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Abstract 
 

Modern systems biology requires extensive, carefully curated measurements of cellular 

components in response to different environmental conditions. While high-throughput 

methods have made transcriptomics and proteomics datasets widely accessible and relatively 

economical to generate, systematic measurements of both mRNA and protein abundances 

under a wide range of different conditions are still relatively rare. Here we present a detailed, 

genome-wide transcriptomics and proteomics dataset of E. coli grown under 34 different 

conditions. We manipulate concentrations of sodium and magnesium in the growth media, and 

we consider four different carbon sources glucose, gluconate, lactate, and glycerol. Moreover, 

samples are taken both in exponential and stationary phase, and we include two extensive 

time-courses, with multiple samples taken between 3 hours and 2 weeks. We find that 

exponential-phase samples systematically differ from stationary-phase samples, in particular at 

the level of mRNA. Regulatory responses to different carbon sources or salt stresses are more 

moderate, but we find numerous differentially expressed genes for growth on gluconate and 

under salt and magnesium stress. Our data set provides a rich resource for future 

computational modeling of E. coli gene regulation, transcription, and translation.  

 

Introduction 
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A goal of systems biology has been to understand how phenotype originates from genotype. 

The phenotype of a cell is determined by complex regulation of metabolism, gene expression, 

and cell signaling. Understanding the connection between phenotype and genotype is crucial to 

understanding disease and for engineering biology1. Computational models are particularly well 

suited to studying this problem, as they can synthesize and organize diverse and complex data 

in a predictive framework, but detailed experimental studies including many samples are 

needed to understand interactions between different types of omics data2. Much effort is 

currently being spent on understanding how to best integrate information collected about 

multiple cellular subsystems that is derived from different types of high-throughput 

measurements. For example, there are many proposed approaches for relating gene expression 

and protein abundances, focusing on integrative, whole-cell models2–5.  

 

Given the growing interest in integrative modeling approaches, there is a pressing need for high 

quality genome-scale data that is comparable across cellular subsystems and reflects many 

different external conditions. E. coli is an ideal organism to study genome-wide, multi-level 

regulatory effects of external conditions, since it is well adapted to the laboratory environment6 

and was one of the first organisms studied at the whole-genome level7. There have been a 

number of studies of the E. coli transcriptome and/or proteome in response to different growth 

conditions. For example, in cells growing at high density, expression of most amino acid 

biosynthesis genes is down-regulated and expression of chaperones is up-regulated, suggesting  

stresses that these cells experience8. Exposure of E. coli to reduced temperature leads to 

changes in gene-expression patterns consistent with reduced metabolism and growth9. Under 

long-term glucose starvation, mRNAs are generally down-regulated while the protein response 

is more varied10. Specifically, the copy numbers of proteins involved in energy-intensive 

processes decline whereas those of proteins involved in nutrient metabolism remain constant, 

likely to provide the cell with the ability to jump-start metabolism when nutrients become 

available again. A few other larger-scale studies have measured mRNA and/or protein 

abundances under multiple conditions11–14. 

 

Here, we provide a systematic analysis of E. coli gene expression under a wide variety of 

different conditions. We measure both mRNA and protein abundances, at exponential and 

stationary phases, for growth conditions including different carbon sources and different salt 

stresses. We find that mRNAs and proteins display divergent responses to the different growth 

conditions. Further, growth phase yields more systematic differences in gene expression than 

does either carbon source or salt stress, though this effect is more pronounced in mRNAs than 

in proteins. We expect that our data set will provide a rich resource for future modeling work.  

 

Results 

Experimental design and data collection 

We grew multiple cultures of E. coli REL606, from the same stock, under a variety of different 

growth conditions. We measured RNA abundances under all conditions and matching protein 

abundances for approximately 2/3 of the conditions (Figure 1 and Supplementary Table S1). We 

also measured central metabolic fluxes for a subset of conditions using glucose as carbon 

source (Supplementary Table S1). Results from one of these conditions, long-term glucose 

starvation, have been presented previously10. Conditions not previously described include one 
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additional starvation experiment, using glycerol instead of glucose as carbon source, 

exponential and stationary phase cultures using either gluconate or lactate as carbon source, 

and conditions varying Mg2+ and Na+ concentrations.  

 

Measurements of RNA and protein abundances were carried out as previously described10. All 

resulting data sets were checked for quality, normalized, and log-transformed. Our final data 

set consisted of 152 RNA samples, 105 protein samples, and 65 flux samples (Supplementary 

Table S1) 59 of the flux samples are associated with high Mg+2 and high Na+ experiments. 

 

Our raw RNA-seq data covers 4279 distinct mRNAs, our protein data covers 4201 distinct 

proteins, and our flux data covers 13 different metabolic reactions. All raw data files are 

available in appropriate repositories (see Methods for details), and final processed data are 

available as Supplementary Tables S2, S3, and S4. 

