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Abstract

Large scale efforts to sequence whole human genomes provide extensive data on the non-
coding portion of the genome. We used variation information from 11,257 human genomes to
describe the spectrum of sequence conservation in the population. We established the
genome-wide variability for each nucleotide in the context of the surrounding sequence in
order to identify departure from expectation at the population level (context-dependent
conservation). We characterized the population diversity for functional elements in the genome
and identified the coordination of conserved sequences of distal and cis enhancers, chromatin
marks, promoters, coding and intronic regions. The most context-dependent conserved regions
of the genome are associated with unique functional annotations and a genomic organization
that spreads up to one megabase. Importantly, these regions are enriched by over 100-fold of
non-coding pathogenic variants. This analysis of human genetic diversity thus provides a
detailed view of sequence conservation, functional constraint and genomic organization of the
human genome. Specifically, it identifies highly conserved non-coding sequences that are not
captured by analysis of interspecies conservation and are greatly enriched in disease variants.
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Main text

The estimated size of the human genome is 3.2x10° base pairs. Large community and corporate
efforts have identified single nucleotide variants (SNV) across the genome: 150 million SNVs in
the public database dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/snp summary.cgi), 10
million coding variants in EXAC (http://exac.broadinstitute.org) and 170 million SNVs in 10,545
deeply-sequenced whole genomes ! (http://hli-opensearch.com). The union of these resources
is 242 million unique SNVs - representing the current reporting of single nucleotide variable
sites across the whole human genome. This suggests that 1 out of every 13 nucleotides in the
genome has an observed variant in the population.

There is a good understanding of protein-coding variants — owing to historical studies of
Mendelian disorders, the predictable consequences of amino acid change, and the recent
availability of exome sequencing data 2. However, the protein-coding regions represent less
than 2% of the total genome, and relatively little is known about the functional consequence of
variation in the remaining 98% of the genome. The non-protein-coding sequences of the
genome (thereafter in this text described as “non-coding”) have been annotated through the
ENCODE project that relies on identification of biochemically active elements in the human
genome, with particular attention paid to regulatory elements that control gene activity
(https://www.encodeproject.org). Regulatory control can also be influenced by higher-order
chromatin structure, such as long-range chromatin loops >, that regulates the accessibility and
proximity of genes and regulatory elements. Supporting a role for non-coding variants in human
disease and phenotypic traits, most of the over 16,000 common variants identified through
genome-wide association studies (GWAS) at p<5x10E-7 are in non-coding regions of the
genome (http://www.ebi.ac.uk/gwas). GWAS variants are increasingly recognized as acting
through changes in the regulatory circuitry *°. Consistent with this hypothesis, a subset of
variants is also specifically characterized as expression quantitative trait loci (eQTL) through
defined cis or trans association with expression levels of gene transcripts °. Despite recent
progress in the study of non-coding variants, it remains a significant challenge to characterize
the non-coding variants in the human genome, which grow by over 8,000 with each additional
genome sequenced .

To better characterize the population variation in the non-coding regions we performed a
comprehensive analysis of 11,257 whole genome sequences. We applied a metaprofiling
approach ! that exploits the multiplicative contribution of elements in thousands of genomes.
Metaprofiles integrate and score sequence variation and frequency across genomic landmarks
sharing the same sequence, structure or function. In the present work, we extend this approach
by using massive alighments of k-mers to determine the probabilities of variation of each
nucleotide genome-wide in the context of the surrounding nucleotides. Specifically, we exploit
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heptamers (7-mers) for the analysis; the heptanucleotide context was shown recently to
explain >81% of variability in substitution probabilities ’.

The 16,384 unique heptamers present in the human genome vary greatly in abundance, ranging
between 1,927 and 6,314,598 counts per genome (Suppl. Fig. S1). Heptamers are not evenly
distributed across the genome and some show clear association with genomic elements (Fig.
1A). Each heptamer is characterized by unique rates of variation. To capture this property, we
computed the rate and frequency of variation at the 4th nucleotide of each different heptamer
(see Methods). The metric varies > 100-fold across heptamers (between 0.0015 and 0.157;
Suppl. Fig. S1). It defines the expectation of variation for each nucleotide in the genome.

