the one in black. 
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Figure 6. Impacts of vaccination assessed in 2,500 pairs of simulations with and without 
vaccination, with simulation pairs varying with respect to the proportion of vaccine efficacy due 
to protection from infection, p, and the quantile of estimated vaccine efficacy, q. Infections and 
disease episodes averted were calculated as the number in the simulation without vaccination 
minus the number in the simulation with vaccination. Cumulative numbers averted in each year 
since vaccination 1-40 are shown in A & B, and the proportion averted after 40 years of 
vaccination are shown in C & D as a function of p and in E & F as a function of q. Green lines in 
A & B are averages in each year and in C-F are loess regressions intended to show running 
averages. 
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SUPPORTING INFORMATION 
 
Detailed Model Description 
  
This model description follows the ODD (Overview, Design concepts, Details) protocol for 
individual-based models (16,17). Given how complex individual-based models can be, the ODD 
protocol was developed as a way to standardize the description of these models throughout 
ecology and other fields. This model has been implemented as a software program using 
object-oriented code in C++. 
  
Purpose 
The model simulates transmission of dengue viruses between individual people and mosquitoes 
that occupy a landscape of discrete locations where they encounter each other. The model also 
simulates the impact of a dengue vaccine on the occurrence of dengue virus infection, mild 
disease associated with DENV infection, and severe disease associated with DENV infection 
within the simulated human population. 
  
Entities, state variables, and scales 
The model focuses on five primary entities: individual people, individual mosquitoes, infections, 
locations, and vaccines. Individual people have the following state variables: a location that is 
designated as the individual’s home, an activity space, gender, body size, infection status, 
infection history, and immune status. Individual mosquitoes have the following state variables: 
location and infection status. All individual mosquitoes are adult female Aedes aegypti. 
Infections have the following state variables: dengue serotype 1-4, day of infection, and, for 
infections in humans, day of recovery and immune acquisition. Locations have the following 
state variables: longitudinal and latitudinal coordinates of the location’s centroid, location type 
(residential, commercial, recreation, education, health care, religion, institutions, others), and 
daily emergence rates of newly eclosed mosquitoes. Vaccines have the following two state 
variables: efficacy against disease as a function of the age and pre-exposure history of the 
vaccinee, and the proportion of that efficacy attributable to protection against disease 
conditional on infection versus protection against infection conditional on exposure. Each of 
these five entities is defined by its own object class in our code. 
 
For purposes of software implementation, our model is, on one level, iterated on a daily basis. 
On another level and for most processes, however, our model treats time in a continuous 
fashion because it is fundamentally an event-based model, analogous to the Gillespie algorithm 
(52). We made this decision to minimize inaccuracies associated with lumping and discretizing 
events that occur continuously (53), to avoid being forced to make a fixed decision about the 
order of different types of events, and to allow for maximal precision in describing probabilistic 
distributions of waiting times for various stochastic processes. This precision is important not 
only for realistic modeling of the temporal dynamics of transmission but will be increasingly 
important in the future to realistically account for the sometimes subtle effects that mosquito-
based interventions can have; e.g., reducing mosquito biting rates. The fundamental spatial unit 
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in the model is the location, which we model after a city lot that each house or other building sits 
on. Altogether, our model applies to 40,839 lots, comprised primarily of homes but also 
including shops, markets, schools, churches, parks, and other locations. This constitutes the 
entirety of the core of the city of Iquitos, where the majority of relevant data collection has 
occurred over the last 15+ years and where roughly half of the entire metropolitan population 
lives. 
  
Process overview and scheduling 
The key processes in the model are 1) movement by individual people, 2) movement by 
mosquitoes, 3) mosquito emergence, 4) mosquito death, 5) mosquito blood-feeding, 6) infection 
of susceptible people by infectious mosquitoes or 7) vice versa, 8) changes in the 
infectiousness of individual people over time, 9) changes in the immune status of individual 
people, 10) demographic changes in the human population, and 11) vaccination. The first of 
these processes is pre-calculated and incorporated into the model as an input. The timing until 
an event of each of the other types occurs is represented as a continuous random variable, 
such that events occur at specific times of day. These random variables are drawn from 
probability distributions described separately for each process in the Submodels section. An 
illustration of the continuous timing of events related to mosquito-host encounters is shown in 
Fig. 1. 
 