 

Finally, we measured growth rates in exponential phase for all experimental conditions. We 

found that doubling times varied between 50 and 100 minutes among the various conditions 

(Figure 2). Growth was the fastest when glucose was used as carbon source and the slowest 

when the carbon source was lactose. Growth was also reduced for high Na+ concentrations and 

very high or low Mg2+ concentrations. Surprisingly, we found a broad range of Mg2+ 

concentrations (0.02mM to 200mM) in which growth rate remained virtually unchanged (Figure 

2). 

 

Broad trends of gene expression differ between mRNA and proteins 

To identify broad trends of gene expression among the different growth conditions, we 

performed hierarchical clustering on both mRNA and protein abundances (Figures 3 and 4). For 

mRNA, we found that differences in gene expression were primarily driven by the growth phase 

(exponential vs. stationary/late stationary). Nearly all exponential samples clustered together in 

one group, separate from the vast majority of stationary and late-stationary samples (Figure 3). 

Mg2+ levels, Na+ levels, and carbon source had less influence on the clustering results. We also 

found a similar result for protein abundances (Figure 4). The exponential-phase samples 

grouped together, separated from stationary and late stationary samples. Similarly, Na+ levels 

and carbon sources also seemed to be grouped together upon clustering. 

 

To quantify the clustering patterns of mRNA and protein abundances, we defined a metric that 

measured how strongly clustered a given variable of the growth environment (growth phase, 

Mg2+ level, Na+ level, carbon source) was relative to the random expectation of no clustering. 

For each variable, we calculated the mean cophenetic distance between all pairs corresponding 

to the same condition (e.g., for growth phase, all pairs sampled at exponential phase and all 

pairs sampled at stationary/late stationary phase). The cophenetic distance is defined as the 

height of the dendrogram produced by the hierarchical clustering from the two selected leafs 

to the point where the two branches merge. We then converted each mean cophenetic 

distance into a z-score, by resampling mean cophenetic distances from dendograms with 

reshuffled leaf assignments. A z-score below −1.96 indicates that the mRNA or protein 

abundances are clustered significantly by the corresponding variable. 
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We found that mRNA abundances were significantly clustered by growth phase, with a z-score 

of −23.99 (Table 1). Na+ and Mg2+ levels displayed the next-largest z-scores by magnitude, of 

−1.54 and −1.46, but these were not significantly different from zero. The z-score for carbon 

source was 1.16, which implies that there is no significant clustering by carbon source in the 

mRNA data. Importantly, when we calculated a z-score for batch number, we found that batch 

effects also significantly influenced mRNA abundances, with z = −2.82. Batch number here 

represents cultures grown at the same time, in parallel. Thus, batch effects may represent 

fluctuations in incubator temperatures, slight differences in growth medium composition or 

water quality, or effects of reviving the initial inoculum of cells, among other possibilities.  

For protein abundances, the variables Na+ level, growth phase, and carbon source were all 

significantly clustered, with z-scores of −4.78, −4.21, and −3.15, respectively (Table 1). Batch 

number had a z-score of −23.29, which implies that there were strong batch effects present in 

the protein data. 

In summary, the largest effect in mRNA abundances, growth phase, was similarly present in 

proteins. However, protein abundances clustered also by Na+ and carbon source, effects that 

were not present in the mRNA data. Finally, both mRNA and protein data were influenced by 

batch effects, and the effect was much more pronounced for proteins than for mRNA (Table 1). 

Identification of differentially expressed genes 

We next asked under which conditions and to what extent RNA and protein expression were 

altered. To identify differentially expressed mRNAs and proteins, we used DESeq215. Since our 

data clustered significantly by growth phase, we analyzed RNA and protein expression 

separately for exponential and stationary phase. For each growth phase, we defined the 

reference condition to be glucose as carbon source, with 5 mM Na+ and 0.8 mM Mg2+. This is 

the baseline formulation of media used in the glucose time-course samples10. We then 

compared RNA and protein abundances between this reference condition and the alternative 

conditions (different carbon sources, elevated Na+, and elevated or reduced Mg2+). Note that a 

detailed comparison of reference exponential phase vs. reference stationary phase has already 

been published10. 

 

We defined significantly differentially expressed genes as those whose abundance had at least a 

two-fold change (log2 fold change > 1) between the reference condition and a chosen 

experimental condition, at a false-discovery-rate (FDR) corrected P value < 0.05. We found that 

the number of significantly differentially expressed mRNAs and proteins varied substantially 

between exponential and stationary phase and between mRNAs and proteins (Figure 5). In 

general, there were fewer differentially expressed genes in stationary phase than in 

exponential phase. Further, protein abundances showed the most differential regulation for 

high Na+ and for the carbon sources glycerol and lactate, whereas mRNA showed the most 

differential regulation for high Na+ levels in stationary phase, and for low Mg2+ levels and for 

the carbon sources glycerol and lactate in exponential phase (Figure 5). 