A given heptamer or region may have rates of observed variation that are higher or lower than
rates estimated genome-wide. We defined the context-dependent tolerance score (CDTS) as
the absolute difference of the observed variation from expected variation. Thereafter, we
divided the genome into equal size regions using a sliding window of 50 base pairs (bp) to study
the context-dependent conservation without consideration of existing annotation. Based on
CDTS we rank every region in the genome from the most context-dependent conserved (1
percentile) to the least context-dependent conserved (100" percentile) (Fig. 1B and Suppl. Fig.
S2A). We identified patterns of enrichment and depletion for specific genomic elements as well
as chromosomes across the spectrum of CDTS values (Fig 1C, Suppl. Fig. S2B; See Methods for
the categorization of the genomic elements). As expected, protein coding exons were strongly
enriched (31-fold) in the first percentile of CDTS. Specifically, 11,901 protein coding genes had
at least 1 exon in the first percentile; only 1,816 genes had no single exon in the first 10
percentiles. The context-dependent correction also identified a striking enrichment for
promoters (66-fold) in the most conserved regions of the genome. Despite no clear enrichment
or depletion pattern of enhancers throughout the CDTS spectrum, super-enhancers were
enriched at lower CDTS, in a magnitude proportional to the number of cell types they were
present in. (Suppl. Fig. S2C). In contrast, marked depletion was observed for H3K9me3 histone
marks (23-fold). However, it is important to underscore that all families of genomic elements,
as well as unannotated genomic sequences are found in the most context—dependent
conserved regions of the genome as measured by CDTS (Fig. 1B, Suppl. Fig. S2D). To compare
these findings in the larger context of interspecies conservation, we assessed the extent of
overlap of conserved regions assessed with CDTS (ie., context-dependent conservation in the
current human population) and Genomic Evolutionary Rate Profiling (GERP) across 34
mammalian species (ie., interspecies conservation). From the 1* to 10" percentile levels, the
overlap between both scores is limited and heavily enriched for protein coding regions (Suppl.
Fig S3). Taken together, these results suggest that the most constrained non-coding regions in
human populations are primarily revealed by CDTS.

A large proportion of the thus defined constrained human non-coding genome is associated
with regulatory elements such as promoters, enhancers, transcription factor binding sites and
regions associated with active chromatin marks (Fig. 1B). We hypothesized that the most
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constrained regulatory regions serve to regulate the most functionally important genes. To test
the hypothesis, we used the notion of gene essentiality to define “functional importance”.
Essential genes are characterized by limited tolerance to truncation, fewer paralogs, and being
part of larger protein complexes “*2. Editing of those genes with CRISPR-Cas9 compromise cell
viability, and knockouts of these genes in the mouse model are associated with increased
mortality ®. As expected, exons in essential genes were enriched in the conserved regions of the
genome as defined by CDTS (Fig. 2A). Thereafter, we assigned the essentiality score of the gene
to the corresponding upstream promoter. This analysis confirmed that promoters in the
constrained part of the genome associate with essential genes (Fig. 2A). We then observed that
cis enhancer regions also shared sequence constraint with genes (within 15 kb) that were
putatively regulated by those elements (Fig. 2A). Next, we searched for evidence that
functional constraints could be shared over greater distances. Topological associated domains
were defined using information from promoter capture Hi-C (pcHi-C), Hi-C and 3D genome
structure data ”*'. We observed that the regions brought together through these long-distance
interactions shared similar levels of conservation as reflected by the CDTS values. This
coordination was maintained at distances as long as one megabase (Mb) (Fig. 2B, Suppl. Fig S4).
In addition, with the newly developed pcHi-C technique'!, enabling to associate distant
regulatory regions with a particular gene, we observed a correlation between conservation of
the distal enhancer, and the essentiality of the target gene (Fig. 2C; see Methods for pcHi-C
technical description). Finally, we assessed other cis non-coding elements (eg., chromatin
histone marks, transcription factor binding sites), unannotated and intronic regions, and
consistently identified a pattern of correlation between CDTS of non-coding or regulatory
regions with gene essentiality (Fig. 2A). Strikingly, even genomic elements that were depleted
in the most conserved part of the genome (e.g. H3K9me3 and H3K27me3) are associated with
essential genes when present in the lower CDTS percentiles (Fig. 2A). More generally, regions of
low CDTS appear clustered in the genome (Suppl. Fig S5). Overall, the data support the concept
of constrained and coordinated regulatory and coding units in the genome over large genome
distances.

