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Abstract 23 

ChIP-seq probes genome-wide localization of DNA-associated proteins. To mitigate technical 24 

biases ChIP-seq read densities are normalized to read densities obtained by a control. Our 25 

statistical framework “normR” achieves a sensitive normalization by accounting for the effect 26 

of putative protein-bound regions on the overall read statistics. Here, we demonstrate 27 

normR’s suitability in three studies: (i) calling enrichment for high (H3K4me3) and low 28 

(H3K36me3) signal-to-ratio data; (ii) identifying two previously undescribed H3K27me3 and 29 

H3K9me3 heterochromatic regimes of broad and peak enrichment; and (iii) calling 30 

differential H3K4me3 or H3K27me3-enrichment between HepG2 hepatocarcinoma cells and 31 

primary human Hepatocytes. normR is readily available on 32 

http://bioconductor.org/packages/normr 33 
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Introduction 35 

Chromatin Immunoprecipitation followed by high-throughput sequencing (ChIP-seq; [1]) is a 36 

widely used method for the genome-wide localization of DNA-associated proteins, such as 37 

transcription factors or histone modifications. In brief, after crosslinking with formaldehyde 38 

the chromatin is sheared and the resulting chromatin fragments are enriched by 39 

immunoprecipitation for the protein of interest. The precipitate is reverse-crosslinked to 40 

obtain DNA fragments, which are amplified and then sequenced. The reads generated in this 41 

way are then aligned to a reference genome and genomic loci bound by the protein are 42 

inferred by an accumulation of sequencing reads. Due to the genome-wide scalability and 43 

cost-efficiency of ChIP-seq, hundreds of distinct proteins and their modifications have been 44 

assayed to study underlying mechanisms of molecular function in different cell types [2,3]. 45 

Consequently, a huge resource of protein location information is available to be readily 46 

integrated into studies at hand. 47 

ChIP-seq data are used to characterize transcription factor binding sites [4], chromatin 48 

landscapes [5,6] or functional elements, like enhancers [7,8]. Specifically, most ChIP-seq 49 

experiments aim to study protein binding sites in the context of gene regulation. For example, 50 

the lineage-specific binding of transcription factors orchestrates differentiation pathways [9]. 51 

Furthermore, ChIP-seq signals of histone modifications are predictive for promoter activity 52 

[10] and enhancer competence [11]. 53 

The identification of regions bound by a protein of interest requires the discrimination of 54 

enrichment against background. Intuitively, a high number of ChIP sequencing reads should 55 

map to protein-bound regions, where the average number of reads in these regions depends on 56 

the “binding mode” of the protein of interest. For example, transcription factors and certain 57 

histone modifications, such as H3K4me3, are characterized by a localized read accumulation 58 

with a high signal-to-noise ratio [12]. Some histone modifications, such as H3K9me3, 59 

H3K27me3, and H3K36me3 are characterized by a more delocalized read accumulation with 60 
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a substantially lower signal-to-noise ratio. 61 

Technical biases introduced during the ChIP-seq procedure lead to accumulation of reads in 62 

regions that are devoid of the protein [13-15]. These biases arise by copy number variations, 63 

sequencing biases, mapping ambiguities, and the chromatin structure [13,16]. These biases 64 

are also discernable in control experiments, i.e. they can be accounted for by comparing the 65 

ChIP read coverage to a control experiment without specific enrichment, such as the input 66 

chromatin to the ChIP. 67 

The comparison of the read counts in the ChIP to those in the control requires normalization 68 

to account for, both, the differences in the sequencing depth, and the effects of enrichment by 69 

the ChIP. Ideally, such a normalization should yield a normalization factor that corrects the 70 

average ratio between ChIP- and control read counts in background regions [17-19]. Thus, a 71 

proper normalization requires the identity of background regions. On the other hand, the 72 

discrimination of enriched and background regions requires normalization itself – 73 

normalization and discrimination of enrichment against background are two faces of the same 74 

coin. 75 

Earlier approaches estimate the normalization factor either by the ratio of sequencing depths 76 

(e.g. MACS [20] and DFilter [21]), by the ratio of ChIP- and control read counts summed 77 

over ad hoc chosen background regions with fixed width (e.g. CisGenome [22], SPP [23] and 78 

MUSIC [24]), or by identifying background regions and their width using a data-driven 79 

approach (e.g. NCIS [17] or SES [19]). After normalization these approaches identify 80 

enriched regions and equate them to protein binding sites or modifications. All these 81 

approaches discriminate a single signal regime from the background. However, a qualitative 82 

separation of this signal regime, e.g. into moderately and highly enriched regimes, could 83 

distinguish genomic loci that are bound by the protein in only a subpopulation of cells in the 84 

sample from those that are bound in the majority of cells in the sample. Those analyses of 85 

ChIP-seq sample heterogeneity cannot be performed using existing methods. 86 

The discrimination of signal against background is not only required to determine protein 87 
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binding sites it is also required for identifying regions that are differentially bound in two 88 

conditions, e.g. control and disease. Most approaches (e.g. [20]) aimed at identifying 89 

differentially bound regions concentrate on the modeling of condition-specific exclusive 90 

enrichment. In addition, other methods [25-27] employ a three-state Hidden Markov Model to 91 

additionally identify condition-specific changes of signal within regions of concurrent ChIP 92 

enrichment. Therein, a computationally intensive training is done to learn a hidden state 93 

representation of the data. Consequently, the regional ChIP read coverage is 94 

“interpolated”/”smoothed” based on the read coverage in adjacent genomic loci. This data 95 

abstraction sacrifices a statistically sound null hypothesis. 96 

Here, we describe a data-driven robust and broadly applicable approach for simultaneous 97 

normalization and difference calling in ChIP-seq data called normR (recursive acronym: 98 

“normR obeys regime mixture rules”). normR models ChIP- and control read counts by a 99 

binomial mixture model. One component models the background, while one or more other 100 

components model the signal. As a proof of principle, normR is applied in three scenarios: 101 

Firstly, we show that normR achieves robust enrichment calling for both high (H3K4me3) 102 

and low (H3K36me3) signal-to-noise ratio ChIP-seq data. High specificity and sensitivity of 103 

normR is confirmed by functional outputs like gene expression and DNA methylation state. 104 

Secondly, we use normR to characterize two previously undetectable enrichment regimes for 105 

H3K27me3 and H3K9me3 in hepatocarcinoma HepG2 cells. Finally, the translational normR 106 

approach is shown to confidently call differences between primary human hepatocytes and 107 

HepG2 cells for both high (H3K4me3) and low (H3K27me3) signal-to-noise ratio histone 108 

modification ChIP-seq data. Here, we uncover potential epigenetic alterations introduced by 109 

the cancer-associated immortalization of primary liver cells. Thus, normR is a versatile tool 110 

that can identify enriched regions, distinct enrichment regimes and differences between 111 

conditions using a simple binomial mixture model and robust statistics.  112 
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Results 113 

The normR Framework 114 

During a ChIP experiment antibodies are used to enrich chromatin fragments carrying the 115 

protein of interest from a population of fragments obtained by sonication of chromatin. These 116 

antibodies bind preferentially but not exclusively to protein-DNA complexes. Hence, ChIP 117 

only enriches rather than selects protein containing chromatin fragments. Bearing this in mind, 118 

ChIP can be envisioned as a sampling process where the probability to draw a fragment 119 

depends on the presence or absence of the protein. If present, the probability is high, if absent, 120 

the probability is lower but not zero. The spatial distribution of the fragments sampled in this 121 

way is then estimated by mapping the sequenced ends (reads) of these fragments to the 122 

reference genome. 123 

To infer regions bound by a protein of interest the read densities obtained by ChIP-seq 124 

experiment are compared to the corresponding counts obtained by a control experiment e.g. 125 

by sequencing the sonicated chromatin (input). A region should be called “enriched by the 126 

ChIP” only if the number of reads from the ChIP is sufficiently greater than that expected 127 

relative to the control. Such an approach addresses a number of systematic biases, like copy 128 

number variations, sequencing biases, mapping ambiguities and chromatin structure 129 

