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Summary 

Sexual dimorphism manifests in many diseases and may drive sex-specific therapeutic responses. To 

understand the molecular basis of sexual dimorphism, we conducted a comprehensive assessment of 

gene expression and regulatory network modeling in 31 tissues using 8716 human transcriptomes from 

GTEx. We observed sexually dimorphic patterns of gene expression involving as many as 60% of 

autosomal genes, depending on the tissue. Interestingly, sex hormone receptors do not exhibit sexually 

dimorphic expression in most tissues; however, differential network targeting by hormone receptors 

and other transcription factors (TFs) captures their downstream sexually dimorphic gene expression. 

Furthermore, differential network wiring was found extensively in several tissues, particularly in brain, in 

which not all regions exhibit strong differential expression. This systems-based analysis provides a new 

perspective on the drivers of sexual dimorphism, one in which a repertoire of TFs plays important roles 

in sex-specific rewiring of gene regulatory networks. 
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Highlights 

1. Sexual dimorphism manifests in both gene expression and gene regulatory networks 

2. Substantial sexual dimorphism in regulatory networks was found in several tissues 

3. Many differentially regulated genes are not differentially expressed 

4. Sex hormone receptors do not exhibit sexually dimorphic expression in most tissues 

Introduction 

Sexual dimorphism refers to the phenotypic difference between males and females of the same species 

(Poissant et al., 2010; Williams and Carroll, 2009). These differences present themselves in the 

characteristics of morphology, physiology, psychology and behavior. Physiological differences primarily 

exist in sex organs and reproductive systems, but also manifest in other systems, including the 

musculoskeletal, respiratory, and nervous systems (Blecher and Erickson, 2007; Morris et al., 2004).  

Sexual dimorphism is also prevalent in human diseases. A wide range of diseases present 

differently in females and males, including atherosclerosis, diabetes, osteoporosis, asthma, 

neuropsychological disorders, and autoimmune diseases (Kaminsky et al., 2006; Morrow, 2015; Ober et 

al., 2008). For example, systemic lupus erythematosus is an autoimmune disease predominantly 

occurring in females, in a ratio of 9:1 female-to-male (Lisnevskaia et al., 2014). Differences in incidence, 

prevalence, severity, and response to treatment between the sexes can complicate our understanding 

and hinder our ability to cure and prevent diseases. Phenotypic differences between sexes may have a 

genetic basis (Ober et al., 2008; Poissant et al., 2010; Williams and Carroll, 2009). However, the extent to 

which genetics drives these effects and the mechanisms responsible are not yet fully understood 

(Morrow, 2015), partly because the sex-related differences in gene expression in the autosomes are 

usually subtle and difficult to detect. A systems-based analysis that integrates multi-omics data and 

collected from a large cohort of research subjects will advance our understanding of the molecular basis 

of sexual dimorphism. 
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We conducted a comprehensive expression and network analysis of 8,716 human 

transcriptomes collected from 28 solid tissues, whole blood, and two cell lines using the Genotype-

Tissue Expression (GTEx) data set version 6.0. We compared autosomal gene expression between males 

and females for each tissue and found that sexual dimorphism in gene expression was seemingly 

ubiquitous across a wide range of human tissues. However, both the variability in expression and the 

number of genes involved were tissue-dependent. Gene expression of sex hormone receptors was not 

differentially expressed between males and females in most tissues, implying that downstream sexually 

dimorphic regulation is not solely explained by differences in mRNA levels of these receptors. We used a 

network modeling approach (PANDA+LIONESS) to infer sample-specific gene regulatory networks (Glass 

et al., 2013; Kuijjer et al., 2015) and compared the networks between males and females. We found 

significant differences in the structure of gene regulatory networks between males and females in 

several tissues. This suggests that differences in gene regulatory networks and their associated 

processes could be a characteristic of sexual dimorphism, and that changes in gene regulatory networks 

may explain not only differences in tissue expression, but may also help us to understand the 

mechanism of sexual dimorphism in diseases and other complex traits. 

Results 

Sexual dimorphism in autosomal gene expression 

An overview of this study is shown in Figure 1A. RNA-Seq data from GTEx version 6.0 release were 

downloaded from dbGaP, preprocessed and normalized as outlined in the supplemental methods and 

described in more detail in (Paulson et al.). We examined only tissues with samples collected from both 

men and women, which included 8,716 total samples covering 31 tissues (including 28 solid organ 

tissues, whole blood, and two derived cell lines) from 549 research subjects (Table S1 and Table S2). 