The description of the conserved regulatory units raises the issue of its relevance to human
disease. We assessed whether CDTS ranking was a good proxy to score functionality and the
consequences of mutations. For this purpose, we investigated the distribution of annotated
pathogenic variants across the genome. The pattern of enrichment was marked for pathogenic
variants in the 1% versus the 100" percentile for both protein-coding (77-fold) and, more
importantly, for non-coding (80-fold) pathogenic variants (Fig. 3A). Of note, the enrichment of
non-coding pathogenic variants is even more striking after accounting for the size of the non-
coding territory covered in each percentile slice and reaches > 110-fold enrichment (Suppl. Fig.
S6). To confirm these findings, we further investigated 550 manually curated non-coding
variants associated with Mendelian disorders'**>. We confirmed that Mendelian non-coding
variants are highly enriched in the regions with the lowest CDTS values (Fig. 3B). The nature and
disease association of variants and their CDTS values are summarized in Table S1.
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We explored how CDTS compared to other functional predictive scores used to prioritize
variants, such as CADD and Eigen '*"”. We focused on the performance of these metrics on the
non-coding genome. The combination of the three metrics provides the best detection, while
the three metrics used alone provide similar ranges of detection (Fig. 4A). CDTS is the
functional predictive score that has the highest fraction of specific variant detection at any
percentile threshold (Fig. 4B, barplot) providing high complementarity to the other metrics,
while Eigen and CADD capture more redundant information (Fig. 4B, Venn diagrams). In
addition, CDTS is the functional predictive score that detects the highest number of pathogenic
variants, as the scores are computed for the whole genome, including sex chromosomes, and
can be used for both SNVs and indels (Fig. 4B, Venn diagrams). Overall, CDTS requires no prior
knowledge such as annotation or training sets, and captures a very specific set of pathogenic
variants that are not detected by other metrics. Thus, CDTS complements other functional
predictive scores in the analysis of the non-coding genome.

In summary, we assessed conservation of the human genome solely based on human variation.
The analysis first established the expectation of variation based on sequence context. The
approach identifies regions of the genome, that while having various levels of absolute
variation, are nonetheless under selective constraint. Its clinical relevance is manifested by the
enrichment of known pathogenic variants in the most constrained part of the genome. A
practical implementation of this observation is the targeting of sequencing efforts beyond the
exome. Many exons could possibly be eliminated from targeted analysis while including an
equivalent amount of sequence that represents the most constrained regions of the non-coding
genome. The second important observation is the complementarity of human conservation
metrics with other analyses of the non-coding genome. Kellis et al. *® reviewed the contribution
of biochemical, evolutionary (interspecies conservation) and genetic approaches for defining
the functional genome. They concluded that each approach provided complementary
information and that the combination of approaches was most informative. Our data indicates
that CDTS based on human diversity, serves as a fourth approach for the characterization of the
non-coding human genome. The last and most biologically important observation is the
organization of functional units to share a conservation profile. The data indicates that an
essential gene will use proximal and distant regulatory elements that are co-conserved. Use of
this information supports the identification of cis or distal rare variants that regulate the
expression of medically important genes.

Methods

Genomes. The analysis used deep sequence genome data of 11,257 individuals. Analysis was
limited to the high confidence region of the genome as defined in Telenti et al. (1) - a region
covering approximately 84% of the genome and closely overlapping with the high confidence
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region as described in the most recent release of Genome in a Bottle (GiaB v3.2, ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HGO001/NISTv3.2.2/).

