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Abstract 

Recent work has hinted at the linkage disequilibrium (LD) dependent architecture of 

human complex traits, where SNPs with low levels of LD (LLD) have larger per-SNP 

heritability after conditioning on their minor allele frequency (MAF). However, this has 

not been formally assessed, quantified or biologically interpreted. Here, we analyzed 

summary statistics from 56 complex diseases and traits (average N = 101,401) by 

extending stratified LD score regression to continuous annotations. We determined that 

SNPs with low LLD have significantly larger per-SNP heritability. Roughly half of the 

LLD signal can be explained by functional annotations that are negatively correlated with 

LLD, such as DNase I hypersensitivity sites (DHS) and histone marks. The remaining 

signal is largely driven by MAF-adjusted predicted allele age (P = 2.38 x 10-104), with the 

youngest 20% of common SNPs explaining 3.9x more heritability than the oldest 20% —

substantially larger than MAF-dependent effects (1.8x). We also inferred jointly 

significant effects of other LD-related annotations, including smaller per-SNP heritability 

for SNPs in high recombination rate regions, opposite to the direction of the LLD effect 

but consistent with the Hill-Robertson effect. Effect directions were remarkably 

consistent across traits, but with varying magnitude. Forward simulations confirmed that 

these findings are consistent with the action of negative selection on deleterious variants 

that affect complex traits, complementing efforts to learn about negative selection by 

analyzing much smaller rare variant data sets.   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2016. ; https://doi.org/10.1101/082024doi: bioRxiv preprint 

https://doi.org/10.1101/082024
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction  
Estimating the heritability explained by SNPs1,2, and its distribution across 

chromosomes3,4, allele frequencies5 and functional regions6–10, has yielded rich insights 

into the polygenic architecture of human complex traits. Recent work has hinted at 

linkage disequilibrium (LD) dependent architectures, defined as a dependence of causal 

effect sizes on levels of LD (LLD) after conditioning on minor allele frequency (MAF), 

for several complex traits. LD-dependent architectures bias SNP-heritability estimates11, 

and downward biases have been observed for several traits11–13, suggesting larger causal 

effect sizes for genetic variants with low LLD. Indeed, heritability is enriched in 

functional annotations such as DNase I hypersensitivity sites (DHS)7, histone marks8,10, 

and regions with high GC-content9, which all have low LLD7,14,15. On the other hand, 

regions of low recombination rate, which have high LLD, are enriched for exonic 

deleterious and disease-associated variants16, suggesting an LD-dependent architecture of 

opposite effect.  

Despite these observations, LD-dependent architectures have not been formally 

assessed, quantified, or biologically interpreted. To investigate this, we extended 

stratified LD score regression8, a method that partitions the heritability of binary genomic 

annotations using GWAS summary statistics, to continuous-valued annotations; our 

method produces robust results in simulations. We applied our method to a broad set of 

LD-related annotations, including LLD, predicted allele age and recombination rate, to 

analyze summary statistics from 56 complex traits and diseases (average N=101,401), 

including 18 traits from the 23andMe, Inc. research database and 15 traits from the UK 

Biobank. Our results implicate the action of negative selection on deleterious variants 

that affect complex traits, as we demonstrate using forward simulations.  
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Results 
Overview of methods 

Stratified LD score regression8 is a method for partitioning heritability across overlapping 

binary annotations using GWAS summary statistics. The idea of this method is that, for a 

polygenic trait, LD to an annotation that is enriched for heritability will increase the 𝜒! 

statistic of a SNP more than LD to an annotation that is not enriched for heritability. We 

extended stratified LD score regression to quantify effects on heritability of continuous-

valued (and/or binary) annotations. Here, the idea is that if a continuous annotation 𝑎 is 

associated to increased heritability, LD to SNPs with large values of 𝑎 will increase the 

𝜒! statistic of a SNP more than LD to SNPs with small values of 𝑎.  