[13,15,16]. To this end, a proper normalization of the read count densities is essential: For 130 

example, if we sequence twice as many reads in the ChIP than in the control, the read counts 131 

per region in the ChIP should be greater than in the control. In the absence of enrichment by 132 

the ChIP, we expect twice as many reads per region in the ChIP than in the control. In the 133 

presence of enrichment by the ChIP, the read counts in the region associated with the protein 134 

should be much higher than in the control, but what happens to the read counts in the 135 

remaining regions? 136 

Sequencing the ChIP and control libraries is a multinomial sampling process, which induces 137 

dependencies between the regions. As the total number of reads obtained from one 138 
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sequencing run is fixed and finite, the increase of reads in some regions due to ChIP 139 

enrichment leads to a decrease in remaining regions, i.e. background regions 𝐵. Returning to 140 

our example, this implies that the number of reads in non-enriched regions in the ChIP should 141 

be less than twice the number from the control. In particular, the normalization factor 𝑐𝐵 is 142 

less than two which relates the number of reads in ChIP-seq 𝑠𝑖 to the ones in control 𝑟𝑖 by 143 

𝑠𝑖 ≈ 𝑐𝐵 × 𝑟𝑖 for background regions 𝑖 ∈ 𝐵. 𝑐𝐵  depends on the average enrichment achieved 144 

by the ChIP and the number of enriched regions — it  shrinks as, both, the number of 145 

enriched regions and the level of enrichment in these regions increases.  Critically, 𝑐𝐵  is 146 

required to define a statistically sound Null hypothesis for testing whether the observed ChIP 147 

read counts are sufficiently greater than expected given the control. Moreover, the more 148 

regions are enriched, the lower the signal-to-noise ratio becomes at a fixed sequencing depth 149 

[12]. The estimation of 𝑐𝐵 requires the identity of background regions, albeit the identification 150 

of the background requires normalization itself. Thus, ChIP-seq normalization and the 151 

identification of enriched regions are two sides of the same problem. 152 

To tackle this problem we model the read counts from the ChIP and control by a binomial 153 

mixture model (Methods; Figure 1). In its simplest incarnation we use two components, i.e. 154 

background and enriched, to normalize and call enrichment over the control (referred to as 155 

“enrichR”). The model has in total three free parameters, i.e. 𝜃𝐵, 𝜃𝐸  and 𝜋𝐵 . 𝜃𝐵  and 156 

𝜃𝐸represent the expected fraction of reads in the ChIP over the sum of reads from ChIP and 157 

control per region for the background and the enriched regions, respectively. 𝜋𝐵  is the 158 

proportion of regions that belong to the background 𝜋𝐵 (the proportion of regions that are 159 

enriched is simply  𝜋𝐸 = 1 − 𝜋𝐵 ). Given this model we derive the following likelihood 160 

function: 161 

ℒ = ∏ (
𝑠𝑖 + 𝑟𝑖

𝑠𝑖
) (𝜋𝐵 × 𝜃𝐵

𝑠𝑖 × (1 − 𝜃𝐵)𝑟𝑖 + (1 − 𝜋𝐵) × 𝜃𝐸
𝑠𝑖 × (1 − 𝜃𝐸)𝑟𝑖)

𝑖

, 

where 𝑠𝑖 (𝑟𝑖) corresponds to the number of reads in the ChIP (control) for regions 𝑖 = 1, … , 𝑛. 162 

We fit these parameters using the expectation-maximization algorithm [28] on the closed 163 
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form solution (Methods). From the discussion above we expect that  𝜃𝐵 ≤
𝑁𝐶ℎ𝐼𝑃

𝑁𝐶ℎ𝐼𝑃+𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙
= 𝜃∗, 164 

where 𝑁𝐶ℎ𝐼𝑃 (𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙) is the total number of reads in the ChIP (control) and 𝜃∗ denotes the 165 

expected fraction of reads from ChIP-seq taking into account only sequencing depth. Equality 166 

holds only in case of no enrichment, or 𝜋𝐵 = 1. The last implicit “parameter” is the definition 167 

of regions. We use non-overlapping fixed width regions because it is robust and appropriate 168 

for most downstream analyses [5,29-31]. 169 

 170 

Figure 1. The normR Framework. Reads in control 𝑟 and ChIP 𝑠 are modeled as a binomial 171 

mixture model with multiple components. Here, two components model the expected fraction 172 

of reads in the ChIP over the sum of reads from ChIP and control per region for background 173 

𝜃𝐵 and the enriched 𝜃𝐸. By accounting for the effect of ChIP enrichment on the background 174 

read statistics a statistical sound Null hypothesis is formed. 175 

The identification of enriched regions across the genome is based on the fitted model: Given 176 

the control read count, the ChIP read count in each region is compared to the expected read 177 

count under the fitted background model. Using a binomial test statistically significant 178 

deviations from the background model are recovered. The null distribution of p-values from a 179 

binomial test is discrete and impedes the correction for multiple testing. By filtering out low 180 

power tests (i.e. low count regions) with the T method [32], the p-value distribution becomes 181 

more uniform and the p-values can be adjusted for multiple testing. Filtered p-values are then 182 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 24, 2016. ; https://doi.org/10.1101/082263doi: bioRxiv preprint 

https://doi.org/10.1101/082263
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 9 of 39 

 

transformed to q-values [33]. Enriched regions are reported if they fall below a user-specified 183 

threshold. 184 

In addition to enrichR, we provide two augmented realizations of normR (Methods): (i) 185 

“regimeR” models multiple enrichment components defined by 𝜃𝐸𝑗
 with 𝑗 = 1, . . , 𝑚  to 186 

identify ChIP enrichment regimes; and (ii) “diffR” models the expected fraction of reads in a 187 

depleted (control-enriched) component defined by 𝜃𝐷  in addition to 𝜃𝐵  and 𝜃𝐸  yielding a 188 

direct comparison of two ChIP experiments. After assessing significance against 𝜃𝐵  every 189 

region is assigned to a component by Maximum a posteriori assignment. 190 

Based on the fitted binomial mixture model the normalized ChIP signal 𝑒𝑖 is calculated by 191 

dividing the read counts from ChIP-seq by those from the control scaled by the normR 192 

enrichment factor 𝑓 =  
𝜃𝐸

1−𝜃𝐸
× 

1−𝜃𝐵

𝜃𝐵
. To account for noise in low power regions, we 193 

regularize 𝑒𝑖 by adding pseudocounts to the number of ChIP-seq and Input-seq reads resulting 194 

in 195 

𝑒𝑖 =
ln (

𝑠𝑖 +  𝛼𝑠
𝑟𝑖 +  𝛼r

×
αr
αs

) 

ln (𝑓)
 

where α𝑥 =
∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖×𝑖 𝑥

∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖𝑖

 represents the average read count for 𝑥 given the normR-fitted 196 

background model. 197 

We have implemented normR in C++ and R [34]. normR is available on Bioconductor at 198 

http://bioconductor.org/packages/normr. 199 

Enrichment Calling in Low and High Signal-To-Noise Ratio Settings with 200 

enrichR in Primary Human Hepatocytes 201 

To illustrate the enrichment calling based on a robust background estimation, we applied 202 

enrichR to two ChIP-seq experiments against H3K4me3 and H3K36me3 in primary human 203 

hepatocytes. H3K4me3 correlates with promoter activity and DNA-hypomethylation [35-37] 204 

and exhibits a high signal-to-noise ratio (Supplemental Fig. 1). H3K36me3 represents a lower 205 
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signal-to-noise characteristics (Supplemental Fig. 1) and is associated to transcriptional 206 

elongation in the body of transcribed genes [38] as well as DNA-hypermethylation [39]. We 207 

performed enrichR analyses on the ChIP-seq data against Input-seq (Methods). The 208 

enrichment calls by enrichR were compared to peaks called by six popular peak calling tools 209 

ChIP-seq data: MACS2 [40], DFilter [21], CisGenome [22], SPP [23], BCP [41] and MUSIC 210 

[24]. 211 

As a first assessment, we inspected the coverage and enrichment/peak calls for H3K4me3 and 212 

H3K36me3 ChIP-seq in the vicinity of the Glucose-6-Phosphate Isomerase gene (GPI, Figure 213 

2A) — a housekeeping gene that is highly expressed in all cell types [42]. GPI was also 214 

expressed in primary human hepatocytes as measured by RNA-seq and showed a 215 

characteristic chromatin signature of transcription, i.e. H3K4me3 and H3K36me3 in the 216 

promoter and the gene body, respectively. All tested methods identified these characteristic 217 

enrichments at the GPI locus. Moreover, the promoter of the WTIP gene was detected as 218 