Figure 1B shows the demographic information for the 549 subjects included in our analysis. 
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We used voom (Law et al., 2014) to identify autosomal genes that were differentially expressed 

(DE) between males and females at a false discovery rate (FDR) less than 0.1 for each tissue (referred to 

as the sexually dimorphic DE genes) (Materials and Methods; File S1). We also defined a transcriptomic 

signal-to-noise ratio (tSNR) as a measure of the overall distance between male and female 

transcriptomes. For the tSNR, the signal was defined as the Euclidean distance of average gene 

expression profiles between groups (in this case, females and males), and the noise was defined as the 

overall variation among individuals (Materials and Methods). The tSNR measures the overall divergence 

of transcriptomes between males and females while the proportion of DE genes focuses on gene-

specific sexually dimorphic expression. 

An overview of sexually dimorphic gene expression is shown by tissue in Figure 1C. We found 

the tSNR and the proportion of DE genes are highly correlated (Pearson's r = 0.98) across tissues. We 

observed sexually dimorphic gene expression across autosomes in most tissues, with 22/31 tissues 

having tSNRs significantly higher than expected by chance (P < 0.05, permutation test) (Table S3). Breast, 

skin, thyroid, brain, and adipose tissues were the most sexually dimorphic (more than 10% of autosomal 

genes were DE), whereas the gastrointestinal tract is the least (only two genes were DE).  

Tissues that are anatomically close or compositionally similar also demonstrated differing levels 

of sexually dimorphic expression. For example, subcutaneous adipose tissue exhibited greater sexually 

dimorphic gene expression than visceral adipose tissue (17% vs 4% of autosomal genes were DE, 

respectively). In the brain, the cerebral cortex and related structures (Other Brain) were more sexually 

dimorphic than cerebellum and basal ganglia (14%, 6%, and 2% of autosomal genes were DE, 

respectively). 

We performed a pre-ranked Gene Set Enrichment Analysis (GSEA) based on the weighted t-

statistics derived from the differential expression analysis to identify sex-biased enrichment of biological 
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processes and associations of diseases and phenotypes in the sexually dimorphic gene signature in each 

tissue (Materials and Methods). We found a great diversity of functional gene sets enriched across 

tissues (File S2-S3). For example, energy metabolism-related genes were enriched in the adipose tissues, 

while the neurotransmitter secretion/transport and immune response-related gene sets were enriched 

in brain (Figure S1).  

Additionally, disease and phenotype associations were highly enriched in a tissue-specific 

manner. For example, in brain, gene sets associated with neurodegenerative disorders and immune-

related diseases were enriched in the brain sexually dimorphic gene signature; in heart, gene sets 

associated with heart block, syncope, ventricular arrhythmia, atrial fibrillation, and palpitations were 

enriched; in lung, we found enrichment for genes associated with chronic obstructive pulmonary disease 

and bronchial abnormalities; and in liver, we found ascites and hepatitis-associated gene sets. Additional 

findings are detailed in Files S2-S3. Overall, our results suggest that the genes with sexually dimorphic 

expression patterns may be involved in biological processes linked to human diseases and phenotypes, 

which may help explain sexual dimorphism in development and disease. 

A core set of sexually dimorphic genes shared by multiple tissues 

We used Fisher's method to combine the results from the sex-specific differential expression analyses to 

find a common set of genes that share sexually dimorphic expression patterns across multiple tissues 

(Materials and Methods). We identified a total of 1,568 genes as sexually dimorphic in multiple tissues 

(FDR < 0.1) (Figure 2A; File S4). Many of the top significant genes, such as FRG1B, DDX43, SPESP1, NOX5, 

and OOEP, have been linked to sex-specific functions: FRG1B is a putative target gene of human 

androgen receptor; SPESP1 encodes sperm equatorial segment protein involved in sperm-egg binding 

and fusion (Wolkowicz et al., 2008); NOX5 regulates redox-dependent processes in lymphocytes and 

spermatozoa (El Jamali et al., 2008); OOEP is a component of a subcortical maternal complex which was 
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found essential during embryonic development in a mouse model (Tashiro et al., 2010). OOEP, DDX43, 

SPESP1, and NOX5 are all highly expressed in human testis.  

The expression patterns of the 1,568 multi-tissue sexually dimorphic genes showed similarities 

between anatomically close or compositionally comparable tissue sites (Figure 2A). For example, 

subcutaneous adipose tissue was clustered with visceral adipose tissue; different brain regions were also 

clustered together. Closer inspection shows that the two adipose sites shared similar sexually dimorphic 

gene signature (Figure 2B); this was also observed in the brain regions (Figure 2C). These results suggest 

that the sub-regions of the same primary tissue often share similar sexually dimorphic gene expression 

patterns for a core set of genes. 