More precisely, the expected 𝜒! statistic of SNP 𝑗 can be written as  

 𝐸 𝜒!! = 𝑁 𝜏!𝑙 𝑗, 𝑐
!

+ 𝑁𝑏 + 1 (1) 

where 𝑙 𝑗, 𝑐 = 𝑎!(𝑘)𝑟!"!!  is the LD score of SNP 𝑗 with respect to continuous values 

𝑎!(𝑘) of annotation 𝑎!, 𝑟!" is the correlation between SNP 𝑗 and 𝑘 in a reference panel 

(e.g. Europeans from 1000 Genomes17), 𝑁 is the sample size of the GWAS study, 𝜏! is 

the effect size of annotation 𝑎!  on per-SNP heritability (conditioned on all other 

annotations), and 𝑏 is a term that measures the contribution of confounding biases18. We 

standardize estimated effect sizes 𝜏 to report per-standardized-annotation effect sizes 𝜏∗, 

defined as the proportionate change in per-SNP heritability associated to 1 standard 

deviation increase in the value of the annotation; we note that 𝜏∗ can be compared across 

annotations and across traits. Analogous to ref. 8, standard errors on estimates of 𝜏∗ are 

computed using a block jackknife (see Online Methods). We have released open-source 

software implementing the method (see URLs).  

We applied our extension of stratified LD score regression to LLD annotations, 

MAF-adjusted via MAF-stratified quantile-normalized LD score, as well as other LD-

related annotations including predicted allele age and recombination rate; we included 10 

MAF bins as additional annotations in all analyses to model MAF-dependent 

architectures (see Online Methods). Although stratified LD score regression has 

previously been shown to produce robust results using binary annotations8, we performed 

additional simulations to confirm that our extension of stratified LD score regression 
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produces robust results using continuous-valued LD-related annotations, and specifically 

that analyzing LD-related annotations using an LD-based method is appropriate (see 

Online Methods).  
 

SNPs with low LLD have larger per-SNP heritability 

We applied our extension of stratified LD score regression to GWAS summary statistics 

from 56 complex traits and diseases, including 18 traits from 23andMe and 15 traits from 

UK Biobank (average N = 101,401); for five traits we analyzed multiple data sets, leading 

to a total of 62 data sets analyzed (Table S1). The standardized effect sizes 𝜏∗ for the 

LLD annotation were consistently negative in all 62 data sets analyzed (Figure 1 and 

Table S2). In a meta-analysis across 31 independent traits, excluding genetically 

correlated traits19 in overlapping samples (Table S3; average N = 84,686, see Online 

Methods), the LLD annotation was highly statistically significant (𝜏∗ = -0.30, s.e. = 0.02; 

P = 2.42 x 10-80), confirming that SNPs with low MAF-adjusted level of LD have larger 

per-SNP heritability. We also investigated two alternative MAF-adjusted measures of 

level of LD, using a sliding window approach to quantify the level of LD in a genomic 

region (LLD-REG)13 and using the D’ coefficient instead of the squared correlation to 

compute LD scores (LLD-D’); we observed smaller but still significant effects for LLD-

REG (𝜏∗ = -0.22, s.e. = 0.02; P = 2.86 x 10-44) and LLD-D’ (𝜏∗ = -0.15, s.e. = 0.02; P = 

2.22 x 10-12). 

   

Correlations between LLD and other LD-related annotations  

We investigated other LD-related annotations including MAF-adjusted allele age as 

predicted using ARGweaver20, MAF-adjusted LLD measured in African populations 

(LLD-AFR), recombination rate21,22, nucleotide diversity15, a background selection 

statistic (McVicker B-statistic)23, GC-content15, CpG dinucleotide content, replication 

timing24, centromeres and telomeres15. We used windows of ±10kb for recombination 

rate, ±10kb for nucleotide diversity, ±1Mb for GC-content, ±50kb for CpG-content, 