Metaprofiles. Metaprofiles consist of the massive alignment of elements of the same nature in
the genome ! These genomic elements can be chosen based on their structure (e.g., exonic,
intronic, intergenic, etc.), function (e.g., transcription factor binding sites, protein domains, etc.)
or sequence composition (k-mers). Genetic diversity is assessed at each nucleotide position of
the alignment of genomic elements, by monitoring both the occurrence of variation in the
population (reported as a binary — presence or absence) and the allelic frequency. More
specifically, 3 metrics are computed at each position: (i) the percent of elements with SNVs
(count score; Suppl. Fig S1B), (ii) the percent of SNVs with an allelic frequency higher than 0.001
(frequency score; Suppl. Fig S1C), and (iii) the product of both scores (tolerance score; Suppl. Fig
S1D). Each score is calculated using between 10° and 10" values, a value provided by the
number of elements present in the genome and aligned multiplied by the number of genomes
sequenced; therefore, the metaprofile strategy massively increases the power to compute
variation rate at nucleotide resolution with high precision. A priori knowledge of genomic
landmarks is required for constructing metaprofiles based on similarity in structure or function.
In order to remove potential biases through the use of this a priori knowledge, we developed a
strategy to construct metaprofiles based on all possible heptameric sequences found in the
genome (4'=16,384) and scored the middle nucleotide for each of these sequences as
described above. As every nucleotide in the genome is part of an heptamer, every single
position can be attributed to the corresponding genome-wide computed scores.

Expected versus observed. The variation rates computed through heptamer metaprofiles
reflect the chemical propensity of a nucleotide to vary depending on its surrounding context
and can be interpreted as an expectation of variation. We rationalized that functional regions
would vary significantly less than they would be expected to, as assessed genome-wide through
the heptamer tolerance score. To evaluate the departure from expectation, we compared the
observed and expected tolerance score obtained in defined genomic regions.

The observed regional tolerance score is the number of SNVs present at an allelic frequency
higher than 0.001 in the studied population in a defined region. The expected regional
tolerance score is the sum of the heptamer tolerance scores in the same region.

The difference between the observed and expected scores is further referred to as context-
dependent tolerance score (CDTS). The regions are then ranked based on their CDTS. The
regions with the lowest rank (1* percentile) are the regions with the lowest context-dependent
tolerance to variability and the regions with the highest rank (100" percentile) are the regions
with the highest context-dependent tolerance to variability.

Region definition and annotation. To avoid any use of a priori knowledge and any biases due to
the differing size of the regions (e.g., more power to detect difference between observation
and expectation in longer elements), the genome was chopped irrespective of genomic
annotations into sliding windows of the same size. The window size was 1050 bp sliding every
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50 bp and the calculated CDTS across the 1050 bp window was attributed to the middle 50 bp
bin. Only regions with at least 90% of the nucleotides in the 1050 bp window present in high
confidence regions were used. To evaluate the element distribution across those size defined
windows, we built a new annotation model by combining sources of annotation from GenCode
(v.23) and ENCODE (annotated features and multicell regulatory elements, Ensembl v84
Regulatory Build). In order to avoid conflicting and overlapping annotations from the two
different sources and thereby use the score of the same region multiple times, we prioritized
element annotation as follows, such that only the highest order element would be used: exonic,
then multicell, then intronic and then annotated features. We assessed the element
composition of the different percentiles, using the above mentioned combined
GenCode/ENCODE annotation, by computing the number of nucleotides of an element in each
percentile. The following categories were used: “Exon - protein coding”, referring to
nucleotides in exonic regions contained in protein coding genes (including UTR) as annotated in
GenCode; “Exon - non coding”, referring to nucleotides in exonic regions contained in non-
coding RNAs (e.g., snRNA, snoRNA, lincRNA, etc.) as annotated in GenCode; “Intron”, referring
to nucleotides in intronic regions contained in either protein coding or non-coding genes as
annotated in GenCode; “Promoter”, “Promoter Flanking” and “Enhancer”, referring to the
nucleotides contained in the respective elements as annotated in ENCODE multicell regulatory
elements; “H3K9me3” and “H3K27me3”, referring to the nucleotides overlapping with (and
only) the respective elements as annotated in ENCODE annotated features; “Multiple Histone
marks”, referring to the nucleotides overlapping with a combination of histone marks, as
annotated in ENCODE annotated features; “Others”, referring to the remaining nucleotides
with  ENCODE multicell regulatory element or annotated features that did not cover a
substantial part of the genome individually, which notably encompasses transcription factor
binding sites as well as other regulatory element combinations (e.g., nucleotides annotated as
both Promoter and Enhancer); and “Unannotated”, referring to nucleotides in regions that had
no annotation in either GenCode or ENCODE. Super-enhancer annotation (in Suppl. Fig. S2C)
was obtained from dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/index.php ).