On a daily basis, the model iterates through each mosquito in the city and executes the events 
scheduled for that mosquito for that day in the order in which the events are scheduled to occur. 
One example of why this scheduling is important is if a mosquito is scheduled to both die and 
infect someone in the same day, the infection will never occur if death takes place first. Because 
events that apply to one mosquito have no effect on any other mosquitoes on that day, the order 
in which individual mosquitoes are processed is inconsequential. Mosquitoes are also assumed 
to have no effect on a human’s status within a day, and instead rely only on each person’s pre-
scheduled whereabouts when selecting a person upon whom to blood-feed. This decoupling of 
event scheduling within versus across days is possible because the onset of infectiousness in 
both people and mosquitoes always takes longer than a single day (23,54). 
  
Design concepts 
 
Basic principles 
The model seeks to leverage years of studies in Iquitos, Peru, quantifying heterogeneities in 
DENV transmission that manifest at individual, household, and neighborhood scales. Priorities 
for the model include realistically modeling individual human movement patterns and biting 
heterogeneity among individuals simultaneously co-located at a single location. We also seek to 
model details of infection dynamics and vaccine effects at an individual level in accordance with 
the best available data from clinical trials. 
  
Emergence 
Patterns of DENV infection in space and time are emergent properties of the model and are not 
predefined. Stochasticity is the major driver of a priori uncertainty about these patterns. 
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Adaptation 
The mosquito’s decision about whom to bite is influenced by the number of people present at a 
given time and each person’s attractiveness to mosquitoes (21). 
  
Objectives 
The only entities in the model with any explicit objectives are mosquitoes, which seek to blood-
feed. That said, they suffer no penalty nor reap any reward as a consequence of failing or 
succeeding in their quest to blood-feed. 
  
Learning 
None of the entities in the model have a learning capacity. 
  
Prediction 
None of the entities in the model have a predictive capacity. 
  
Sensing 
Each mosquito has the ability to sense the number of people present at its current location at a 
given time of day, as well as the attractiveness for blood-feeding on each person. The latter is a 
human state variable that depends on body surface area (21). No mosquito is able to sense the 
presence or attractiveness of people at locations at which the mosquito is not currently present. 
As a consequence, their movement decisions are not affected by the presence or attractiveness 
of people at a location to which they might move. 
  
Interaction 
Mosquitoes interact with humans through blood-feeding and through the associated 
transmission of viruses in some cases. The movement trajectories of people are not affected by 
having been blood-fed upon. 

Stochasticity 
Prior to being incorporated into the model as an input, human movement trajectories are 
generated from a continuous-time Markov chain according to the algorithm by Perkins et al. 
(14). Practically, this means that the duration of a visit to a given location is drawn from an 
exponential distribution and that the next location an individual visits is drawn from a categorical 
distribution over all other locations in an individual’s activity space. The rates of these 
exponential distributions are related to the duration of visits to each location, and the 
probabilities of the categorical distributions are related to the frequency of visits to each location. 
Proceeding each day after initialization, one of the individual’s daily trajectories is selected with 
equal probability. 
 
Mosquito lifespan is drawn from an exponential distribution at the time of a mosquito’s 
emergence. Mosquito movement is also highly stochastic, with the decision to stay or leave a 
location on a given day determined by a Bernoulli trial and the mosquito’s destination location 
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drawn randomly from the set of all locations within 50 meters with even probability. The elapsed 
time before a mosquito blood-feeds again is drawn from an exponential. 
 
A mosquito blood-feeds on a person at its current location, with the identity of that person 
determined by a random draw from a categorical distribution with probabilities proportional to 
each person’s biting attractiveness (21). If either a mosquito is infectious and a person 
susceptible or vice versa, an infection results depending on the outcome of a Bernoulli trial. 
Thenceforth, the duration of the incubation period in a given mosquito is drawn randomly from a 
predefined lognormal distribution specified based on empirical studies (23). Lastly, the duration 
of temporary cross-immunity in a given person is drawn randomly from an exponential 
distribution (26). 
 
For the sake of comparability across analyses, we use two distinct random number seeds in 
each simulation. One applies to events that directly involve vaccines or viruses, whereas the 
other applies to other events, most of which have to do with demographic events, movement, 
and human-mosquito contact. This allows for the landscape of human-mosquito encounters to 
unfold identically across multiple simulations in which aspects of vaccination can be varied 
separately. 
  
Collectives 
Each person is assigned to a home location and as such is part of a household. Membership in 
a household comes with no special properties in the model other than the general tendency to 
spend more time at that common location than they would otherwise. Altogether, we considered 
a population of 200,000 people living in 38,835 houses within a total landscape of 40,839 
locations. 
  
Observation 
The model is capable of producing a variety of different output files that report infections and 
other events, either individually or aggregated temporally and/or spatially. 
  