±5Mb for centromeres and first/last 10Mb for telomeres, as these values produced the 

most significant signals (see Online Methods). We also considered annotations from a 

“baseline model”8,25 including 28 main functional annotations such as DHS and histone 
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marks (58 total annotations; see Online Methods). Many of these annotations are highly 

correlated with LLD and with each other (Figure 2 and Table S4); these correlation 

patterns inform the interpretation of our heritability results below. In particular, nearly all 

of the functional annotations from the baseline model are negatively correlated with 

LLD, with the strongest negative correlations (-0.20 < r < -0.10) for histone marks 

(H3K27ac, H3K4me1 and H3K9ac), conserved regions (GERP NS) and super enhancers; 

only repressed regions (r = 0.05; depleted for heritability8) and transcribed regions (r = 

0.02) exhibit positive correlations.  

One surprising observation was that predicted allele age was positively correlated 

with LLD (r = 0.22), whereas a negative correlation might be expected since the LD 

between two SNPs decays with time. To confirm this observation, we performed 

coalescent simulations26 using a realistic demographic model for African and European 

populations27 (see Online Methods). We observed that while the LLD of a SNP defined 

using a fixed set of older SNPs decreases with allele age, older SNPs acquire additional 

LD with more recent SNPs; the latter effect leads to a positive correlation between 

predicted allele age and LLD (Figures S1 and S2). We also observed, in both real data 

and simulations, that allele age is more correlated to LLD-AFR than LLD, as 

demographic events (e.g. bottlenecks) that occurred in European populations distort the 

relationship between LLD and allele age.  

 

Multiple LD-related annotations impact complex trait architectures 

We applied our extension of stratified LD score regression to each of the 13 LD-related 

annotations defined above, analyzing each annotation in turn. We meta-analyzed the 

results across 31 independent traits (Figure 3a, Table S2 and Table S3). All annotations 

except telomeres were highly significant after correction for multiple testing (Table S3), 

and eight of the remaining 12 annotations remained significant when fitted jointly (Table 

S5 and Table S6). The predicted allele age (𝜏∗ = -0.78, s.e. = 0.03; P = 6.27 x 10-175) and 

nucleotide diversity (𝜏∗ = -0.78, s.e. = 0.04; P = 1.79 x 10-79) annotations produced the 

largest absolute standardized effect size. Interestingly, SNPs in high recombination rate 

regions (corresponding to low LLD; r = -0.49) have smaller per-SNP heritability (𝜏∗ = -

0.54, s.e. = 0.06; P = 2.39 x 10-18), which is inconsistent with the direction of the LLD 
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effect but consistent with the fact that negative selection is more effective in high 

recombination rate regions as a consequence of the Hill-Robertson effect28. Thus, per-

SNP heritability is most enriched in SNPs with low LLD in low recombination rate 

regions, and the opposing effects of these two annotations are stronger when they are 

conditioned on each other (Figure S3). (We analyzed three different recombination rate 

maps22,29,30 and determined that the Oxford map22 provided the most significant results 

(Table S3), suggesting that the impact of recombination rate on trait heritability operates 

over a long time scale (see Online Methods); we thus used the Oxford map in all primary 

analyses). Opposing effects were also observed for the background selection statistic 

annotation, which is positively correlated to LLD (r = 0.35) but has the opposite direction 

of effect (𝜏∗ = 0.51, s.e. = 0.05; P = 5.06 x 10-26). 