Essentiality and CDTS coordination. We used gene essentiality (pLI score from ExAC ) as an
orthogonal proxy for functionality to assess whether genomic bins, annotated with the same
genomic element, have different biological importance depending on their CDTS ranking. Each
genomic bin present within 15 kb of a gene is attributed the essentiality score of its closest or
overlapping gene, with the exception of genomic bins annotated as “Promoters”, that have the
mandatory constraint of being upstream of the closest gene. The median essentiality score is
then assessed per genomic element annotation and per percentile slice. To assess distal CDTS
coordination, we used two external datasets. To test the possible coordination of anchor
regions, we used a Hi-C dataset aggregating the results of multiple cell types'. The median
CDTS percentile is computed for every anchor region. To test the possible coordination of distal
gene-enhancer pair, we used a pcHi-C dataset performed in lymphoblast cell lines. ! in order to
identify promoter-centered long range interactions. Briefly, pcHi-C library was constructed by
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performing a target enrichment protocol (enriching target promoter-centered proximity
ligation fragments from Hi-C library using capture RNA probes). Unmapped, non-uniquely
mapped, PCR duplicates, trans-chromosomal read pairs, putative self-ligated products (<15kb
read pairs), and off-target reads were removed. We further eliminated experimental biases by
using “capture” scores, a probability of the region being captured. We only considered
promoter-centered long-range interactions within the distance of 2Mb from the transcription
start site. Significant pcHi-C chromatin interactions were identified in terms of p-value 0.002
cutoff of Weibull distribution after removing distance dependent background signals. After
filtering, the CDTS of each remaining so-called distal “interacting” genomic bin is compared to
the essentiality score of the interacting gene.

Interspecies conservation. We used Genomic Evolutionary Rate Profiling (GERP++) *° to capture
the interspecies conservation. GERP++ provides conservation scores through the quantification
of position specific constraint in multiple species alighments. We calculated and attributed the
mean GERP scores to the same set of 50 bp bins as mentioned in the section “Region definition
and annotation”. Bins were ranked based on the GERP score from the most (percentile 1) to the
least conserved (percentile 100). Bins without GERP score, due to insufficient multiple species
alignments in the region, were not considered in the ranking process.

Pathogenic variants. We assessed the distribution of known annotated pathogenic variants,
defined as either HGMD high DM *° (Version: HGMD_2016_R1) or ClinVar variants consistently
annotated as pathogenic or likely pathogenic and with at least 1 entry with star 1 or more***
(Version: ClinVarFullRelease_2016-07.xml.gz) for a total N=135,965, by counting the number of
variants present in each percentile of the genome. For variants in indel regions, the left most
coordinate was used to establish in which genomic bin they fell. Pathogenic variants with
conflicting annotations were removed, defined here as variants having a high DM in HGMD and
a consistent annotation of benign or likely benign with at least 1 entry being star 1 or more in
ClinVar. The non-coding variants associated with Mendelian traits were extracted from ClinVar
(copy number variants were excluded from analysis) and manually curated and additional
variants were collected by literature review **°. Variants falling in untranslated regions (UTR)
were considered as non-coding for the purpose of the Mendelian pathogenic associated
variants. A filter of >5 bp from any splice acceptor or splice donor site was applied, as splice
sites variants have a high likelihood of being pathogenic and would not be a good control to
test our model. Of note, intronic bins that have the lowest CDTS are more likely to be in the
extended surrounding of splice sites, raising the possibility that it might be equally important to
keep the surrounding sequence conserved (Suppl. Fig. S7).