 

Next, we asked how much overlap there was among differentially expressed genes between the 

various growth conditions. To simplify this analysis, we did not distinguish between up- or 

down-regulated genes, and we combined low and high Mg2+ into one group “Mg stress” and 

glycerol, lactate, and gluconate into one group “carbon source”. (Note that differentially 

expressed genes were still identified for individual conditions, as described above, and were 
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combined into “Mg stress” and “carbon source” only for the final comparison.) At the mRNA 

level, there was some overlap (21.7%) between carbon source and Mg2+ stress in exponential 

phase. All other overlaps where minimal, ~5% or less (Figure 6). At the protein level, there was 

overlap between Na+ stress and carbon source (14.9% in exponential phase, 10.7% in stationary 

phase), while all other overlaps were also minimal, ~3% or less (Figure 6). 

 

We also identified significantly altered biological pathways and molecular activities of gene 

products. We use the Kyoto Encyclopedia of Genes and Genomes (KEGG)16 for biological 

pathways and annotations from the Gene Ontology (GO) Consortium for molecular functions17. 

Figure 7 and Supplementary Figure 1 show the top 5 significantly altered biological pathways 

(as defined in the KEGG database) and molecular functions (as defined by GO annotations) 

under different conditions, respectively, as determined by DAVID18. In all cases, we used a 

cutoff of 0.05 on false-discovery-rate (FDR)-corrected P values to identify significant 

annotations. We found numerous significantly altered KEGG pathways (Figure 7) but only two 

significantly altered GO annotations: “structural constituent of ribosome” and “structural 

molecule activity” (Figure S1). 

Finally, we looked at individual, differentially expressed genes associated with specific 

pathways and/or functions (Supplementary Figures 2–22). As an example, the differentially 

expressed mRNAs associated with significantly altered KEGG pathways under high Mg2+ 

concentrations in exponential phase are shown in Figure 8A. Three pathways are significantly 

altered; sulfur metabolism and nitrogen metabolism are mostly up-regulated and flagellar 

assembly is mostly down-regulated. Changes in sulfur metabolism in this condition might reflect 

a linked increased in the concentration of sulfate (SO4
2–), as this was the counterion in the salt 

that was added to increase Mg2+ levels. By contrast, using lactate instead of glucose as carbon 

source caused up-regulation of pyruvate metabolism, citrate cycle, and carbon metabolism at 

the protein level in exponential phase (Figure 8B). 

 

Metabolic flux ratios under salt stress 

For the high sodium and high magnesium experiments, we also determined metabolic flux 

through central metabolism by analyzing 13C incorporation into protein-bound amino acids. We 

here analyzed only flux samples taken in exponential phase, since stationary-phase samples 

have an unclear interpretation10. For each condition, flux samples were analyzed in triplicate 

(except one, which was analyzed in duplicate only), and 13 different flux ratios were measured 

for each sample. The flux ratios were then averaged across replicates (Supplementary Figure 

23). We saw no significant changes in flux ratios with increasing Na+ (linear regression, all P > 

0.05 after FDR correction, Supplementary Table 5). Results were similar for Mg2+. Due to the 

wide range of Mg2+ concentrations considered, we regressed flux ratios against log-transformed 

Mg2+ concentrations. Again, we saw no significant changes in any flux ratio with increasing Mg2+ 

(linear regression, all P > 0.05 after FDR correction, Supplementary Table 5). 

 

We also asked whether the flux ratios changed with doubling time rather than with ion 

concentration, since doubling time is not necessarily monotonic in ion concentration (Figure 

2B). For this analysis, we pooled all flux measurements and plotted flux ratios against doubling 

times (Figure 9). Again, we saw no significant relationship between flux ratios and doubling 

time after FDR correction (Supplementary Table 6). However, we note that the branches 

erythrose-4-phosphate from pentose-5-phosphate and pyruvate from malate (upper bound) 
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showed a significant relationship before correction for multiple testing (P = 0.026 and P = 0.018, 

respectively, Supplementary Table 6), both driven by one outlying data point for the slowest-

growing condition, at 300 mM Na+. 

 

Discussion 

 

We studied the regulatory response of E. coli under a wide variety of different growth 

conditions. The experimental conditions we considered include four different carbon sources, 

different levels of Na+ and Mg2+ stress, and growth into deep stationary phase, up to two weeks 

post inoculation. We found that gene regulation changes the most with respect to growth 

phase; in general, the exponential phase under one condition is more similar to the exponential 

phase under another condition than to the stationary phase under the same condition. Further, 

we found little overlap in differentially expressed genes under different growth conditions. 