H3K4me3-enriched by all methods. Together with the measured shallow coverage of RNA-219 

seq reads along its gene body this indicated that WTIP is expressed suggesting a genuine 220 

H3K36me3 enrichment in its gene body. Interestingly, this minute H3K36me3 enrichment 221 

was exclusively recovered by enrichR.  222 

Genome-wide enrichR called H3K4me3-enrichment in 142,451 500 base-pair (bp) regions in 223 

primary human hepatocytes, corresponding to 45,522 consecutive regions representing ~3% 224 

of the mappable genome (71.2Mb). The identified regions were characterized by low levels of 225 

DNA methylation (Figure 2B), in line with the idea that H3K4me3 represses DNA 226 

methylation [35-37]. Furthermore, H3K4me3-enriched regions recovered by enrichR showed 227 

a higher density of CAGE-tags than the background (Figure 2C) indicating that they serve as 228 

active transcriptional start sites (TSSs) in this cell type. In fact, enrichR H3K4me3-enriched 229 

regions showed a statistically significant overlap with annotated TSSs (odds-ratio = 25.04, 230 

Fisher’s signed exact test, P ≤  0.001, Supplemental Table 1). Together these observations 231 

support that enrichR identifies bona fide H3K4me3-enriched regions.  232 
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The comparison of enrichR enriched regions to MACS2, DFilter, CisGenome, SPP, BCP and 233 

MUSIC peaks revealed a substantial overlap at 𝐹𝐷𝑅 = 0.1 indicating that for H3K4me3 in 234 

this dataset all six methods work well, although in terms of covered bp DFilter (39.8Mb) and 235 

CisGenome (38.7Mb) called almost two-fold fewer regions than the other tools 236 

(mean=65.3Mb; Supplemental Note, Supplemental Fig. 2A, Supplemental Table 2). 237 

 238 

Figure 2. Enrichment Calling in Low and High Signal-To-Noise Ratio Settings with 239 

enrichR in Primary Human Hepatocytes. (A) Input (grey), H3K4me3 (green, high signal-240 

to-noise ratio), H3K36me3 (rose, low signal-to-noise ratio) and RNA-seq (black) barplots 241 

indicate coverage proximal to the human Glucose-6-Phosphate Isomerase (GPI, yellow 242 

overlay) locus on chromosome 19 in Primary Human Hepatocytes (PHH). Enrichment calls 243 

are indicated as colored boxes below respective tracks for enrichR, DFilter, MACS2, 244 

CisGenome’s SeqPeak and SPP. The  WTIP gene (blue overlay) had detectable H3K4me3 245 

enrichment at its promoter and minute H3K36me3 is recovered solely by enrichR. (B-C) 246 

enrichR H3K4me3-enriched regions were DNA-hypomethylated (B) and expressed as 247 

measured by CAGE (C). (D-E) enrichR H3K36me3-enriched regions were DNA-248 

hypermethylated (D) and expressed as measured by RNA-seq (E). 249 

For H3K36me3 enrichR identified 559,560 1 kilo base-pair (kb) windows as enriched, 250 

corresponding to 85,293 consecutive regions representing ~20% of the mappable genome 251 

(599.6Mb). H3K36me3-enriched regions recovered by enrichR showed high levels of DNA 252 

methylation (Figure 2D), in line with the observation that H3K36me3 recruits DNMT3B 253 

leading to de novo DNA methylation [39]. Furthermore, these regions showed significantly 254 

higher RNA-seq read coverage than background regions (Wilcoxon-signed-rank test P ≤255 
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 0.001, Figure 2E), in line with the idea that H3K36me3 covers the gene body of transcribed 256 

genes [38]. Furthermore, enrichR H3K36me3-enriched regions showed a statistically 257 

significant overlap with annotated transcripts (odds-ratio = 17.06, Fisher’s signed exact test, 258 

P ≤  0.001, Supplemental Table 1). These results support that enrichR also identifies bona 259 

fide H3K36me3-enriched regions. 260 

When compared to enrichR results, far less H3K36me3-enriched regions were reported by 261 

MACS2 (407.7Mb), BCP (396.5Mb), MUSIC (402.3Mb) and by especially DFilter (87.8Mb), 262 

SPP (25.1Mb) and CisGenome (36.4Mb), even when configured for detection in low signal-263 

to-noise ratio settings (Methods). Almost all of these regions (MACS2: 399.1Mb; 97.9%, 264 

DFilter: 87.8Mb; 100%; CisGenome: 36.4Mb; 100%; SPP:24.2Mb; 96.7%; BCP:386.8Mb; 265 

97.6%; MUSIC:382.6Mb; 95.1%) were recovered by enrichR which leads to very few 266 

exclusive regions for the benchmark methods (Supplemental Fig. 2B). Regions called 267 

exclusively by enrichR (93.6Mb; 16.7%) were characterized by a median distance of >2kb to 268 

peaks recovered by other methods (Supplemental Fig. 2C). Furthermore, these regions 269 

showed significantly higher DNA-methylation levels and transcriptional activity than 270 

background regions suggesting once more a genuine H3K36me3 enrichment (Wilcoxon-271 

signed-rank test P ≤  0.001, Supplemental Fig. 2D-E). 272 

Next, we studied accuracy of H3K36me3-enrichment peak calls.  Because there is no 273 

genome-wide ChIP-seq benchmark set on-hand, we defined a gold standard for each method 274 

based on a consensus vote among the six remaining tools [43] (Supplemental Note): At FDR 275 

0.1 DFilter and CisGenome achieved both highest precision (1.00), while enrichR had the 276 

highest recall (0.997) and BCP had the highest F2-score (0.631; Supplemental Table 2). 277 

enrichR which called almost all regions of the five tools combined had a recall-weighted F2-278 

score of 0.533 compensating its menial precision (0.186) at q-value ≤ 0.1 with a superior 279 

recall. In fact, enrichR has the highest precision at recall ≤ 0.9 indicating that the consensus 280 

vote defined gold standard does not contain many enrichR-exclusive regions at q-value ≤281 

0.1 (Supplemental Fig. 3).  In a second assessment, we studied the validity of tool-specific 282 
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regions, i.e. the peak calls not represented in the gold standard. To this end we defined a 283 

unified gold standard of H3K36me3-enrichment, i.e. the union of seven tool-specific gold 284 

standards, and seven sets of tool-specific regions (Supplemental Note). For all methods, the 285 

unified gold standard exhibited a significantly higher enrichment (fold change over Input) 286 

than tool-specific regions for enrichR, MACS2, SPP, BCP and MUSIC (Wilcoxon-signed-287 

rank test; P ≤  0.01; Supplemental Fig. 2F). Among these, enrichR had the most tool-specific 288 

regions (205,064; 36.6%) and showed significantly higher enrichment as well as read 289 

coverage than background regions (Supplemental Fig. 2G). Furthermore, enrichR-specific 290 

regions were remote from unified gold standard regions (median=14Mb; Supplemental Figure 291 

2H) and, yet, still overrepresented in annotated gene bodies (odds-ratio = 13; Supplemental 292 

Table 1).  293 

Some ChIP-seq peak callers perform worse when the sequencing depth in the ChIP library is 294 

reduced [44]. To show the robustness of enrichR, we used the unified gold standard to 295 

benchmark all assessed tools on an in silico down sampled sequencing library (Supplemental 296 

Note). enrichR and MACS2 called >90% of the gold standard at 50% (30%) of the original 297 

H3K4me3 (H3K36me3) sequencing depth (Supplemental Fig. 4) suggesting that both 298 

methods are specific in even shallow sequenced ChIP libraries. 299 

ChIP-seq coverage normalization based on bona-fide background regions is also done by 300 

NCIS [17]. For H3K36me3 NCIS estimated a normalization factor that was ~1.5-fold smaller 301 

than 𝜃∗ and enrichR’s 𝜃𝐵  was ~2-fold smaller than 𝜃∗ (Supplemental Fig. 5, Supplemental 302 