Initialization 
The composition of each house (i.e., how many residents plus each person’s age, sex, and 
body size) was obtained by simulating a population with house-level demographic profiles 
consistent with available survey data but conforming to a desired total population size and age 
and gender distribution (55). 
 
The first step in the population simulation algorithm was to simulate household sizes that 
yielded the correct overall population size. To do so, we weighted the distribution of household 
sizes in the survey data by a geometric probability mass function with a fitted parameter p=0.34. 
Sampling 38,835 houses weighted in this way yielded an appropriately sized overall population 
of 200,000 individuals on average. The second step in the population simulation algorithm was 
to randomly draw demographic profiles for houses of each size from the survey data. We 
populated houses serially, keeping track of the number of simulated individuals of each age and 
gender as the simulation proceeded. Once a given age-gender combination was exhausted in 
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the target age and gender distribution, we attempted to replace the individual in question with 
one of the same gender and age class (i.e., children under 18, adults 18+). Near the end of the 
population simulation routine, however, we deviated from the target age class and/or gender of 
the simulated individual in question. For example, this resulted in some of the very last 
simulated houses being inhabited by several adult men, which was a household profile not 
observed in the survey data but one that was necessary to obtain a realistic age and gender 
distribution for the population as a whole. 
 
Once the initial population was simulated, we simulated each person’s serostatus for each of 
the four DENV serotypes as a function of that person’s age and a free parameter describing a 
baseline force of infection due to infections acquired when visiting areas outside Iquitos, which 
we refer to as “force of importation.” No infections due to transmission within Iquitos were 
accounted for at the time of initialization. Instead, a burn-in period of 40 years was simulated to 
allow for acquisition of locally acquired infections prior to vaccination. 
 
The number of mosquitoes that emerge in each location on each day of the simulation is 
simulated as a Poisson random variable with rate determined by a free parameter. The model 
was initialized with no infected or infectious mosquitoes. 
  
Input 
Each realization of the model depends on inputs from three files. There is a single master file in 
which each row specifies input files and values of parameters that vary across realizations of 
the model. The first of the primary input files contains rows that each describes a location and 
its attributes. A second file contains five sample daily movement trajectories for each individual, 
as well as their personal attributes. A third file contains parameters that describe the vaccine’s 
efficacy as a function of vaccinee age and pre-exposure history, as well as values of the 
model’s free parameters. 
 
Submodels 
Movement by individual people 
We adopt a submodel for movement by people described by Perkins et al. (14). This model 
offers a means to simulate an individual’s activity space, which is defined as both the collection 
of locations that a person visits as a matter of routine and a description of the proportion of time 
the person spends at each of those locations. The model furthermore specifies that a person 
moves about those locations through time according to a continuous-time Markov process, 
which depends on simulated values of two key attributes of a person’s connection to a location: 
how often they visit the location and how long they stay there during each visit, on average. 
 
This submodel was fitted to data from retrospective, semi-structured interviews of residents of 
Iquitos. These interviews were structured in such a way as to facilitate recall of specific locations 
visited during specific timeframes during the two weeks preceding the interview. Fitting this 
model to those data, Perkins et al. (14) found that location type and distance from home 
significantly affect a person’s likelihood of visiting a location and also how often and for how 
long they visit. Furthermore, by accounting for the availability of locations at different distances 
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from home depending on where a person lives (e.g., in the city center or on the periphery), the 
model successfully accounted for differences in movement patterns of residents living in two 
different neighborhoods in Iquitos. This finding is significant because it suggests that this 
submodel can be reasonably applied to simulated residents throughout the city and not just 
within the study area. The fitted movement model is also representative in the sense that 
interviews were conducted on a diverse group of individuals of different ages, sexes, and 
occupations (14). 
 
For application to the model, we use this submodel to simulate five stochastic realizations of a 
daily movement trajectory for each simulated person in our synthetic population. Each trajectory 
consists of a sequence of locations and what fraction of the day is spent at each location during 
each visit. These movement trajectories are incorporated into the model through an input file. At 
the beginning of each simulated day, one of these trajectories is randomly chosen and followed 
for that day. 
  
Movement by mosquitoes 
Each mosquito has a constant probability of 70% of staying at its current location for a given day 
(19). If it moves, the location to which it moves is drawn randomly from all locations within a 50 
meter radius of the mosquito’s location. 
  
Mosquito emergence 
Daily emergence of mosquitoes at each location occurs according to a Poisson random draw 
with rate equal to a free parameter. This rate does not vary in space or time, which means that, 
on average, the number of mosquitoes at each location is equal to the emergence rate 
multiplied by average mosquito lifespan. 
  