We were also interested in whether there were characteristics of sexually dimorphic genes 

specific to each of the sexes. We categorized the 1,568 multi-tissue sexually dimorphic genes into 

female- (N = 919) or male-biased genes (N = 649) based on their mean t-statistics across all the tissues 

(Figure 2D). We found male-biased genes are under higher negative selective pressure (lower dN/dS 

ratio) than female-biased genes (P = 0.004, two-sample t-test) (Figure 2E). Both male- and female-biased 

genes were overrepresented as human genome-wide association (GWAS) catalog disease genes (female, 

P = 1.67 × 10
-16

; male, P = 7.96 × 10
-17

) (Figure 2F). Many immunoglobulin genes were female-biased 

(Figure 2D & 2G), consistent with previous reports (Bouman et al., 2005; Gonzalez-Quintela et al., 2008; 

Verthelyi, 2001). This is consistent with the enrichment of sexually dimorphic DE genes involved in 

immune response processes and associated with autoimmune diseases, such as rheumatoid arthritis, 

lupus erythematosus, ulcerative colitis, multiple sclerosis, and atopic dermatitis, that we noted 

previously. 

As reported by others, we found long intergenic noncoding RNAs (lincRNAs) to be sexually 

dimorphic (Chen et al., 2012; Mele et al., 2015; Melia et al., 2015). Among the 1,568 multi-tissue 
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sexually dimorphic genes, 50 (5%) of the female-biased genes and 46 (7%) of male-biased genes encode 

long intergenic noncoding RNAs (lincRNAs). Several of them were the most strongly tissue-wide sexually 

dimorphic genes. For example, RP4-610C12.3 and RP4-610C12.4 (LINC01597) were highly male-biased 

across tissues; RP11-575H3.1 was highly female-biased (Figure 2A). 

Differential network targeting mediated by estrogen receptors 

The gene-expression differences between men and women that we observed likely represent distinct, 

sex-specific gene regulatory processes (Williams and Carroll, 2009). One of the candidate drivers of 

these differences could be estrogen. The estrogen receptor (ER) is a ligand-inducible TF that can be 

activated by estrogen and then regulates the gene expression of a large number of target genes through 

binding to specific palindromic DNA sequences called estrogen response elements (EREs) (Jin et al., 2004; 

Welboren et al., 2007). By orchestrating the transcription of target genes, ERs mediate the physiological 

effects of estrogen in a diverse range of mammalian tissues and thus play an important role in growth, 

development, reproduction, immunology, mental health, and human disease (Au et al., 2016; Hara et al., 

2015).  

Given the important role of estrogen and ER in sexual development and reproductive function, 

we might expect the gene expression of ER to be sexually dimorphic. However, both estrogen receptor 

genes, estrogen receptor alpha (ESR1) and beta (ESR2), were not differentially expressed between males 

and females in most of the tissues we analyzed, including highly sexually dimorphic tissues such as 

breast, brain, and muscle (Figure S2). This suggests that estrogen may exert its sexually dimorphic 

effects by altering gene regulatory networks without differential expression of its receptors.  

We used PANDA+LIONESS (Glass et al., 2013; Kuijjer et al., 2015) to infer gene regulatory 

network models for each sample in each tissue and compared those network models between men and 

women (Figure 1A; Materials and Methods). Briefly, we applied PANDA to create a consensus network 
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model that comprises 652 TFs and 27,175 target genes by integrating multiple sources of data including 

gene expression profiles (GTEx), TF binding motifs (CIS-BP) (Weirauch et al., 2014), and protein-protein 

interactions (StringDB) (Szklarczyk et al., 2015). We then used LIONESS to infer individual networks for 

each sample in the population via linear interpolation. PANDA+LIONESS produced 8,716 inferred gene 

regulatory network models, one for each RNA-Seq transcriptome from the 549 GTEx research subjects. 

These network models represent the strength of the estimated regulatory interaction between TFs and 

their target genes as weighted bipartite directed graphs, in which nodes represent TFs or their target 

genes and edges represent inferred regulatory relationships between nodes.  

Analogous to how we identified sexually dimorphic DE genes, we used limma to compare the 

weight of each edge between males and females in each tissue and identified “differentially targeting” 

edges, which represent a set of TF-target relationships that exhibit differential regulatory potential 

between the sexes (File S5; Materials and Methods). This allowed us to identify regulatory network 

“wiring patterns” that differed between males and females in each tissue and to identify key regulators 

that may contribute to the shaping of the sexually dimorphic gene expression landscape in each tissue.  