Table 3). Thus, enrichR achieved a normalization almost equivalent to NCIS, despite using a 303 

different model. 304 

Enrichment Regime Identification in H3K27me3 and H3K9me3 in HepG2 305 

cells with regimeR. 306 

Hither to discussed was the applicability of normR to a well-studied problem: the 307 

discrimination of enrichment against background. Here, we turn to a problem for which we 308 
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had found to best of our knowledge no precedent in the literature: the discrimination of 309 

moderate enrichment from high enrichment. We can easily address this problem by increasing 310 

the number of foreground components in normR from one single component to multiple 311 

components (Methods). We refer to this approach as regimeR: In the case of two foreground 312 

components, regimeR disriminates a peak regime (high enrichment) and a broad regime 313 

(moderate enrichment) over the background. We applied regimeR to H3K9me3 and 314 

H3K27me3 ChIP-seq data from the hepatocarcinoma cell line HepG2 over the control. 315 

Figure 3A depicts a representative region on Human chromosome 19 harbouring active and 316 

repressed genes. regimeR segmented the ChIP-seq enrichment into broad and peak regions. 317 

For example, three H3K9me3 peaks flanked by moderate enrichment were detected by 318 

regimeR at the 3’-ends of ZNF546 and ZNF780A/B. Similarly, a H3K27me3-peak within a 319 

H3K27me3-broad domain was identified by regimeR at the “Fc Fragment Of IgG Binding 320 

Protein” gene promoter. 321 

For H3K9me3, 14.7% of the HepG2 epigenome got classified into 202,390 broad (47.8%; 322 

𝜇ChIP counts = 11.27; 𝜃𝐹1
= 0.39) and 221,741 peak regions (52.2%;  𝜇ChIP counts = 23.75; 323 

𝜃𝐹2
= 0.70 ; Figure 3B). Both H3K9me3-broad and –peak regions showed a statistically 324 

significant overlap with repetitive DNA elements (Wilcoxon-signed-rank test; P ≤  0.001; 325 

Figure 3C, Supplemental Fig. 6A), which is a reported feature of H3K9me3 marked 326 

constitutive heterochromatin [45]. Moreover, H3K9me3-peak regions showed significantly 327 

higher levels of ZNF274 than background and H3K9me3-broad regions (Wilcoxon-signed-328 

rank test; P ≤  0.001 , Figure 3D), in line with the idea that ZNF274 recruits the H3K9 329 

methyltransferase SETDB1 [46]. Thus H3K9me3-peak regions may coincide with nucleation 330 

sites for heterochromatin assembly at genomic repeat elements. 331 
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 332 

Figure 3. H3K27me3 and H3K9me3 Enrichment Regime Identification in HepG2 cells 333 

with regimeR. (A) Input (grey), H3K9me3 (blue) , H3K27me3 (orange) and RNA-seq 334 

(black) coverage around a ZNF cluster on chromosome 19 in HepG2 cells. Individual 335 

regimeR-computed regimes are displayed as boxes below respective tracks. The 5’-ends of 336 

ZNF genes are marked with high H3K9me3 enrichment (yellow overlay) and the promoter of 337 

FCGBP is marked by a H3K27me3 peak within a broad H3K27me3 domain (green overlay). 338 

(B) regimeR identifies broad and peak H3K9me3 enrichment. (C-D) H3K9me3 peaks are 339 

significantly enriched for repeats (C) and ZNF274 ChIP-seq reads (D) as compared to both 340 

background and broad regions. (E)  regimeR identifies broad and peak H3K27me3 341 

enrichment. (F-G) H3K27me3 peaks have significantly greater CpG odds (F) and EZH2 342 

binding (G) as compared to background and broad regions. 343 

For H3K27me3, regimeR called 42.4% of the HepG2 epigenome H3K27me3-enriched 344 

(1,221,850 1kb regions) and subdivided this into 940,753 broad (77%,  𝜇ChIP counts = 12.03; 345 

𝜃𝐹1
= 0.46) and 281,097 peak regions (23%, 𝜇ChIP counts = 29.62; 𝜃𝐹1

= 0.68 Figure 3E). 346 

H3K27me3 covered three times more of the genome than H3K9me3, yet, with a lower 347 

fraction of peak regions than in H3K9me3. Moreover, the vast majority H3K9me3 and 348 

H3K27me3 regimes were mutually exclusive in HepG2 cells (Supplemental Fig. 6B). 349 

H3K27me3-peak regions were characterized by a higher CpG odds ratio (CpG-content 350 

corrected for GC content) than both broad or background regions (Figure 3F, Supplemental 351 

Fig. 6C). In conjunction with an elevated conservation (Supplemental Fig. 6D) and a 352 
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statistically significant overlap with annotated TSSs (Fisher’s signed exact test; P ≤  0.001; 353 

odds ratio = 1.98; Supplemental Table 4) this reaffirms that the TSSs targeted for peak 354 

H3K27me3 levels are high CpG promoters [47]. Similar to H3K9me3-peak regions, 355 

H3K27me3-peak regions were significantly enriched for the enzyme that catalyzes the 356 

modification, i.e. EZH2 [48-51] (Wilcoxon signed-rank test; P ≤  0.001 , Figure 3G). 357 

Together these observations suggest that H3K27me3-broad and -peak regions show distinct 358 

characteristics with respect to CpG content, localization and EZH2 levels. 359 

The observation that both H3K9me3- and H3K27me3-peak regions were associated with 360 

significantly higher levels of their catalyst than broad- and background regions indicates that 361 

they correspond to nucleation sites for heterochromatin assembly. In line with this 362 

observation we found that most H3K9me3-peak regions are either embedded in an H3K9me3 363 

broad domain (43.4%) or at the border of a broad domain (35.1%). The vast majority of 364 

H3K27me3-peak regions were embedded in an H3K27me3 broad domain (82.8%) where both 365 

regimes showed elevated conservation (Supplemental Fig. 6D). On the contrary, H3K9me3-366 

peaks were less conserved than broad regions further supporting aforementioned idea that 367 

repetitive elements recruit the H3K9me3 methyltransferase. 368 

Difference Calling in Primary Human Hepatocytes and HepG2 cells with 369 

diffR. 370 

In addition to discriminating enrichment from background, another important task consists of 371 

identifying epigenetic alterations between conditions, e.g. healthy versus diseased or between 372 

cell-types. normR can address this problem by calling differential enrichment between ChIP-373 

seq experiments from two conditions, referred to as “diffR”. We applied diffR to H3K4me3 374 

and H3K27me3 ChIP-seq data from primary human hepatocytes (PHH) and the 375 

hepatocarcinoma cell line HepG2 (Methods). We compared the diffR results to those obtained 376 

by calling mutually exclusive enrichment with enrichR on the two conditions separately, 377 

referred to as “enrichR-compare”. Additionally, we compared diffR results to three existing 378 
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tools, namely ChIPDiff [25], histoneHMM [27] and ODIN [26]. 379 

Visual inspection of a 50kb region on chromosome 19 confirmed that most 380 

H3K4me3/K27me3-enriched regions were common between HepG2 and PHH (Figure 4A). 381 

However, some enrichment was cell-type specific and was called by all methods, e.g. HepG2-382 

specific H3K27me3-enrichment upstream of E2F2. However, differences in the histone 383 

modification level within mutually enriched regions were apparent, e.g. the increase in 384 

H3K4me3-enrichment at the E2F2 promoter in HepG2 could be identified by diffR, ChIPDiff 385 

and ODIN. E2F transcription factors are important regulators of the cell cycle [52-54]. E2F2 386 

is expressed in HepG2 but not in PHH suggesting that the induction of E2F2 might be linked 387 

to the much higher proliferative potential in HepG2 cells than in PHH. Further downstream of 388 

E2F2, enrichR identified a H3K27me3-differentially enriched domain accompanied by an 389 

emerging H3K4me3 peak in HepG2 cells. Thus, the induction of E2F2 in HepG2 may be 390 

explained by the opening of an enhancer at this region supported by reported binding of RNA 391 

polymerase 2 and CTCF in HepG2 cells [2]. 392 

For H3K4me3, diffR recovered 59,288 500bp regions (14Mb) as being differentially enriched 393 

between HepG2 and PHH (Figure 4B). Of these, 27,913 regions had a higher enrichment in 394 