Functional predictive scores. The CDTS metric was compared to the most widely used metrics
for variant prioritization: CADD '® and Eigen . A “control” set of variants relative to the
previously defined pathogenic variants was created using variants from dbSNP 23 (June 2015
release). A control variant was defined as having the “COMMON” and “G5A” tag (>5% minor
allele frequency in each population and all populations overall) and, similar to the tested
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pathogenic variant set, not be present in an exonic region and appear more than 5 bp from any
splice site. The remaining working set of non-coding pathogenic and control variants were
ranked according to their CDTS, CADD or Eigen NonCoding scores and the ranking was
normalized from 0 to 100 (for CADD and Eigen, the PHRED scores were converted into
probabilities before this step, so that for all metrics the lower the ranking the more likely
pathogenic a variant would be). To compare the different metrics, the precision (TP/(TP+FP))
was computed at each step of the new ranking. TP are the true positives, in this case the
number of pathogenic variants with a ranking <threshold, and FP are the false positives, in this
case the number of control variants with rank <threshold; where threshold can be any step in
the new ranking (from 0 to 100). For the union of the 3 metrics, all variants (pathogenic and
control) that had a score in at least 1 metric were used. TP represented the number of
pathogenic variants with a ranking <threshold in 1 or more of the metrics; and FP, represents
the remaining number of variants to reach the number of variants present at threshold :
(((Zpathogenic+Zcontrol)/100) * threshold) - TP. The precision was further normalized by the
general prevalence of pathogenic variant in the set studied
(Zpathogenic/(Zpathogenic+Zcontrol)). This step was done in order to account for the fact that
not all variants were scored by the other metrics (e.g., no scores on chromosome X for Eigen,
conversion conflicts from hgl9 to hg38, not all indel have a CADD score, etc.). The prevalence
normalized precision provides the enrichment of a metric pathogenic variant detection
compared to random.

Data access. The genome-wide CDTS values are available through hli-opensearch.com. Use of
the query terms CDTS1 and CDTS10 will return all variants with CDTS scores within the 1* and
the 10™ percentile, respectively.
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Figure 1. K-mer structure of the genome and composition of the conserved human genome.
A. The blue shades heatmap represents the relative composition of k-mers for the different
genomic elements. Each row corresponds to a heptamer, with the corresponding nucleotide
sequence displayed on the heatmap to the right. The relative abundance of a heptamer should
be compared horizontally across the genomic element with the shades of blue reflecting the z-
score. Before standardization, the counts of heptamers have been normalized per genomic
element to take into account the different territory sizes of the element families. The order of
the rows was obtained by hierarchical clustering. B. The barplot displays the cumulative
territory fraction covered by each element family in the different percentile slices (indicated at
the top of the bars). Here, and in other figures, we purposefully emphasize the patterns a the
lowest 1%, Z”d, and 3-5% percentiles. The percentiles are based on the rank of CDTS values.
“Others” refers to ENCODE element families that did not cover a substantial part of the genome
individually (such as transcription factor binding sites, see Methods). The elements appear in
the same order as in the legend. C. The enrichment and depletion of each percentile slice
compared to the 100" percentile. The fold change is normalized by the size of the slice.
Element families are colored as in panel B. CDTS, context-dependent tolerance score. FC, fold
change. Vs, versus.
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Figure 2. Shared conservation of genes and cis or distal regulatory elements.