Finally, we found that the ratios of fluxes through alternative branches within central 

metabolism remained approximately constant under salt stress, despite substantial changes in 

doubling times.  

 

Our data provides a comprehensive picture of E. coli in terms of number, range, and depth of 

different stresses, comparable and complementary to other recently published datasets. For 

example, Schmidt et al.
12 considered 22 unique conditions and measured abundances of >2300 

proteins. mRNA abundances were not measured. Soufi et al.
11 considered 10 unique conditions 

and also measured abundances of >2300 proteins. They were interested primarily in up- and 

down-regulated proteins under different ethanol stresses, and they found down-regulation of 

genes associated with ribosomes and protein biosynthesis during ethanol stress. Such genes 

were similarly down-regulated in our study during stress induced by high Na+ concentrations. 

Lewis et al.
13 considered only 3 different carbon sources but measured mRNA and protein 

abundances in different strains adapted to these growth conditions. Finally, Lewis et al.
14 

compiled a database of 213 mRNA expression profiles covering 70 unique conditions, including 

different carbon sources, terminal electron acceptor, growth phase, and genotype. In 

comparison, we considered 34 unique conditions, measured 152 mRNA expression profiles, 105 

protein expression profiles, and 59 flux profiles, and used the exact same E. coli genotype 

throughout. 

 

Similar to our prior study10, we observed clear trends in the differential expression of mRNAs 

and proteins. In particular, we had reported previously10 that mRNAs are widely down-

regulated in stationary phase whereas only select proteins are down-regulated. Consistent with 

that observation, we found here that mRNAs were significantly and strongly clustered by 

growth phase (z = −23.21) whereas proteins were not (z = −1.26). By contrast, at the protein 

level we saw significant clustering by carbon source (z = −2.80), which we did not see at the 

mRNA level. More specifically, we had found earlier10 that energy-intensive processes were 

down-regulated and stress-response proteins up-regulated in stationary phase. Similarly, we 

observed here that high Na+ stress conditions also led to the down-regulation of energy-

intensive processes.  

 

A number of genes and pathways that we found to be influenced by treatment conditions are 

consistent with prior knowledge from the literature. For instance, we found that increasing the 
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concentration of Na+ and Mg2+ decreased transcription of the flagellar genes during exponential 

growth, as seen previously19. We also found that high concentrations of Mg2+ induce an 

increase in mRNA expression of sulfur and nitrogen transport proteins, and an increase in the 

enzymes necessary to produce the siderophore enterobactin (necessary for obtaining iron from 

the environment). These regulatory changes could be due to the high Mg2+ concentrations 

interfering with the bacterial membrane potential, and thereby inhibiting cotransporters that 

are coupled to this gradient. This effect has been previously described for iron20. High Na+ 

concentrations also significantly reduced the expression of a large number of proteins, mostly 

either involved in the biosynthesis of amino acids or components of the ribosome. These 

changes may simply reflect stress induced by the high Na+ concentrations used in these 

experiments. 

 

Altering the carbon source, as well, provided predictable changes in gene expression.  For 

instance, providing glycerol as the sole carbon source instead of glucose increases expression of 

glpX, part of the glp operon, which is involved in glycerol uptake21. Gluconate as a carbon 

source increases expression of genes from the gnt and idn operons, both involved in gluconate 

metabolism22,23. Finally, using lactate as a carbon source induces the expression of lldD (lctD), a 

gene required for lactate utilization in E. coli
24. 

 

Large-scale, high-throughput gene-expression studies are frequently confounded by batch 

effects that can give rise to incorrect conclusions if they are not accounted for25. We saw such 

effects in our study as well. In our data, the batch number indicates bacterial samples that were 

grown at the same time. Not unexpectedly, our data showed significant clustering by batch 

number, and more so in protein data than in mRNA data (z scores of −20.54 and −2.11, 

respectively). Batch effects are not inherently a problem, as long as one is aware of their 

existence and analyzes data accordingly. Here, in our differential expression analysis, we 

corrected for batch effects by including batch as a distinct variable in the DESeq model (see 

Methods), as recommended. How to best correct for batch effects is a topic of ongoing 

investigations, and increasingly sophisticated methods are being developed to separate batch 

effects from real signal26–29. 

 

Given the many cellular changes observed in mRNA and protein levels, we turned to 13C labeling 

techniques10,30,31 to examine the extent to which these changes affected the relative flux of 

metabolites through different central metabolic pathway branch points during exponential 

growth. For this work, we concentrated upon growth on glucose during Na+ and Mg2+ stresses. 