We started by investigating estrogen receptors in the breast tissue.  Although the estrogen 

receptors ESR1 and ESR2 were not differentially expressed between males and females, we found that 

the regulatory targeting by these receptors was different between the sexes. We highlight two of the 

most sexually dimorphic DE genes that are targets of ESR1 in our network models, IGLV4-69 and MYOT, 

as examples. IGLV4-69 is an immunoglobulin gene that had increased expression in females yet 

increased targeting by ESR1 in males (Figure 3A). In contrast, MYOT, a gene that encodes a cytoskeletal 

protein (myotilin) that stabilizes thin filaments during muscle contraction, showed over-expression in 

males but greater ESR1-targeting in females (Figure 3B). In both cases, edge weights connecting ESR1 to 

its target genes linearly reflected the expression of these target genes (Figure 3C-D, upper). However, 
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ESR1 itself was not differentially expressed between males and females, and its expression poorly 

correlated with its target gene expression (Figure 3C-D, bottom). This implies that the edge weights in 

the network models capture the regulatory activities of ESR1 while the gene expression of ESR1 alone 

does not. 

By considering the putative set of ESR1 target genes in the breast tissue, we found that the 

sexually dimorphic differential targeting by ESR1 explains much of the variance (adjusted R
2
 = 0.88) in 

the differential expression of its targets (Figure 3E), suggesting that the regulatory influence of ESR1 may 

drive the sexually dimorphic gene expression of its target genes. We note that ESR2 shows a similar 

regulatory pattern in the regulatory networks in the breast tissue (adjusted R
2
 = 0.81) (Figure S3). 

Figure 3F shows the 20 genes most differentially targeted by ESR1 in the breast network models. 

Several of these genes are implicated in breast function and disease. For example, MST1R, encodes a 

macrophage stimulating receptor associated breast cancer progression (Privette Vinnedge et al., 2015). 

ATP6V0A4 mediates invasion of breast cancer cell lines in the transwell Matrigel assay (Hinton et al., 

2009). EDN3 has been suggested as a tumor suppressor gene in the human mammary gland (Wiesmann 

et al., 2009) and its expression was shown to be regulated by estrogen and progesterone in the rhesus 

macaque (Keator et al., 2011). LTF (Lactotransferrin) is an estrogen-inducible gene (Das et al., 1998; 

Ghosh et al., 1999; Moggs et al., 2004; Stuckey et al., 2006); its protein product exists in high 

concentration in human milk (Hakansson et al., 1995). 

A repertoire of TFs modulate sexually dimorphic gene expression 

To investigate whether the targeting of genes by ESRs is equally important in tissues other than 

breast, and to investigate if other TFs also drive sexually dimorphic gene expression, we extended our 

analysis to include all 652 TFs and analyzed them in each tissue. We found that ESR1 influences gene 

expression differently across tissues. In subcutaneous adipose and thyroid, for example, the differential 
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targeting of ESR1 largely explains the sexually dimorphic gene expression of its target genes (adjusted R
2
 

= 0.78 and 0.59, respectively) (Figure 4A-B), whereas in colon the relationship was relatively poor 

(adjusted R
2
 = 0.18) (Figure 4C). 

By ranking all 652 TFs in our network models based on how well their differential targeting 

explains the variance in the sexually dimorphic differential expression patterns of their target (adjusted 

R
2
), we found that the highest-ranking TFs in each tissue are not always hormone receptors (Figure 4D; 

File S6). However, the top TFs often have documented roles in hormone-responsive pathways and sex-

related biological processes and diseases (Table 1). These results suggest that a wide variety of TFs 

mediate the sexually dimorphic regulatory programs active in different tissues.  

Brain exhibits extensive differential network wiring 

Sex differences in gene regulatory networks involve both TFs and target genes. To identify differentially 

targeted genes between males and females, we calculated the in-degree for each gene as the sum of its 

network edge weights and compared in-degrees between males and females. As shown in Figure 5A, we 

found a large proportion of genes were both DE and differentially targeted (DT) in several tissues 

including breast, thyroid, muscle, and liver.  

Importantly, we also found that a surprisingly large number of genes in brain, especially in basal 

ganglia, are differentially targeted but not differentially expressed (6,479 DT genes at FDR < 0.1). These 

DT-only genes in basal ganglia are associated with brain functions, with enrichment in synaptic and 

behavior-related biological processes (Figure 5B). For instance, CACNA1A, which encodes a voltage-

dependent calcium channel, has been associated with multiple diseases such as episodic ataxia 

(Tomlinson et al., 2016), epileptic encephalopathy (Damaj et al., 2015), and autism (Damaj et al., 2015; 

Li et al., 2015). As an example, we found that there are 185 TFs differentially targeting 128 genes 

associated with synaptic transmission process in basal ganglia between males and females (Figure 5C-D). 
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These results reveal an additional layer of complexity of sexual dimorphism, in which differential 

network wiring also characterizes sex-specific gene regulatory networks. 