A. Coordination of cis-elements. Each genomic bin within 15 kb of a gene (cis) is attributed the
essentiality score of the closest gene. The median essentiality score of the closest genes is
depicted on the Y-axis for each genomic element family throughout the CDTS spectrum (X-axis).
The grey horizontal dashed line represents the median gene essentiality score genome-wide
(0.028). B. Distal coordination of anchor regions. A chromatin loop is depicted in the right
panel. The median CDTS is extracted for each anchor region and binned in percentile slices. The
X- and Y-axes indicate the median CDTS values for the upstream and downstream anchor
regions, respectively. The anchor regions surrounding a loop share CDTS values. The whiskers
extend from the 10" to the 90" percentiles of the data. The box spans the interquartile range.
Outliers are not displayed. C. CDTS-essentiality coordination of promoter distal regions and
their putative target gene pairs obtained from promoter-capture Hi-C results (n=483,517) *'.The
boxplots depict the essentiality of the putative target genes (y-axis) along the distal region CDTS
(x-axis). The whiskers extend from the 10" to the 90™ percentiles of the data. The box spans
the interquartile range. Outliers are not displayed. CDTS, context-dependent tolerance score.
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Figure 3. Distribution of pathogenic variants across the genome.

A. The distribution of pathogenic variants across the different percentile slices identifies a
strong enrichment at lower CDTS percentiles. The relative enrichment is calculated with regards
to the 100" percentile. Protein-coding pathogenic variants are shown in dark blue; non-coding
pathogenic variants in red. The total number of pathogenic variants are N=120,759 protein
coding and N=14,092 non-coding variants. Exonic non-coding (e.g. lincRNA) are not displayed as
only a very limited number of pathogenic variants were annotated (N=557). B. Non-coding
pathogenic variants associated with Mendelian traits. The total number of Mendelian
associated non-coding pathogenic variants is N=550. Pathogenic variants are enriched at the
lowest percentiles. CDTS, context-dependent tolerance score. Vs, versus.
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Figure 4. Complementarity of scores for non-coding variants.

A. The enrichment of pathogenic variant detection, as compared to random, is displayed at
different percentile thresholds for Eigen non coding, CDTS, CADD as well as for the union of the
three metrics. B. The barplot displays, at different percentile thresholds, the fraction of
pathogenic variants identified exclusively by only one of the metrics. The Venn diagram
displayed on top of each percentile threshold shows the overlap of pathogenic variant
detection for Eigen non coding, CDTS and CADD. CDTS, context-dependent tolerance score.
CADD, combined annotation dependent depletion. Vs, versus.
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Supplementary Figure 1. Heptamer metrics in the human genome. A. Cumulative distribution
function of the total number of occurrence of each heptamer in the genome. Each dot
represents an heptamer. Heptamers are ranked by the number of occurrence in the genome.
B. Cumulative distribution function of the count scores. The count score represents the fraction
of the middle nucleotide in a heptameric sequence that varies. Every circle represents an
heptameric sequence. The heptamers are ranked by their count score. The size of the circles is
proportional to the number of occurrences of the heptamer in the genome (plotted in panel A.)
C. Cumulative distribution function of the frequency scores. The frequency score represents the
fraction of SNV at the middle nucleotide in a heptamer that varies with an allelic frequency >

1
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0.001. Every circle represents a heptameric sequence. The heptamers are ranked by their
frequency score. The size of the circles is proportional to the number of occurrences of the
heptamer in the genome (plotted in panel A.). D. Cumulative distribution function of the
tolerance scores. The tolerance score represents the probability of the middle nucleotide in a
heptamer to vary with an af > 0.001. Every circle represents an heptameric sequence. The
heptamers are ranked by their tolerance score. The size of the circles is proportional to the
number of occurrences of the heptamer in the genome (plotted in panel A).
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Supplementary Figure S2. Distribution of genomic element and chromosomes within CDTS
spectrum. A. The barplot displays the cumulative territory fraction covered by each element
family in the different percentile (1 to 100). “Others” refers to ENCODE element families that
did not cover a substantial part of the genome individually (such as transcription factor binding
sites, see Methods). The elements appear in the same order as in the legend. B. The barplot
displays the cumulative territory fraction covered by autosomes and sex chromosomes. Sex
chromosome are enriched in the regions with lower CDTS. C. Size normalized distribution of
super-enhancer annotation. The relative enrichment of the fraction of enhancer bins
overlapping with super-enhancer annotation is calculated with regards to the 100" percentile.
Super-enhancers were sub-categorized depending on the number of cell types they were
annotated in, represented by the multiple shades of grey lines. D. The barplot displays the
distribution of the total amount of nucleotides within the percentile slices for each element
family. The boxes within a bar indicates the fraction of element in a given percentile slice (e.g.,
20% of the promoters are within the 1*' percentile). The element families are ordered on the X-
axis by the fraction of element within the 1° percentile slice. The coloring of the boxes is in the
same order as the legend. Prot., protein. Cod., coding. CDTS, context-dependent tolerance
score.