Across these conditions, growth rates change over nearly a two-fold range, with the doubling 

time changing from approximately 50 to 95 minutes. In particular, both high Na+ and high Mg2+ 

levels reduced growth by a third. Despite this substantial effect on growth, we observed no 

significant changes in the relative flux through different reactions in central metabolism. The 

only exception was a potential decrease in pentose-5-phosphate pathway use and increase in 

flow through malic enzyme at 300 mM Na+. The general picture, however, was that 

homeostasis in central metabolism was sufficient to ward off significant changes in relative 

pathway use despite large changes in overall growth rate and the pools of mRNA and proteins. 

 

In summary, our study provides a large and comprehensive dataset for investigating the gene-

regulatory response of E. coli under different growth conditions, both at the mRNA and the 

protein level. We found systematic differences in gene-expression response between 
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exponential and stationary phase, and between mRNAs and proteins. Our dataset provides a 

rich resource for future modeling of E. coli metabolism. 

 

Materials and Methods 

Cell growth, RNA-seq, proteomics, and metabolic flux measurements  

 

Growth and harvesting of E. coli B REL606 cell pellets for the multiomic analysis was performed 

as previously described10, with the following additional details. For tests of different carbon 

sources, the Davis Minimal (DM) medium used was supplemented with 0.5 g/L of the specified 

compound (glycerol, lactate, or gluconate) instead of glucose. Mg2+ concentrations were varied 

by changing the amount of MgSO4 added to DM media from the concentration of 0.83 mM that 

is normally present. For tests of different Na+ concentrations, NaCl was added to achieve the 

final concentration. The base recipe for DM already contains ~5 mM Na+ due to the inclusion of 

sodium citrate, so 95 mM NaCl was added for the 100 mM Na+ condition, for example. 

Exponential-phase samples were taken during growth when the OD600 reached 20-60% of the 

maximum achieved after saturating growth. Stationary phase samples were collect 20-24 hours 

after the corresponding exponential sample. The exact sampling times for each condition are 

provided in Supplementary Table S1. 

 

After sample collection, RNA-seq, mass-spec proteomics, and metabolic flux analysis were 

performed exactly as described10. 

 

Doubling times were estimated from OD600 measurements. Specifically, the logarithms of all 

OD600 values in the exponential part of each growth curve, defined as when OD600 values were 

between 0.05 and 0.75 times the maximum observed OD600 at stationary phase, were fit to a 

linear model with respect to time. Doubling times were calculated as loge2 divided by the fit 

slope for each biological replicate separately. Means and confidence intervals were calculated 

from three replicate growth curves for all conditions except for gluconate and lactate, which 

had measurements for only two replicates. 

Normalization and quality control of RNA and protein counts 

 

Our raw input data consisted of RNA and protein counts. Protein counts can be fractional, 

because some peptide spectra cannot be uniquely mapped to a single protein, so they are 

equally divided amongst these proteins. We rounded all protein counts to the nearest integer 

for subsequent analysis. We set the counts of all unobserved proteins to zero. For RNA, we only 

analyzed the counts of reads that overlapped annotated protein coding genes (mRNA counts). 

Subsequently, all mRNA and protein counts were analyzed in the same manner. 

  

We next performed quality control, by checking replicates of the same condition for 

consistency. For all pairs of replicate samples, we made histograms of the log-differences of 

RNA or protein counts. If the two samples differ only by experimental noise, then the resulting 

histogram should have a mode at 0 and be approximately bell-shaped. If a sample consistently 

shows deviations from this expectation when compared to other samples, then there are likely 

systematic problems with this sample. We tested the quality of our mRNA and protein samples 

by looking the similarity between samples collected in similar conditions but from different 
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batches whenever possible, i.e., whenever we have at least 3 replicates. Out of 152 mRNA 

samples we found only two samples (samples MURI_091 and MURI_130, Supplementary Table 

1) that seemed to deviate from their biological replicas. Among 105 protein samples we found 

no major deviation between biological replicas. Because of this broad consistency among all 

samples for the same growth conditions, we keep all samples for subsequent analysis. 

 

After quality control, we normalized read counts using size-factors calculated via DESeq215. 

Because we had many mRNAs and proteins with counts of zero at some condition, we added 

pseudo-counts of +1 to all counts before calculating size factors. We then used those size 

factors to normalize the original raw counts (i.e., without pseudo-counts). 

 

Clustering 

 

We clustered normalized mRNA and protein counts based on their Euclidian distance, using the 

complete linkage method implemented in the flashclust32 package, which is a faster 

implementation of the hclust function in R. This method defines the cluster distance 

between two clusters as the maximum distance between their individual components33. At 

every stage of the clustering process, the two closest clusters are merged into the next bigger 

cluster. The final outcome of this process is a dendogram that measures the closeness of 

different samples to each other. 