Discussion 

Sexual dimorphism manifests in human development, physiology, and in the incidence and 

progression of diseases. Sexual dimorphism influences how the genetic program drives the phenotypes 

we observe and the ways in which those phenotypes differ between the sexes. A natural hypothesis is 

that the phenotypic differences between men and women in different tissues should be reflected in sex-

specific gene expression in these tissues. However, a global picture of sexual dimorphism in gene 

expression is difficult to depict, partly because the sex-related differences in the autosomal gene 

expression are usually subtle and varied across tissues.  

One strategy to tackle this problem is to include more samples in the analysis to increase 

statistical power. Our analysis was based on the GTEx version 6.0 cohort, which includes 8,716 samples 

from 549 individuals; we excluded the sex chromosome genes so that they would not skew estimates of 

sexually dimorphic expression. This large sample size enabled us to detect subtle differences in 

autosomal gene expression at a higher resolution than in previous studies.  We discovered many tissue-

specific sexually dimorphic differentially expressed genes on the autosomes, many of which have 

important known biological and disease-related functions.  

Mele and colleagues (Mele et al., 2015) have also reported sex-biased gene expression across 

human tissues based on a relatively small GTEx pilot data set which included only 1,641 postmortem 

tissue samples from 175 individuals. They included both autosomal and sex chromosome genes and 

found that most sexually dimorphic DE genes were on sex chromosomes. The only exception was breast, 

in which 715 differentially expressed autosomal genes were found. Then they used WGCNA to identify 

modules of correlated gene expression and showed that those co-expression modules were enriched 
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with GO terms that included spermatid, ectoderm, and epidermis development. However, WGCNA is a 

correlation-based method that captures general patterns of co-expression but does not distinguish 

between transcription factors and their targets, and so may fail to extract sex-specific regulatory 

processes.  

The emergence of sex-specific traits likely involves modifications in sexually dimorphic gene 

expression patterns, which may be driven by sex-dependent gene regulation (Blekhman et al., 2010; 

Ober et al., 2008; Williams and Carroll, 2009). Ligand-dependent transcriptional regulation by steroid sex 

hormones and their receptors was suggested to play a role in sexual development and reproductive 

function by mediating downstream target gene expression with other TFs (Bouman et al., 2005; Ikeda et 

al., 2015; Verthelyi, 2001). To our surprise, we did not observe significant differences in gene expression 

of steroid hormone receptors between men and women in most of the analyzed tissues.  

A hypothesis is that sexual dimorphism is a manifestation of different regulatory programs in 

male and female tissues. We used PANDA and LIONESS, a systems-based method that uses a prior based 

on TF binding motifs and integrates multi-omics data to model regulatory processes in both populations 

and individuals. We discovered that male and female networks have significant differences in their 

regulatory structure, even when the targets of specific TFs are not differentially expressed. This is a 

subtle but important point as tissue-specific patterns of gene expression may be maintained 

differentially in males and females. This means that sexual dimorphism may result from perturbations 

that affect the regulatory processes in one sex rather than the other, altering the expression of the 

downstream genes.  

As an example, we presented an analysis of sexual dimorphism in the human brain. We found 

that the structure of gene regulatory networks differed between males and females. Differentially 

targeted genes in brain were enriched in biological functions and pathways relevant to brain diseases, 
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many of which are known to exhibit differences in men and women. Indeed, sex differences have been 

found in brain structure, cognitive functions, behaviors, and in several brain diseases and mental 

disorders, including Parkinson's and Alzheimer's disease, drug abuse, anxiety, and depression (Frick and 

Gresack, 2003; Gillies and McArthur, 2010; McCarthy, 2008; Pol et al., 2006; Rizk-Jackson et al., 2006; 

Tsai et al., 2009).  

Our systems-based approach to gene regulatory network modeling provides a new perspective 

on sexual dimorphism, one in which steroid hormones and non-steroid transcription factors affect the 

regulatory program by altering the structure of sex-specific gene regulatory networks. These sex-specific 

processes often regulate genes associated with development and disease, and may help to explain 

sexual dimorphism we observe. These findings across 31 tissues reiterate a phenomenon that we had 

observed in the study of male and female differences in chronic obstructive pulmonary disease (Glass et 

al., 2014).  