HepG2 which overlapped 10,268 TSSs driving genes mainly related to the DNA replication 395 

and cell division. 31,375 PHH-specific H3K4me3 regions upregulated 9,496 TSSs of genes 396 

associated with liver function (P450 pathway) and tissue characteristics (keratinization, cell 397 

adhesion) absent in the HepG2 cell line. For H3K27me3, diffR reported 800,073 1kb regions 398 

(800Mb) as differentially H3K27me3-enriched (Figure 4C). Out of these 215,466 revealed 399 

HepG2-specific repression at 11,836 TSSs of genes regulating morphogenesis and cell-cell 400 

signaling. On the other hand, the 584,607 PHH-specific regions repressed 10,902 TSSs of 401 

genes functioning in cell fate commitment and immune response. Taken together, diffR 402 

uncovered functional differences related to immortalization of liver cells solely based on two 403 

ChIP-seq experiments. 404 
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Figure 4. Difference Calling on H3K4me3 and H3K27me3 in Primary Human 406 

Hepatocytes (PHH) and HepG2 cells with diffR. (A) Input (grey), H3K4me3 (green), 407 

H3K27me3 (orange) and RNA-seq (black) coverage around E2F Transcription Factor 2 408 

promoter (E2F2, yellow overlay) locus in Primary Human Hepatocytes (PHH) and HepG2 409 

cells. A region ~40kb upstream of the E2F2 promoter shows significant differential 410 

enrichment for H3K4me3 and H3K27me3 (pink overlay). enrichR-computed enriched regions 411 

displayed as boxes below to respective. Differentially enriched regions are displayed as red 412 

(HepG2 conditional) or blue (PHH conditional) boxes for diffR, ChIPDiff, histoneHMM and 413 

ODIN. (B,C) diffR recovers conditional differences in H3K4me3 (B) and H3K27me3 (C) 414 

enrichments that cover transcriptional start sites (TSSs) driving genes functioning in cell 415 

metabolism and development (wordclouds right panel). (D,E) enrichR-compare identifies 416 

H3K4me3 (D) and H3K27me3 (E) mutually exclusive enrichment between PHH and HepG2 417 

cells, but can not detect differences in histone modification level.(Right panels) diffR regions 418 

fall into enrichR-compare called regions of mutually exclusive enrichment but also resolve 419 

significant differences in ChIP-seq signal not detected by enrichR-compare. 420 

Another normR approach can detect conditional differences by calling individual ChIP-seq 421 

enrichment over control for each condition and then identify mutually exclusive enrichment, 422 

referred to as “enrichR-compare”. We used this approach to benchmark results obtained from 423 

diffR. Genome-wide H3K4me3 enrichR-compare analysis revealed that most enriched 500bp 424 

regions were common in HepG2 and PHH (101,989, Figure 4D), while 26,858 were HepG2- 425 

and 67,320 PHH-specific. As expected, the comparison to enrichR-compare also revealed that 426 

by a majority diffR difference calls were either mutual exclusive enrichment or changes in the 427 

level of enrichment (Figure 4D, Supplemental Table 5). For H3K27me3, enrichR-compare 428 

revealed that most H3K27me3-enriched regions were common in HepG2 and PHH (892,254, 429 

Figure 4E), while 294,138 were HepG2- and 784,721 were PHH-specific. Again, diffR was 430 

very specific in capturing both mutual exclusive enrichment and changes in the level of 431 

enrichment (Figure 4E), However, we observed a discrepancy in sensitivity: 58.6% (44%) of 432 

the H3K4me3 (H3K27me3) mutually exclusive regions were not called by diffR leading to 433 

contradictory results (Supplemental Fig. 7A,B;  Supplemental Table 5). Interestingly, most of 434 

the discrepancies were attributed to a more strict P-value filter to eliminate low power (i.e. 435 

low count) regions in the two-sided binomial test in diffR (Methods). By applying the diffR 436 
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P-value filter to enrichR-compare, results became substantially more concordant , e.g. 2.99% 437 

(319) false negatives for H3K4me3 in HepG2 cells (Supplemental Fig. 7 C,D, Supplemental 438 

Table 5).  439 

In addition, some discrepancies between diffR and enrichR-compare may be attributed to 440 

Copy Number Variations (CNVs) in HepG2 cells which are prevalent in immortalized cell 441 

types [55,56]. To alleviate this problem we ran diffR on HepG2 and PHH Input tracks with 20 442 

and 50kb windows (Supplemental Fig. 8). Assuming that there are no CNVs in the PHH data, 443 

diffR recovered 91% of 6,487 windows (odds-ratio=112.7) which overlap 80 annotated 444 

amplifications in HepG2 [2] (13% of genome; median(𝑙𝑒𝑛𝑔𝑡ℎ)=163kb). Nevertheless, diffR 445 

failed to detect 88% of 249 windows (odds-ratio=40.8) that overlap 170 annotated very short 446 

heterozygous and homozygous deletions (6% of genome; median(𝑙𝑒𝑛𝑔𝑡ℎ)=9kb). Despite this, 447 

the discrepancies between enrichR-compare and diffR were partially removed when filtering 448 

results for diffR called CNVs (Supplemental Fig. 7E,F, Supplemental Table 5) to a similar 449 

extend than filtering for experimentally validated CNVs (Supplemental Fig.7G,H, 450 

Supplemental Table 5). 451 

Next, we compared genome-wide diffR results to those obtained from ChIPDiff, 452 

histoneHMM and ODIN. To this end we once more defined a gold standard based among a 453 

consensus vote among the tools (Supplemental Note): ChIPDiff was most precise (𝜇Precision =454 

0.70) and diffR had the highest recall (𝜇Recall = 0.80 ) together with the best F1-scores 455 

(𝜇F1-score = 0.50; Supplemental Table 6). A unified gold standard of all tool-specific gold 456 

standards revealed that most tool-specific regions were called by diffR (28.9Mb) and ODIN 457 

(25.4Mb) for H3K4me3 and by ODIN (701.7Mb) and histoneHMM (689.1Mb) for 458 

H3K27me3 (Supplemental Table 7). Turning to absolute fold changes, the unified gold 459 

standard showed highest levels together with diffR, ChIPDiff and histoneHMM 460 

(Supplemental Fig. 9A,B). In terms of read coverage, diffR- and ODIN-specific regions had 461 

highest counts (Supplemental Fig. 9C,D). In conclusion, diffR identified conditional 462 

differences for, both, H3K4me3 and H3K27me3 which were supported by a good classifier 463 
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performance, a high absolute fold change as well as an inference-adequate read coverage 464 

eliminating low power regions.  465 

Discussion 466 

In summary, we present an extendable methodology called “normR” that enables the 467 

extensive analysis of ChIP-seq data in epigenetic studies (Fig. 5). By modeling foreground 468 

and background jointly, normalization and enrichment calling are performed simultaneously. 469 

The implicit modeling of the effect of enrichment on the overall read statistics increases the 470 

sensitivity in detecting shallow differences in ChIP enrichment even in low signal-to-noise 471 

ratio data. Furthermore, we demonstrated the suitability of the normR approach for the 472 

identification of distinct epigenetic enrichment regimes in hepatocarcinoma cells and the 473 

quantification of conditional epigenetic differences between hepatocarcinoma cells and their 474 

tissue-of-origin. We envision how normR enrichment calling augments today’s epigenetic 475 

analyses ranging from clustering [30] to visualization [31]. 476 

 477 

Figure 5. The normR Approach: A Robust and Broadly Applicable Methodology for 478 

Normalization and Difference Calling in ChIP-seq Data. The translational normR 479 

methodology allows for the calling of ChIP enrichment over a user-specified control, the 480 

identification of distinct ChIP enrichment regimes and the quantification of differences in 481 

ChIP signal level between two conditions. 482 

Firstly we used normR to call enrichment in high (H3K4me3) and low (H3K36me3) signal-483 

to-noise ratio ChIP-seq data, referred to as “enrichR”. Auxiliary information such as DNA 484 

methylation and expression supported the enrichR-based classification. Given the difficulty 485 
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inherent in the ill-defined problem represented by ChIP-seq analysis we introduce a novel 486 

binary classifier statistic that defines a gold standard based on a consensus vote among seven 487 

published ChIP-seq peak callers. Our findings indicated that enrichR performs equally well as 488 

previously described approaches in ChIP-seq tracks with high signal-to-noise-ratio such as 489 