 

To assess whether the clustering process significantly grouped similar samples together, we 

employed a reshuffling test. For any category that we tested for significant clustering (e.g., 

carbon source, Na stress, or batch number), we calculated the mean cophenetic distance in the 

clustering dendogram between all pairs belonging to the same level of the categorical variable 

tested (e.g., same carbon source). We then repeatedly reshuffled the labeling within each 

category and recalculated the mean cophenetic distance each time. Finally, we calculated z 

scores of the original cophenetic distance relative to the distribution of reshuffled values.  

 

Identifying differentially expressed genes 

 

We used DESeq215 to identify differentially expressed mRNAs and proteins across conditions. 

We used two reference conditions in our comparisons, one for exponential phase and one for 

stationary phase. The reference conditions always had glucose as carbon source and base Na+ 

and Mg2+ concentrations. We did not compare exponential phase to stationary phase samples, 

since this comparison was done in depth previously10 for samples grown on glucose and with 

base Na+ and Mg2+ concentrations. 

 

We corrected for possible batch effects by including batch number as a predictor variable in the 

design formula of DESeq2. In general, our design formula was ~batch_number + 
variable_of_interest, where variable_of_interest was either a categorical 

variable representing the carbons source or growth phase (exponential or stationary) or a 

quantitative variable representing Na+ level or Mg2+ level. 
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We considered genes as differentially expressed between two conditions if their log2 fold 

change was > 1 and their FDR-corrected P value < 0.05. We subsequently annotated 

differentially expressed genes with DAVID18 version 6.8 Beta released in May 2016. We 

considered both KEGG pathways16 and GO annotations17. 

 

Statistical analysis and data availability 

 

All statistical analyses were performed in R. The relevant R scripts and processed data are 

available on github: https://github.com/umutcaglar/ecoli_multiple_growth_conditions 

Raw RNA reads and peptide spectra are being submitted to the appropriate repositories. 

 

References 

1. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past 

successes for mendelian disease, future approaches for complex disease. Nat. Genet. 33, 

228–237 (2003). 

2. Zhang, W., Li, F. & Nie, L. Integrating multiple ‘omics’ analysis for microbial biology: 

application and methodologies. Microbiol. Read. Engl. 156, 287–301 (2010). 

3. Joyce, A. R. & Palsson, B. Ø. The model organism as a system: integrating ‘omics’ data sets. 

Nat. Rev. Mol. Cell Biol. 7, 198–210 (2006). 

4. Ideker, T. et al. Integrated Genomic and Proteomic Analyses of a Systematically Perturbed 

Metabolic Network. Science 292, 929–934 (2001). 

5. Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from 

proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012). 

6. Lee, S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 14, 98–105 (1996). 

7. Blattner, F. R. et al. The Complete Genome Sequence of Escherichia coli K-12. Science 277, 

1453–1462 (1997). 

8. Yoon, S. H., Han, M.-J., Lee, S. Y., Jeong, K. J. & Yoo, J.-S. Combined transcriptome and 

proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng. 

81, 753–767 (2003). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082032doi: bioRxiv preprint 

https://doi.org/10.1101/082032


 11

9. Gadgil, M., Kapur, V. & Hu, W.-S. Transcriptional response of Escherichia coli to temperature 

shift. Biotechnol. Prog. 21, 689–699 (2005). 

10. Houser, J. R. et al. Controlled Measurement and Comparative Analysis of Cellular 

Components in E . coli Reveals Broad Regulatory Changes in Response to Glucose 

Starvation. PLOS Comput Biol 11, e1004400 (2015). 

11. Soufi, B., Krug, K., Harst, A. & Macek, B. Characterization of the E. coli proteome and its 

modifications during growth and ethanol stress. Front. Microbiol. 6, 103 (2015). 

12. Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. 

Biotechnol. 34, 104–110 (2016). 

13. Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal 

growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010). 

14. Lewis, N. E., Cho, B.-K., Knight, E. M. & Palsson, B. O. Gene Expression Profiling and the Use 

of Genome-Scale In Silico Models of Escherichia coli for Analysis: Providing Context for 

Content. J. Bacteriol. 191, 3437–3444 (2009). 

15. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 

16. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 

Res. 28, 27–30 (2000). 

17. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–

29 (2000). 

18. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large 

gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2008). 

19. Shi, W., Li, C., Louise, C. J. & Adler, J. Mechanism of adverse conditions causing lack of 

flagella in Escherichia coli. J. Bacteriol. 175, 2236–2240 (1993). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082032doi: bioRxiv preprint 

https://doi.org/10.1101/082032


 12

20. Braun, V., Hantke, K. & Köster, W. Bacterial iron transport: mechanisms, genetics, and 

regulation. Met. Ions Biol. Syst. 35, 67–145 (1998). 

21. Weissenborn, D. L., Wittekindt, N. & Larson, T. J. Structure and regulation of the glpFK 

operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12. J. 

Biol. Chem. 267, 6122–6131 (1992). 