Sexual dimorphism has been recognized as one of the most significantly understudied aspects of 

human disease research and the 2015 guidelines from the National Institutes of Health (NOT-OD-15-102) 

have identified consideration of sex as biological variable should be factored into research designs, 

analyses, and reporting in vertebrate animal and human studies (Health, 2015). The GTEx data provide 

an unprecedented opportunity to explore how sex influences gene expression. We see great diversity in 

the degree of sexually dimorphic gene expression, with some tissues appearing to be very different 

while others are almost indistinguishable. But by using PANDA and LIONESS to model regulatory 

processes, we find higher order differences in regulatory processes that distinguish men and women. 

Our analysis of 31 tissues provides an important baseline for any disease-based studies and underscores 

the importance of looking beyond expression to consider sexually dimorphic patterns of transcriptional 

regulation when studying human development and disease. 
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Experimental procedures 

More details are available in Supplemental Experimental Procedures. 

GTEx data set 

The Genotype-Tissue Expression (GTEx) version 6.0 RNA-Seq data set (phs000424.v6.p1, 2015-10-05 

released) was downloaded from dbGaP (approved protocol #9112). Using YARN in Bioconductor 

[bioconductor.org/packages/yarn], we performed quality control, gene filtering, and normalization 

preprocessing (Paulson et al.). We identified and removed GTEX-11ILO due to potential sex 

misannotation. We grouped related body regions using gene expression similarity. For example, skin 

samples from the lower leg (sun exposed) and from the suprapubic region (sun unexposed) were 

grouped as “skin.” We removed sex-specific tissues (prostate, testis, uterus, vagina, and ovary) and 

those with fewer than 30 samples of one sex (kidney cortex and minor salivary gland). The final data set 

contains 8716 samples from 31 tissues (which included 28 solid organ tissues, whole blood, and two 

derived cell lines) from 549 research subjects (188 females and 361 males) (Table S1 and Table S2). We 

removed sex-chromosome and mitochondrial genes (retaining 29,242 genes).  

Differential expression analysis 

Differential expression (DE) analysis was performed using voom (Law et al., 2014) to transform RNA-Seq 

read counts to log counts per million (log-cpm) with associated precision weights, followed by linear 

modeling and empirical Bayes procedure using limma. In each tissue, we adopted the following linear 

regression model to detect sexually dimorphic gene expression: 

� � �� � ������	 � ��
��� � ���
� � ����� � ����� � � 

where Y is the gene expression; Batch denotes the type of nucleic acid isolation; TrueSeq RNA library 

preparation kit v1 was used in all GTEx RNA-Seq experiments; Race denotes the race of the subject; Age 

denotes the age of the subject, BMI denotes the body mass index of the subject, and Sex denotes the 
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reported sex of the subject. The linear model is fitted to the expression data for each gene using a least-

squares fitting method. The p-values for the estimated coefficient of Sex were adjusted for multiple 

testing using the Benjamini-Hochberg method. A false discovery rate of 0.1 was used as the significance 

threshold to report sexually dimorphic DE genes in each tissue. To identify differential expression across 

multiple tissues, we used Fisher’s method (Fisher, 1970) to combine the adjusted p-values from the 

results of differential expression analysis in each of the GTEx tissues. 

Transcriptomic signal-to-noise ratio 

Transcriptomic signal-to-noise ratio (tSNR) between expression profiles of females (X) and males (Y) was 

calculated as: 

���
��, �� � ��� � ����
����� � �

�

�

�
 

��� � ∑ ��	 � �����


	��

� � 1  

��� � ∑ �!	 � ������

	��

� � 1  

where F and M represent the sample sizes of females and males, respectively. To derive an empirical p-

value for each observed tSNR in each tissue, we used a permutation test that shuffled the sex labels to 

samples while maintaining the total numbers of females and males unchanged for 1,000 iterations. If 

there was zero occurrence from the 1,000 times permutation more extreme than the observed tSNR, 

the empirical p-value would be set to 0.5/1,000. 

Functional enrichment analysis 

Gene Set Enrichment Analysis (GSEA) was performed based on the pre-ranked list of t-statistics derived 

from the differential expression analysis (Subramanian et al., 2005). Figure S1 was visualized by using 

Enrichment map (Isserlin et al., 2014) in Cytoscape (Smoot et al., 2011). If not stated explicitly otherwise, 
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default parameters and a default background set were used when performing the analyses. Gene 

annotations were obtained from the Gene Ontology Consortium (Gene Ontology, 2015), FunDO (Du et 

al., 2009), and Human Phenotype Ontology (HPO). Annotation files were compiled into the Gene Matrix 

Transposed (GMT) file format and were loaded to GSEA program (v2-2.2.2).  