H3K4me3. Furthermore, enrichR outperformed existing tools in the detection of low levels of 490 

genuine enrichment in low signal-to-noise ratio data such as H3K36me3. We attribute the 491 

superior performance in the latter scenario to our sensitive normalization technique which 492 

accounts not only for varying sequencing depth but specifically addresses the effect of ChIP 493 

enrichment on the overall read statistics. The sensitive enrichR approach is an asset in future 494 

studies on epigenetic signatures and segmentations. 495 

Secondly normR was used to facilitate the discrimination of peak- and broad-regions against 496 

background in a single analysis, referred to as “regimeR”. The analysis of H3K9me3 and 497 

H3K27me3 in HepG2 cells revealed that there exist distinct characteristics of peak- and broad 498 

regions in these heterochromatic marks. Specifically, H3K9me3 peaks were enriched for 499 

ZNF274 at repetitive elements. High enrichment of H3K9me3 at these sites can be explained 500 

by the recruitment of the H3K9 methyltransferase SETDB1 by ZNF274 [46]. H3K27me3 501 

peaks were found within broad H3K27me3 domains at conserved CpG-dense regions bound 502 

by EZH2, supporting the idea of CpG-enriched polycomb recruitment sites [57]. Taken 503 

together, our regimeR-based study suggests that H3K9me3 and H3K27me3 peaks correspond 504 

to nucleation sites for heterochromatin assembly. In the future, regimeR will prove useful in 505 

studies of heterogeneity in cellular epigenetic  markings to identify regions of promiscuous 506 

protein binding. 507 

Finally we presented normR for the direct comparison of two ChIP-seq experiments, referred 508 

to as “diffR”. Our diffR-based comparison of H3K4me3 and heterochromatic H3K27me3 509 

between HepG2 cells and PHH revealed conditional differences associated to cell function 510 

and immortalization, e.g. a potential E2F2 enhancer region made accessible in HepG2 cells. 511 

Interestingly, H3K27me3 covered a smaller fraction of the HepG2 genome as compared to 512 
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PHH. Using a statistic of mutually exclusive enrichment by enrichR-compare and consensus 513 

votes among previously developed difference callers, we showed that diffR performs 514 

outstandingly in the detection of conditional differences in ChIP-seq data. Furthermore, we 515 

could show that diffR’s accuracy can be increased by incorporation of CNV information, as 516 

measured experimentally or by using diffR on two Input experiments. In the future, a more 517 

principled approach of the joint modelling of conditional ChIP-seq tracks together with their 518 

control is desirable. 519 

Taken together normR proved as a versatile and sensitive toolbox for the discrimination of 520 

enrichment against background (“enrichR”), the unprecedented detection of enrichment 521 

regimes such as peaks and broad enrichment (“regimeR”) and the direct quantification of 522 

differences between two conditions (“diffR”). We anticipate that normR will be applied to all 523 

enrichment based sequencing technologies like MeDIP-seq and HiC. In fact, a derivate of 524 

normR has recently been used to identify co-localizing histone modifications in a novel 525 

reChIP-seq data set [43] where the background estimation is complicated by the presence of 526 

enrichment in the control experiment. In the future, an automated determination of the 527 

number of enrichment components in the normR model will be adjuvant in studying 528 

epigenomic heterogeneity in conjunction with recently reported single cell ChIP-seq data [58].  529 

Methods 530 

The normR Methods 531 

Given two vectors of integers 𝑟 (control) and 𝑠 (treatment) of identical length 𝑛, we model the 532 

read counts from the ChIP and control by a binomial 𝑚-mixture model:  533 

𝑘𝑖 ~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋) 

𝑁𝑖 = 𝑠𝑖 + 𝑟𝑖 | 𝑘𝑖 = 𝑗 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑗 , 𝜃𝑗) 

with 𝑖 = 1, . . , 𝑛  and ∑ 𝜋𝑗 = 1; 𝜋𝑗 ∈ [0,1]; 𝑗 = 1, . . , 𝑚 . Given this model, normR follows a 534 

two step procedure: (i) The mixture model is fit by expectation maximization (EM; [28]) 535 
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using the likelihood function,  536 

ℒ = 𝑃(𝑠𝑖, 𝑟𝑖|𝜋, 𝜃, 𝑁𝑖) = ∏ (
𝑁𝑖

𝑠𝑖
) ∑ 𝜋𝑗 × 𝜃𝑗

𝑠𝑖 × (1 − 𝜃𝑗)
𝑟𝑖

𝑚

𝑗=1

𝑛

𝑖=1

; 

and (ii) each entry (𝑟𝑖, 𝑠𝑖) is tested for significance against a fitted background to component 537 

to label enriched regions. 538 

In a preprocessing stage, the vectors 𝑟 and 𝑠 are filtered for entries where 𝑟 = 𝑠 = 0 because 539 

no assertion about their enrichment state can be made. Secondly, a map of unique (𝑟, 𝑠) tuples 540 

is created to reduce the number of computations needed which improves runtime substantially. 541 

In the first mode fitting step, the EM is initialized with 𝜋 sampled from 𝑈(0,1) and 𝜃 sampled 542 

from 𝑈(0.001, 𝜃*). Upon convergence with 𝜀 ≤ 0.001, an enrichment factor (average fold 543 

enrichment) 𝑓𝑗 =
𝜃𝑗

1−𝜃𝑗
∗

1−𝜃𝐵

𝜃𝐵
  is computed for each mixture component j ≠ B, where 𝜃𝐵 the 544 

smallest of  {𝜃1, … , 𝜃𝑚} (the closest to  𝜃∗) in the case of enrichment (difference) calling. The 545 

EM is run 10 times per default to find the fit with greatest ℒ. In the second step, every (𝑟𝑖, 𝑠𝑖) 546 

is tested for significance against the background component. Resulting P-values are filtered 547 

using the T method [32] (P-value threshold 0.0001 per default) to take into account the 548 

discreteness of P-values for a correct estimation of the proportion of true null hypotheses. T-549 

filtered P-values are transformed to q-values for FDR correction [33]. Additionally, a 550 

normalized enrichment 𝑒i  is calculated for every entry(𝑟, 𝑠)𝑖  with 𝑒i =
ln(

𝑠𝑖+ 𝛼𝑠
𝑟𝑖+ 𝛼r

×
αr
αs

) 

ln (𝑓𝑗)
 where  551 

αr =
∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖×𝑖 𝑟i

∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖𝑖

 and α𝑠 =
∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖×𝑖 si

∑ 𝜃𝐵

𝑠𝑖×(1−𝜃𝐵)𝑟𝑖𝑖

 represent a model specific pseudo count for 552 

control and treatment, respectively. The normalized enrichment can be written to bigWig or 553 

bedGraph format for convenient display in a genome browser of choice, e.g. UCSC genome 554 

browser [59]  or Integrative Genomics Viewer [60]. 555 

In the case of enrichment calling two components (background, enrichment) are fit with the 556 

enrichR subroutine of the normR package. Herein, the background model 𝜃𝐵  is set to the 557 

mixture component with smallest 𝜃. For difference calling, three components (background, 558 
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control enriched, treatment enriched) are fit with the diffR subroutine for 𝑟 (condition 1) and s 559 

(condition 2) counts. The background model is set to 𝜃𝐵 closest to θ*. The diffR T method 560 

uses the maximal threshold estimated from P-values for 𝜃𝐵 fit for either (𝑟, 𝑠) or the label-561 

switched (𝑠, 𝑟) . For regime calling, the regimeR subroutine fits an arbitrary number of 562 

components representing background plus a fixed number of enrichment regimes. Identically 563 

to enrichment calling, the background model is set to the mixture component with smallest 𝜃. 564 

In a second step, every significantly enriched bin passing the P-value filter (see above) is 565 

assigned to an enrichment regime by Maximum A Posteriori. 566 

Note that by nature the binomial mixture model assumes the independence between regions 567 

which is valid for a sufficiently large bin size (i.e. fragment length). Consequently, the usage 568 

of a binomial mixture model improves computational runtime. The normR algorithm is 569 

implemented in C++ and R. A ready-to-use R-package can be obtained from 570 

http://bioconductor.org/packages/normr where also a tutorial on use cases can be found.  571 

ChIP-seq in primary human hepatocytes and HepG2 cells 572 

HepG2 cells and human hepatocytes, obtained from donors after written consent by tissue 573 

resection and perfusion [61], have been fixed in for 5 minutes in 1% formaldehyde. 574 