22. Fujita, Y., Nihashi, J. & Fujita, T. The characterization and cloning of a gluconate (gnt) 

operon of Bacillus subtilis. J. Gen. Microbiol. 132, 161–169 (1986). 

23. Bausch, C. et al. Sequence analysis of the GntII (subsidiary) system for gluconate 

metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli. J. 

Bacteriol. 180, 3704–3710 (1998). 

24. Dong, J. M., Taylor, J. S., Latour, D. J., Iuchi, S. & Lin, E. C. Three overlapping lct genes 

involved in L-lactate utilization by Escherichia coli. J. Bacteriol. 175, 6671–6678 (1993). 

25. Gilad, Y. & Mizrahi-Man, O. A reanalysis of mouse ENCODE comparative gene expression 

data. F1000Research 4, 121 (2015). 

26. Chen, C. et al. Removing batch effects in analysis of expression microarray data: an 

evaluation of six batch adjustment methods. PloS One 6, e17238 (2011). 

27. Lazar, C. et al. Batch effect removal methods for microarray gene expression data 

integration: a survey. Brief. Bioinform. 14, 469–490 (2013). 

28. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data 

using empirical Bayes methods. Biostat. Oxf. Engl. 8, 118–127 (2007). 

29. Luo, J. et al. A comparison of batch effect removal methods for enhancement of prediction 

performance using MAQC-II microarray gene expression data. Pharmacogenomics J. 10, 

278–291 (2010). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082032doi: bioRxiv preprint 

https://doi.org/10.1101/082032


 13

30. Zamboni, N., Fendt, S.-M., Rühl, M. & Sauer, U. 13C-based metabolic flux analysis. Nat. 

Protoc. 4, 878–892 (2009). 

31. Zamboni, N., Fischer, E. & Sauer, U. FiatFlux--a software for metabolic flux analysis from 

13C-glucose experiments. BMC Bioinformatics 6, 209 (2005). 

32. Langfelder, P. & Horvath, S. Fast R Functions for Robust Correlations and Hierarchical 

Clustering. J. Stat. Softw. 46, (2012). 

33. Soni Madhulatha, T. An Overview on Clustering Methods. ArXiv E-Prints 1205, 

arXiv:1205.1117 (2012). 

 

Acknowledgments 

This study was funded by Army Research Office (ARO,http://www.arl.army.mil/) grant W911NF-

12-1-0390 to CJM, EMM, JEB, and COW. EMM also acknowledges support from the NIH (DP1 

OD009572) and Welch Foundation (F1515). COW also acknowledges support from the NIH (R01 

GM088344, R01 AI120560) and the NSF (Cooperative agreement no. DBI-0939454, BEACON 

Center). The Texas Advanced Computing Center (TACC) at The University of Texas at Austin 

provided high-performance computing resources.  

 

Contributions 

M.U.C., J.H.R., C.J.M., E.M.M., J.E.B., C.O.W. conceived the study and designed the experiments. 

J.R.H., C.S.B., D.R.B., S.M.C., A.D. performed the experiments. V.S., D.K.S. contributed computer 

code used for data analysis. M.U.C., J.H.R., W.F.L., B.L.S., V.S., D.V.W., J.E.B., C.O.W. analyzed 

the data. M.U.C., W.F.L., V.S., D.V.W. prepared the figures. M.U.C., B.L.S., D.V.W., C.O.W. wrote 

the initial paper draft. All authors reviewed and edited the final manuscript 

Competing interests 

The authors declare no competing financial interests. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082032doi: bioRxiv preprint 

https://doi.org/10.1101/082032


 14

Figures 

 

 
 

Figure 1: Experimental setup. We performed seven different experiments in which we varied 

the duration of growth and the temporal density of sampling, the carbon source, and ion 

concentrations. For each experimental condition, bacteria were grown in three biological 

replicates. We subsequently performed whole-transcriptome RNA-Seq for all experimental 

conditions and mass-spec proteomics for the majority of them. We considered four different 

carbon sources: glucose, glycerol, gluconate, and lactate; we also considered high sodium and 

both low and high magnesium levels. For the time-course and carbon-source experiments, we 

used base-level Na+ (5 mM) and Mg2+ (0.8 mM) throughout (indicated by [*] in the sodium and 

magnesium experiments).  
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Figure 2: Doubling times under various growth conditions. We measured doubling times under 

exponential phase for all growth conditions. The red points and dashed orange lines represent 

the doubling time at the base condition (glucose, 5 mM Na+, 0.8 mM Mg2+). Doubling times 

were measured in triplicates and error bars represents 95% confidence intervals of the mean. 
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(A) Doubling times with respect to carbon sources. (B) Doubling times with respect to Mg
2+

 

concentrations. (C) Doubling times with respect to Na
+
 concentrations.  