Network inference using PANDA+LIONESS  

Single-sample networks were reconstructed using PANDA+LIONESS (Glass et al., 2013). We performed a 

motif scan to generate a gene regulatory prior. We downloaded position weight matrices (PWM) for 

Homo sapiens motifs from the Catalog of Inferred Sequence Binding Preferences (CIS-BP) (Weirauch et 

al., 2014). We mapped the PWMs to promoter regions of Ensembl genes (GRCh37.p13) using FIMO 

(Grant et al., 2011). Motif mappings were parsed to only retain those below p-value cutoff of 10
-5

 and 

those that were within a promoter range of [-750, +250] around the transcription start site (TSS). This 

resulted in a regulatory prior of 652 TFs targeting 27,249 target ENSG identifiers. We generated a 

protein-protein interaction (PPI) prior based on the Homo sapiens PPI data set from StringDB version 10. 

We then parsed our gene expression data to match the genes in the motif prior (27,175 genes) and ran 

PANDA followed by LIONESS. 
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Table 

Table 1. TFs that may drive downstream sexually dimorphic gene expression across tissues 

TF Gene name Documented roles References 

BRCA1 Breast Cancer 1 Responsive to estrogen; regulating 

acetylation and ubiquitination of ESR1; 

implicated in breast cancer 

(Chrzan and Bradford, 2007; 

Crowe and Lee, 2006; Ma et 

al., 2010; Wang et al., 2005) 

CEBPD/

CEBPE 

CCAAT/enhancer 

binding protein, 

delta/epsilon 

Responsive to estradiol (Buterin et al., 2006; Tee et 

al., 2004) 

FOXP1/F

OXP4 

Forkhead Box P1/P4 Co-expressed with estrogen receptors; 

estrogen-inducible; implicated in breast 

and ovarian cancers; important in heart 

development 

(Fox et al., 2004; Ijichi et al., 

2013; Ikeda et al., 2015; 

Shigekawa et al., 2011) 

GMEB2 Glucocorticoid 

Modulatory Element 

Binding Protein 2 

Responsive to ethinyl estradiol (Fong et al., 2007) 

KLF4 Kruppel-Like Factor 4 Yamanaka factor (iPS factor) required for 

skin development; suppressing 

transcriptional activity of ESR1 

(Akaogi et al., 2009; 

Rowland and Peeper, 2006; 

Takahashi et al., 2007) 

NR2F6 Nuclear Receptor 

Subfamily 2 Group F 

Member 6 

Involved in modulation of hormonal 

responses and development of brain 

circadian clock; suppressing transcriptional 

activity of ESR1 induced by estrogens 

(Warnecke et al., 2005; Zhu 

et al., 2000) 

SP1/SP3 Sp1/Sp3 Transcription 

Factor 

Involved in liver development; engaged in 

estrogen signaling pathway via PPI with ER-

ligand complexes 

(Kazi et al., 2005; Moggs 

and Orphanides, 2001; 

Mukherjee et al., 2005) 

TET1 Tet Methylcytosine 

Dioxygenase 1 

Involved in DNA methylation processes; 

implicated in lateral myocardial infarction 

and coronary aneurysm 

(Li et al., 2013; Rovai et al., 

2016; Takai et al., 2014) 

TOPORS TOP1 Binding 

Arginine/Serine-Rich 

Protein 

Binding to Parkinson’s disease-associated 

protein (DJ-1) and protecting against 

neuronal apoptosis by regulating p53 

transcriptional activity 

(Shinbo et al., 2005; Xu et 

al., 2005) 
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Figure legends 

Figure 1. Overview of this study. (A) The study workflow. The GTEx v6 data set was used and annotated 

based on GENCODE v19. (B) Demographics of the 549 study subjects. The “Others” class includes 2 

American Native or Alaska Native subjects and 2 subjects of unknown race. P-values were calculated 

using t-test (for age and BMI) and Chi-square test (for race). BMI is the abbreviation of Body Mass Index 

(kg/m
2
). (C) Male-vs-female transcriptomic distance (tSNR) and percentage of differentially expressed 

(DE) genes in the genome (at FDR < 0.1) were used to quantify sexual dimorphism in gene expression 

across 31 tissues. Brain other: cerebral cortex and a set of associated structures. 