https://doi.org/10.1101/082362
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/082362; this version posted October 21, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

>
9]

1.0 251 E] Intron
Exon - non coding
,S 0.8 —_ Exon - protein coding
Q § Promoter
"‘2 0.6 :c: Promoter Flanking
S 2 Enhancer
8 0.4+ % Unannotated
g :g H3K27me3
Q0.2 H3K9me3
Multiple Histone marks
0.0~ - 0 - | ] Others
CDTS GERP Inter- CDTS GERP Inter-
1st 1st section 1st 1st section

O
O

1.04 250

5087 =200

o =

‘E 0.6 p= 150 -

o (@)}

80.4- L1400+

Q [o]

IS °

o -
CDTS GERP Inter- CDTS GERP Inter-
1-10th 1-10th section 1-10th 1-10th section

Supplementary Figure S3. Comparison of conserved regions assessed with CDTS and GERP.

A. Element family composition in the first percentile regions of CDTS (the bar labelled as “CTDS
1*"), GERP (“GERP 1°") and the overlap region of CDTS and GERP (“Intersection”). Boxes in the
bar correspond to different element families. The coloring of the boxes is in the same order as
the legend. B. Length of the first percentile regions of CDTS, GERP and the overlap region of
CDTS and GERP. Bins without GERP score, due to insufficient multiple species alighnments in the
region, were not considered in the ranking process. This explains the total length difference
between the first percentile regions of CDTS and GERP. C. Element family composition in the
first 10 percentile regions of CDTS (the bar labelled as “CTDS 1—10”’"), GERP (“GERP 1—10”’") and
the overlap region (“Intersection”). D. Length of the first 10 percentile regions of CDTS, GERP
and the overlap region of CDTS and GERP. CDTS, context-dependent tolerance score. GERP,
Genomic Evolutionary Rate Profiling.
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Supplementary Figure S4. Shared conservation of distal anchor regions.

Distal coordination of anchor regions grouped by the size of the loop. A chromatin loop is
depicted in the right panel. The median CDTS is extracted for each anchor region and binned in
percentile slices. The X- and Y-axes indicate the median CDTS values for the upstream and
downstream anchor regions, respectively. The anchor regions surrounding a loop share CDTS
values. The width of the boxplots is proportional to the number of anchors present in the
respective CDTS percentile slice and with the respective loop size. The whiskers extend from
the 10" to the 90™ percentiles of the data. The box spans the interquartile range. Outliers are
not displayed. The lines pass through the median of the respective boxplots.
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Supplementary Figure S5. The barplot shows the fraction of bins that have an adjacent
genomic bin in the same CDTS percentile. Bins in the 1st and 100st CDTS percentile tend to
cluster together. CDTS, context-dependent tolerance score.
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Supplementary Figure S6. The distribution of pathogenic variants normalized by the size of the
genomic element. The distribution of pathogenic variants across the different percentile slices
is normalized by the size of protein-coding and non-coding regions in the respective percentiles
slices. The relative enrichment is calculated with regards to the 100" percentile. Protein-coding
pathogenic variants are shown in dark blue; non-coding pathogenic variants in red. The total
number of pathogenic variants are N=120,759 protein coding and N=14,092 non-coding
variants. Exonic non-coding (e.g. lincRNA) are not displayed as only a very limited number of
pathogenic variants were annotated (N=557). The inset figure is on a logarithmic scale. CDTS,
context-dependent tolerance score.
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Supplementary Figure S7. The boxplot displays for each intronic bin the distance to the nearest
splice site. Intronic bins that have lower CDTS, appear to be closer to splice sites in general. The
whiskers extend from the 10" to the 90™ percentiles of the data. The box spans the
interquartile range. The Y-axis is shown on a logarithmic scale.
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