Formaldehyde has been quenched using 125 mM glycine and cells have been washed in PBS, 575 

pelleted and snap-frozen in liquid nitrogen. Five (human hepatocytes) to ten (HepG2) million 576 

cells have been processed for chromatin preparation, using the NEXSON protocol, as 577 

previously described [62]. After chromatin sonication, samples have been quality controlled 578 

to check chromatin recovery and fragment size distribution as previously described.  579 

Prior ChIP, chromatin has been diluted 1:2 in the ChIP buffer H from the Diagenode Auto 580 

histone ChIP-seq kit (C01010022), supplemented with protease inhibitor cocktail. Chromatin 581 

from 100,000 to 500,000 cells has been incubated with one microgram of the following 582 

antibodies: H3K4me3 (C15410003), H3K36me3 (C15410192), H3K9me3 (C15410193), 583 

H3K27me3 (C15410195), all from Diagenode. ChIP has been performed using the automated 584 
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platform SX-8G IP-Star (Diagenode), with the following parameters: “indirect ChIP”, 200 µl 585 

ChIP volume, 14 hours of antibody incubation, 4 hours of beads incubation, and 5 minutes 586 

beads washes. After the DNA elution from the beads, samples were collected, RNaseA-587 

treated, de-proteinized and decrosslinked overnight at 65 °C. Input samples have been 588 

prepared by taking 1% of the starting chromatin before ChIP and by decrosslinking it together 589 

with the ChIP samples. DNA has been manually purified using the Qiagen minElute columns. 590 

Libraries from 2 to 10 ng of purified DNA have been prepared using the NEBNext Ultra 591 

DNA library preparation kit (NEB, E7370S) following manufacturer’s instruction and 592 

skipping the size selection. Libraries have been sequenced paired-end, with a read length of 593 

50 bp, on an Illumina HiSeq 2500 (version 3 chemistry). 594 

RNA-seq in primary human hepatocytes and HepG2 cells 595 

Trizol extration was used for preparation of Total RNA according to the manufacturer’s 596 

guidelines and as described in [63]. An Agilent Bioanalyzer (Agilent, Santa Clara, USA) was 597 

used to check RNA integrity following the manufacturer’s guidelines.  598 

Strand-specific sequencing libraries for mRNA and total-RNA were constructed for the 599 

HepG2 cells and human hepatocytes using the TruSeq stranded Total RNA kit (Illumina Inc, 600 

San Diego, USA) starting from 500 ng of the total RNA of the samples. Illumina HiSeq2000 601 

was used to perform the sequencing (101-nucleotide paired-end reads for each library) 602 

resulting in the creation of about 100 million reads per library. 603 

The reads were aligned to the NCBI 37.1 version of human genome using TopHat v2.0.11  604 

[64] in the settings “--library-type fr-firststrand” and “ --b2-very-sensitive”.  605 

Reads mapping to genes were counted using htseq-count from HTSeq-0.6.1p1 [65] in '-f bam 606 

-s reverse -m union -a 20' setting. Annotation file for running htseq-count was downloaded 607 

from GENCODE release 19 (GRCh37.p13). 608 
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Quantification of reads 609 

Paired-end reads from Input, H3K4me3, H3K27me3, H3K36me3 and H3K9me3 ChIP-seq for 610 

primary human hepatocytes and HepG2 cells were mapped with bwa (version 0.6.2) against 611 

hg19. Fragment coverage tracks for browser display were generated with deepTools [66] in 612 

25 bp windows (-bs 25) considering only first reads in a properly mapped pair (--samFlag 66) 613 

with a mapping quality of at least 20 (--MinMappingQuality 20) and normalized to the 614 

effective genome size (--normalizeTo1x 2451960000): 615 

bamCoverage –bam in.bam –o out.bw -of bigwig -bs 25 \ 616 

  --samFlag 66 --minMappingQuality 20 --normalizeTo1x 2451960000 617 

For enrichment and peak calling, only regions on regular autosomes (chr1-chr22; 2.9Gb) were 618 

used: 619 

require(GenomeInfoDb) 620 

genome <- fetchExtendedChromInfoFromUCSC(“hg19”) 621 

genome <- genome[which(!genome$circular &    622 

                 genome$SequenceRole=="assembled-molecule"), 1:2] 623 

genome <- genome[grep("X|Y|M", genome[, 1], invert=T), ] 624 

 625 

require(GenomicRanges) 626 

genome.gr <- GRanges( 627 

  seqnames = genome[, 1],  628 

  ranges = IRanges(start = 1, end = genome[, 2]),    629 

  seqinfo = Seqinfo( 630 

    seqnames = genome[,1],  631 

    seqlengths = genome[,2], 632 

    genome = “hg19”)) 633 

  ) 634 

} 635 

For paired end data, we considered only reads with a mapping quality of at least 20 636 

(mapqual=20). We regarded midpoints of properly mapped fragments (midpoint = TRUE) 637 

that were non-duplicated (filteredFlag=1024) and within 100 to 220 bp in length 638 

(tlenFilter=c(100,220)) in 500 (1,000) bp windows for H3K4me3 (H3K27me3/K36me3/ 639 

K9me3) with normR’s countConfigPairedEnd function: 640 

require(normr) 641 
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countConfig <- countConfigPairedEnd( 642 

  binsize = 500, #1000 643 

  mapqual = 20,  644 

  midpoint = TRUE,  645 

  filteredFlag = 1024, 646 

  tlenFilter = c(100,220) 647 

  shift = 0 648 

) 649 

HepG2 CAGE data was downloaded from GSM849335 [67]. Primary human hepatocyte 650 

CAGE data was downloaded from CAGE 651 

http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.hCAGE/Hepatocyte%2652 

52c%2520donor2.CNhs12349.11603-120I1.hg19.nobarcode.bam (Fantom5 [68]) Reads with 653 

mapping quality of at least 20 were counted with bamsignals 654 

(http://bioconductor.org/packages/bamsignals): 655 

require(bamsignals) 656 

cage <- bamProfile( 657 

  bampath = “Cage.bam”, 658 

  gr = genome.gr,  659 

  binsize = 500, #1000  660 

  mapqual = 20 661 

) 662 

EZH2 ChIP-seq alignments (GSM1003576) and the respective control alignment 663 

(GSM733780) were downloaded from the UCSC encode repository ([2] 664 

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/). For these 665 

single end data, we shifted reads by 100 bp in 3’ direction (shift=100) and counted in 500 666 

(1,000) bp bins: 667 

countConfig <- countConfigSingleEnd( 668 

  binsize = 500, #1000 669 

  mapqual = 20,  670 

  filteredFlag = 1024, 671 

  shift = 100 672 

) 673 

Enrichment calling with enrichR 674 

Read counts in H3K4me3 and H3K36me3 were modeled with 2 components in enrichR and 675 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 24, 2016. ; https://doi.org/10.1101/082263doi: bioRxiv preprint 

https://doi.org/10.1101/082263
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 29 of 39 

 

the fitted background components were used for significance tests. Bins with q-value ≤ 0.05 676 

(H3K4me3) and q-value ≤ 0.1  (H3K27me3/K36me3/K9me3) were called enriched and 677 

exported to bed tracks for display: 678 

enrichment <- enrichR( 679 

  treatment = “ChIP.bam”,  680 

  control = “Input.bam”,  681 

  genome = genome, 682 

  countConfig = countConfig,  683 

  procs = 24 684 

) 685 

exportR( 686 

  x = enrichment,  687 

  filename = “enriched.bed”,  688 

  type = “bed”,  689 

  fdr = 0.05 #0.1 690 

) 691 

DNA-methylation in primary human hepatocytes and HepG2 cells 692 

For whole-genome bisulfite sequencing we produced two types of NGS libraries to achieve 693 

even read coverage. Firstly, we used 100ng of DNA with the TruSeq DNA methylation kit 694 

(Illumina, San Diego, USA) according to the manufacturer’s protocol. The second type was 695 

done as previously described [43]. Briefly, 2 µg of DNA were sheared using a Bioruptor NGS 696 

device (Diagenode, Liege, Belgium) and cleaned-up using Ampure beads XP (Beckman 697 