Mosquito death 
We assume that mosquitoes experience death at a constant rate and do not senesce. We 
implement this by assigning each mosquito with an adult lifespan at its time of emergence, 
drawing this number from an exponential distribution with rate determined by a free parameter. 
  
Mosquito blood-feeding 
Upon emergence, a mosquito refrains from attempting to bite for an exponentially distributed 
period of time, with the average duration of that period set to 1.5 days (20). The mosquito 
selects a particular person on whom to blood-feed by taking a random draw from a categorical 
distribution informed by a function of the body size of all people present at the location at that 
time (21). If no people are present, the mosquito is assumed to either find another source of 
blood or wait until its next scheduled blood meal, which is also exponentially distributed with 
average duration of 1.5 days (20). 
  
Infection of susceptible people by infectious mosquitoes 
After a bite by an infectious mosquito, a susceptible human becomes infected with a probability 
determined by a free parameter. Infections develop symptomatic disease with probabilities 
dependent on the number of previous exposures to dengue that they have experienced: 23.5% 
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for those with no previous exposures, 16% for those with one previous exposure, and 4% for 
those with two or three previous exposures (56). 
  
Infection of susceptible mosquitoes by infectious people 
When blood-feeding on an infectious person, a susceptible mosquito is infected with a 
probability determined by the person’s infectiousness. A person’s infectiousness on a given day 
since infection was derived from an analysis by Nishiura and Halstead (57) of data on human 
infectiousness originally published by Sabin (54). We approximated the infectiousness data as 
presented by Nishiura and Halstead with the function 
 

1.01	𝑒7D.@EF	(G	7	(HHI	7	D.@FF))	J, 
 
where t is the number of days since the human was infected by a mosquito and IIP is the length 
of the incubation period in the human (intrinsic incubation period). Each person is assigned an 
IIP by taking a random draw from a lognormal distribution fitted by Chan and Johansson (23). 
To model whether successful infection occurred, a Bernoulli trial is performed with a probability 
of infection equal to that person’s infectiousness on that day. Upon infection, mosquitoes enter a 
period of latent infection for a period of time drawn from an empirically estimated lognormal 
distribution with a mean of 6.5 days parameterized at a constant temperature of 30 °C (23). 
Upon completion of the latent period, a mosquito becomes infectious and remains so for the 
remainder of its life. If a mosquito is exposed subsequent to becoming infected, the latter 
exposure has no impact on the outcome of the initial infection (e.g., an individual mosquito can 
only ever be infected by a single virus serotype). 
  
Changes in the immune status of individual people 
Following infection with dengue viruses, it is generally accepted that there is a temporary period 
of heterologous immunity. We implement a published model (26) whereby individuals are 
completely protected following an infection, but the duration of this protection for each individual 
is drawn independently from an exponential distribution with a mean of 686 days. At the 
conclusion of the individual’s period of heterologous immunity, they resume their susceptibility to 
serotypes to which they have no prior exposure. 
 
Demographic changes in the human population 
We maintain a stable human population age structure representative of Peru (55) by applying a 
linearly increasing age-dependent death rate of 6.9x10-9 times a person’s age in days and 
replacing each newly deceased person with a newborn child. Children are born with a normally 
distributed body surface area that grows linearly to a normally distributed adult body surface 
area that is attained at a threshold age. We fitted sex-specific parameters for these parameters 
using biometric data collected during a study of heterogeneous biting in Iquitos (21). These 
parameters include body size at birth for males ~ N(0.31, 0.30) and females ~ N(0.31,0.18), final 
adult body sizes for males ~ N(1.71, 0.30) and females ~ N(1.51, 0.24), and the ages at which 
adult body sizes were attained for males = 18.65 and females = 16.52. These parameters were 
sufficient to linearly interpolate body sizes between birth and adulthood. 
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Vaccination 
We distribute a vaccine resembling the Dengvaxia® vaccine to 90% of children on their ninth 
birthday, and we assume that 100% of vaccinees comply with the full vaccination schedule of 
three doses over 12 months. We assume 90% initial compliance and 100% follow-up 
compliance in accordance with previous modeling assessments of vaccine impact (58), and we 
apply the vaccine at age 9 consistent with current recommendations for this vaccine (5). We 
assume that the efficacy of the vaccine tracks the relationship in eqn. (1) as an individual ages 
and in the event of a change in serostatus from negative to positive. To specify the portion of 
overall efficacy in VEdis that derives from protection against infection versus protection against 
disease conditional on infection, we used a free parameter p to specify the relative reduction in 
infection as (1 - VEdis)p and relative reduction in disease conditional on infection as (1 - VEdis)1-p 
(Fig. 4). 
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