Figure 2. Multi-tissue sexually dimorphic DE genes. (A) Hierarchical clustering of the top 1568 genes 

with tissue-wide sexually dimorphic gene expression (combined q < 0.1 under Fisher’s method). The 

color code of heat map depicts the t-statistics of sexually dimorphic differential expression. The color 

bar on top of the heatmap depicts germ layers of origin. Annotated on the right are the top 10 female- 

or male-biased DE genes. (B-C) Comparison of t-statistics of sexually dimorphic differential expression 

for all autosomal genes between two adipose tissue types (B) and between three brain clusters (C). t > 0: 

overexpression in males, depicted in shades of blue; t < 0: overexpression in females, depicted in shades 

of reds. Grey shades represent the significance level of data points (combined q-value). (D) Composition 

of gene biotypes of these 1568 multi-tissue sexually dimorphic DE genes. Female: genes overexpressed 

in females. Male: genes overexpressed in males. (E-F) Characteristics of the protein coding genes in the 

list of 1568 top multi-tissue sexually dimorphic DE genes. (E) Distributions of dN/dS ratio against mouse 

homologs. P-values were calculated using two-sample t-test. (F) Enrichment of GWAS disease-associated 

genes. P-values were calculated using Fisher’s Exact Test (*: p < 0.001). (G) Word clouds of enriched 

Gene Ontology terms. Word size reflects term frequency.  

Figure 3. Network inference suggests regulatory potential of ESR1 in driving the sexually dimorphic 

gene expression of its target genes. (A-B) Comparison of gene expression levels and targeting levels by 

ESR1 between females and males in breast for IGLV4-69 (A) and MYOT (B). (C-D) Expression of IGLV4-69 

(C) and MYOT (D) are highly correlated with targeting levels by ESR1 (upper) but not with ESR1 

expression (bottom). Each data point represents a single sample. (E) Regression between differential 

expression levels and differential targeting levels by ESR1 on its putative targets. (C-E) R
2
: adjusted 

coefficient of determination. (F) Network visualization of the top 20 genes significantly differentially 

targeted by ESR1. Edge color represents the direction and strength of differential targeting. Node color 

represents the direction and strength of differential expression. 
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Figure 4. Key transcription factors that shape the sexually dimorphic gene expression landscape. (A-C) 

Inferring differential targeting of ESR1 to its putative target genes versus differential expression levels in 

three representative tissues. (D) Adjusted coefficient of determination (R
2
) was used to quantify and 

rank the regulatory potential of 652 TFs in driving the sexually dimorphic gene expression of their target 

genes. Positions of representative TFs are highlighted approximately in the plot. See Table 1 for TFs’ 

documented roles in hormone-responsive pathways and sex-related biological processes and diseases. 

Adipose: subcutaneous adipose tissue. Heart: left ventricle. Brain other: cerebral cortex and a set of 

associated structures. Colon: sigmoid colon. 

Figure 5. Brain networks are differentially wired between males and females. (A) Number of genes 

that are differentially expressed (DE), differentially targeted (DT), and both differentially expressed and 

targeted (DE&DT) across tissues. (B) In basal ganglia, brain functions are enriched in DT genes. X-axis: 

top nine enriched GO terms; y-axis: genes with shared enriched GO terms. Cells in the matrix indicate if 

a gene is associated with a term. (C-D) Visualization of the synaptic transmission subnetwork in a force-

directed layout shows differential wiring in the network between males (C) and females (D) in basal 

ganglia. 
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Supplemental figure legends 

Figure S1. GSEA Enrichment maps for brain and adipose tissues, related to Figure 1. Maps of female-vs-

male functional enrichments using GSEA based on Gene Ontology (GO) vocabulary for (A) adipose and 

(B) brain tissues. Nodes are GO terms (gene sets). Edges represent term distance (mutual overlap 

between two connected gene sets). Node size indicates gene set size. In (A), filled and unfilled circles 

represent enrichment in subcutaneous and visceral adipose tissues, respectively. Edge colors indicate 

the source of enrichment: green corresponds to subcutaneous adipose tissue and blue corresponds to 

visceral adipose tissue. 

Figure S2. Gene expression of sex hormone receptors is not ubiquitously sexually dimorphic, related 

to Figure 2. (A-C) Distribution of mRNA expression (log-cpm, Y-axis) of (A) estrogen receptor alpha 

(ESR1), (B) estrogen receptor beta (ESR2), and (C) androgen receptor (AR) in females (red) and males 

(blue) across 31 sites (X-axis).  

Figure S3. Network inference suggests regulatory potential of transcription factor ESR2 in driving the 

sexually dimorphic gene expression of its putative target genes, related to Figure 3. (A) Inferring sex 

differential targeting of transcription factor ESR2 on its putative target genes versus differential 

expression levels. (B-C) Comparison of gene expression levels and inferred ESR2 targeting edge weights 

between females and males for EDN3 (B) and MYOT (C), as highlighted in (A). (D-E) Expression of EDN3 

(D) and MYOT (E) are highly correlated with ESR2 regulation (upper) but not with ESR2 expression 

(bottom). (F) Network visualization of the top 20 significantly differentially targeted genes of ESR2. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082289doi: bioRxiv preprint 

https://doi.org/10.1101/082289
http://creativecommons.org/licenses/by-nd/4.0/