 

 

 

Figure 3: Clustering of mRNA abundances. The heatmap shows 4279 mRNA abundances for 

each of 143 samples, clustered both by similarity across genes and by similarity across samples. 

The growth conditions for each sample are indicated by the color coding along the top of the 

heatmap; the color coding is defined in the legend at the bottom.  
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Figure 4: Clustering of protein abundances. The heatmap shows 4279 protein abundances for 

each of 101 samples, clustered both by similarity across genes and by similarity across samples. 

The growth conditions for each sample are indicated by the color coding along the top of the 

heatmap; the color coding is defined in the legend at the bottom.  
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Figure 5. Number of differentially expressed genes under different conditions. We separately 

analyzed mRNA and protein abundances, each for both exponential and stationary growth 

phase. In all four cases, gene expression levels were compared to the corresponding condition 

with glucose as carbon source and baseline sodium and magnesium levels. Differentially 

expressed genes were defined has having at least a two-fold change relative to baseline and a 

false-discovery rate <0.05. 
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Figure 6: Overlap of differentially expressed genes among conditions. For all differentially 

expressed genes (identified as in Figure 5), we determined to what extent they were unique to 

specific conditions or appeared in multiple conditions. For simplicity, we here lumped all 

carbon-source experiments, all sodium experiments, and all magnesium experiments into one 

group each. Overall, we found relatively little overlap in the differentially expressed genes 

among these conditions. (A) mRNA, exponential phase. (B) protein, exponential phase. (C) 

mRNA, stationary phase. (D) protein, stationary phase. 
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Figure 7: Significantly differentially expressed KEGG pathways. For each condition, we show 

the top-5 differentially expressed KEGG pathways as determined by either mRNA or protein 

abundances. Empty boxes indicate that no differentially expressed pathways were found. The 

arrows next to pathway names indicate the proportion of up- and down-regulated genes 

among the significantly differentially expressed genes in this pathway. One up arrow indicates 

that 60% or more of the genes are up-regulated, two arrows correspond to 80% or more genes, 

0
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and three arrows correspond to 95% or more genes being up-regulated. Similarly, down arrows 

indicate the proportion of down-regulated genes. (A) Exponential phase. (B) Stationary phase.  

 
 

Figure 8: Examples of significantly differentially expressed KEGG pathways and associated 

genes. The top differentially expressed KEGG pathways are shown along the y axis, and the 

relative fold change of the corresponding genes is shown along the x axis. For each KEGG 

pathway, we show up to 10 of the most significantly changing genes. (A) Differentially 

expressed genes under high Mg2+ levels in exponential phase, as determined by mRNA 

abundances. (B) Differentially expressed genes under lactate as carbon source in exponential 

phase, as determined by protein abundances. Significant changes for all conditions are shown 

in Supplementary Figures 2–22. 
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Figure 9: Flux ratios versus doubling times. 13 different flux ratios were measured for varying 

Na+ and Mg2+ concentrations (Supplementary Figure 23). Here, these flux ratios are shown as a 

function of the corresponding doubling times. The specific fluxes considered and their 

shorthand labels as used here are defined in Ref. 31. There was no significant association 

between any of the flux ratios and doubling time after correction for multiple testing 

(Supplementary Table 6). 
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Tables 

 

Table 1: Clustering of mRNA and protein abundances by different growth conditions. The z 

scores represent mean cophenetic distances between all pairs of conditions with the same 

label, normalized by the distribution of mean distances obtained after randomly reshuffling 

condition labels. The overall z score tests for significant clustering within a given variable, and 

the individual z score tests for significant clustering within a given condition. Significant 

clustering (defined as |z|>2) is indicated with a *. 

mRNA 

Variable Overall z score   Condition z score   # samples 

Growth phase −23.21 * Exponential −11.15 * 79 

Stationary 0.30   63 

Late stationary −2.06 * 10 

Carbon source 1.41  Glucose 1.53 115 

Glycerol −1.51 25 

Lactate −1.93 6 

Gluconate −0.47 6 

Mg Level −1.82  Low Mg2+ −0.75   36 

Base Mg2+ −0.78   92 

High Mg2+ −1.06 24 

Na Level −4.34 * Base Na+ −4.20 * 136 

High Na+ 2.85 16 

Batch number −2.11 *         

Protein 

Variable Overall z score   Condition z score   # samples 

Growth phase −1.26  Exponential −0.82 56 

Stationary 0.22   37 

Late stationary −0.08   12 

Carbon source −2.80 * Glucose −2.34 * 66 

Glycerol 1.35 27 

Lactate −2.73 * 6 

Gluconate −2.63 * 6 

Mg Level −0.50  Low Mg2+ 0.85   6 

Base Mg2+ −0.44   87 

High Mg2+ −0.42 12 

Na Level −1.74  Base Na+ −0.94 94 

High Na+ −5.61 * 11 

Batch number −20.54 *         
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