Coulter, Brea, USA). Then samples were subjected to end-repair, A-tailing and adaptor 698 

ligation steps using components of the TruSeq DNA PCR-Free Library Preparation Kit 699 

(Illumina).  After bisulfite conversion involving the Zymo Gold kit (Zymo, Irvine, USA) the 700 

libraries were PCR amplified for 10-12 cycles. The amplified libraries were purified using 701 

Ampure beads XP and sequenced on three lanes of V3 paired-end flow cells (2x 100bp). 702 

Reads were mapped using BWA [69]and methylation levels were called with Bis-SNP37 [70]. 703 

Beta values were calculated for each bin and weighted by coverage and number of CpGs 𝑀 in 704 

that region: 𝛽 =
∑ 𝑅𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡𝑗

𝑀
𝑗=0 ∗𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑𝑗

∑ 𝑅𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡𝑗
𝑀
𝑗=0

. Only regions with at least 2 CpGs 705 
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covered by reads were reported. 706 

Transcription Start Site Definition 707 

54,763 promoters (extend 750bp down- and upstream of TSS) of 54,849 GENCODE genes 708 

[71] obtained by using GenomicFeatures R package [72]: 709 

require(GenomicFeatures) 710 

gencode <- loadDb("data/gencode.v19.annotation.transcriptDb.sqlite") 711 

genes <- genes(gencode) 712 

proms <- unique(promoters(genes, upstream=750, downstream=750)) 713 

MACS, DFilter, CisGenome, SPP, BCP and MUSIC Peak Calling  714 

Peaks were called with MACS2 [40] (v2.1.0.20150731), DFilter [21] (v1.6), CisGenome [22], 715 

SPP [23], BCP [41] (v1.1) and MUSIC [24]. A FDR threshold of 0.1 was used. To compare 716 

called peaks by above methods to enrichR called regions, overlap of peaks with 500 bp (1,000 717 

bp) windows was calculated for H3K4me3 (H3K36me3). See Supplemental Note for details. 718 

Normalization Factor Comparison with NCIS 719 

NCIS [17] was run in R to calculate the normalization factor for comparison to enrichR’s 720 

normalization factor: 721 

require(NCIS) 722 

ncis <- NCIS( 723 

  chip.data = “ChIP.bed”,  724 

  input.data = “Control.bed”,  725 

  data.type = "BED",  726 

  chr.vec = genome[,1],  727 

  chr.len.vec = genome[,2] 728 

) 729 

ncis.norm <- ncis$est 730 

Regime calling with regimeR 731 

Read counts in H3K27me3 and H3K9me3 in HepG2 cells were modeled in regimeR with 3 732 

components (background, moderate enrichment, high enrichment). Bins with FDR q-value ≤733 

0.1 were called enriched and assigned to an enrichment component by Maximum A Posteriori 734 
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and exported to bed using normR’s exportR function: 735 

regimes <- regimeR( 736 

  treatment = “ChIP.bam”,  737 

  control = “Input.bam”,  738 

  genome = genome, 739 

  models = 3, 740 

  countConfig = countConfig,  741 

  procs = 24 742 

) 743 

exportR( 744 

  x = regimes,  745 

  filename = “regimes.bed”,  746 

  type = “bed”,  747 

  fdr = 0.05 #0.1 748 

) 749 

Difference calling with diffR 750 

Read counts in H3K4me3 and H3K27me3 in primary human hepatocytes (control) and 751 

HepG2 cells (treatment) were modeled in diffR with 3 components (background/no difference, 752 

treatment-enriched, control-enriched) and the mixture component with 𝜃𝑗  closest to θ*  was 753 

used as background for a two-sided significance test. Bins with q-value ≤ 0.05 (0.1) for 754 

H3K4me3 (H3K27me3) were called differentially enriched and assigned to treatment or 755 

control by Maximum A Posteriori.  756 

diffs <- diffR( 757 

  treatment = “ChIP1.bam”,  758 

  control = “ChIP2.bam”,  759 

  genome = genome, 760 

  countConfig = countConfig,  761 

  procs = 24 762 

) 763 

exportR( 764 

  x = diffs,  765 

  filename = “differences.bed”,  766 

  type = “bed”,  767 

  fdr = 0.05 #0.1 768 

) 769 

To analyze differentially enriched regions for precision and recall, mutually exclusive 770 
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enrichment in control (treatment) was obtained by considering enrichR() calls present only in 771 

control (treatment) with respect to treatment (control). For a fair comparison, only significant 772 

regions with a posterior of ≥ 0.50 were considered. 773 

Gene Ontology Analysis 774 

We used topGO [73] on gene ontology “Biological Process” (BP) with algorithms “classic” 775 

(algorithm=”classic”) and “elim” (algorithm=”elim”) for statistics “fisher” (statistic=”fisher”) 776 

and “ks” (statistic=”ks”) for GENCODE gene IDs mapped to Ensembl gene IDs. The “ks” 777 

statistic allows for supplying a score for each entity. We used the diffR calculated q-value as 778 

score. We retained only top 1,000 (n=1000) GO terms ordered by “elim” algorithm and 779 

ranked by “classic” algorithm calculated P-values: 780 

require(topGO) 781 

 782 

#get GO annotated Ensembl Genes 783 

go2ensembl <- annFUN.org(ontology, mapping="org.Hs.eg.db", ID="ensembl") 784 

 785 

#get GENCODE genes and filter these for the ones in gene universe 786 

gencode <- loadDb("data/gencode.v19.annotation.transcriptDb.sqlite") 787 

gene.universe <- intersect( 788 

  unique(GenomicFeatures::genes(gencode)$genes),    789 

  unique(unlist(go2ensembl)) 790 

) 791 

 792 

#set diffR pvalue as score for differentially modified TSSs 793 

idx <- gene.universe %in% diffTSSs 794 

allGenes <- 1-as.integer(idx) 795 

names(allGenes) <- gene.universe 796 

allGenes[idx] <- pvals[diffTSSs %in% gene.universe] 797 

goData <- new("topGOdata", 798 

  description="diffR differential TSS histone marking study (scored)", 799 

  ontology=”BP”,  800 

  allGenes=allGenes, geneSel=function(p) { return(p <= 0.05) }, 801 

  annot=annFUN.GO2genes, GO2genes=go2ensembl, #GO mapping for ensembl IDs 802 

  nodeSize=10 803 

) 804 

 805 

#testing  806 
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resultFisher <- runTest(goData, algorithm="classic", statistic="fisher") 807 

resultKS <- runTest(goData, algorithm="classic", statistic="ks") 808 

resultKS.elim <- runTest(goData, algorithm="elim", statistic="ks") 809 

 810 

#compile results 811 

resDf <- GenTable(goData,  812 

  classicFisher = resultFisher,  813 

  classicKS = resultKS, 814 

  elimKS = resultKS.elim, 815 

  orderBy ="elimKS", 816 

  ranksOf = "classicFisher",  817 

  topNodes=1000 818 

) 819 

ChIPDiff, histoneHMM and ODIN Difference 820 

Differences for H3K4me3 (H3K27me3) between Hepatocytes and HepG2 cells were called 821 

with ChIPDiff [25], histoneHMM (v1.6) [27] and ODIN (v0.4) [26]. A FDR threshold of 0.1 822 

was used.  To compare called peaks by above methods to diffR called regions, overlap of 823 

peaks with 500 bp (1,000 bp) windows was calculated for H3K4me3 (H3K27me3). See 824 

Supplemental Note for details. 825 

HepG2 Genotyping 826 

HepG2 genotype information for hg19 was generated by ENCODE/HudsonAlpha 827 

(GSM999286) and downloaded from UCSC (http://hgdownload.cse.ucsc.edu/goldenPath 828 

/hg19/encodeDCC/wgEncodeHaibGenotype/wgEncodeHaibGenotypeHepg2RegionsRep1.be829 

dLogR.gz). 830 

Data Access 831 

H3K4me3, H3K9me3, H3K27me3, H3K36me3 ChIP-seq and Input data for primary 832 

human hepatocytes have been deposited at the “European Genome-Phenome 833 

Archive” under the accession EGAS00001002080. H3K4me3, H3K9me3, H3K27me3, 834 

H3K36me3 ChIP-seq and Input data for HepG2 have been deposited at the European 835 
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Nucleotide Archive under the accession PRJEB7356. 836 
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