In order to assess how much of the LLD effect is explained by known functional 

annotations (and because results of stratified LD score regression may be biased in the 

presence of unmodeled functional annotations8), we analyzed the 13 LD-related 

annotations while conditioning on the 58 functional annotations of the baseline model 

(Figure 3b, Table S3 and Table S7). The effect size of the LLD annotation remained 

highly significant but was smaller in magnitude (𝜏∗ = -0.11, s.e. = 0.02; P = 2.57 x 10-11), 

primarily due to its correlation with DHS (Figure S4). Thus, more than half of the initial 

LLD signal is explained by known functional annotations. The LLD-REG annotation13 

was no longer significant in this analysis (P = 0.19), indicating that the regional LLD 

signal is entirely explained by known functional annotations. Predicted allele age 

produced the largest absolute standardized effect size and the most significant signal (𝜏∗ 

= -0.46, s.e. = 0.02; P = 2.38 x 10-104); the sign of this effect was consistent across 55 out 

of 56 traits (positive but not significantly different from zero for Hb1AC; Table S7). This 

indicates that recent alleles have larger per-SNP heritability after conditioning on both 

MAF and known functional annotations. Many other LD-related annotations remained 

significant (after correction for multiple testing) in the conditional analysis, although 

LLD-D’, replication timing and centromeres were no longer significant (Table S3 and 

Figure S4).  

Finally, we built a model consisting of the 58 functional annotations from the 

baseline model and the six LD-related annotations that remained significant (after 
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correction for multiple testing) when conditioned on each other as well as the baseline 

model (Figure 3c, Table S8 and Table S9); we call this model the baseline-LD model (see 

Online Methods). We determined that this model produced similar results when 

performing derived allele frequency (DAF) adjustment instead of MAF adjustment, when 

using UK10K31 (instead of 1000 Genomes) as the reference panel, and across different 

data sets for the same trait (Figures S5 and S6). Predicted allele age remains the 

annotation with the largest absolute standardized effect size (𝜏∗ = -0.24, s.e. = 0.02; P = 

1.08 x 10-23), but its effect size decreased due to its high correlation with the LLD-AFR 

annotation (Figure S7). Effect sizes of LLD-AFR and CpG-content increased, due to 

opposing effects with the recombination rate and background selection statistic 

annotations. Effect sizes of the recombination rate, nucleotide diversity and background 

selection statistic annotations decreased because they compete with each other, and LLD 

and GC-content were no longer significant (after correction for multiple testing) due to 

their high correlation with LLD-AFR and CpG-content, respectively (Table S10). 

Psychiatric diseases and autoimmune diseases exhibited significantly stronger effects for 

the predicted allele age and background selection statistic annotations, respectively 

(Table S11), possibly due to the role of selection at different time scales in shaping the 

genetic architecture of these diseases32,33.  

To provide a more intuitive interpretation of the magnitude of the LD-related 

annotation effects, we computed the proportion of heritability explained by each quintile 

of each annotation in the baseline-LD model, and by each quintile of MAF for 

comparison purposes (Figure 4, Tables S9 and S12, and Figure S8). These proportions 

are computed based on a joint fit of the baseline-LD model, but measure the heritability 

explained by each quintile of each annotation while including the effects of other 

annotations—in contrast to standardized effect sizes 𝜏∗, which are conditioned on all 

other annotations and measure the additional contribution of one annotation to the model. 

The youngest 20% of common SNPs (based on MAF-adjusted predicted allele age) 

explained 3.9x more heritability than the oldest 20%. This is even larger than MAF-

dependent effects, in which the 20% of common SNPs with largest MAF (> 38%) explain 

1.8x more heritability than the 20% with smallest MAF (< 10%). The heritability 
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explained by quintiles of recombination rate was roughly flat (in contrast to 𝜏∗; Figure 

3c) due to opposing effects with the LLD-AFR annotation.  

 

LD-related annotations predict deleterious effects 

To understand the relationship between LD-related annotations and negative selection, 

we performed forward simulations34 using a demographic model for African and 

European populations27 and a range of selection coefficients for deleterious variants (see 

Online Methods). We jointly regressed the absolute value of the selection coefficient 

against the allele age (now using true allele age instead of predicted allele age), LLD-

AFR, recombination rate and nucleotide diversity annotations from the baseline-LD 

model to assess whether these annotations are jointly predictive of deleterious effects (the 

background selection statistic and CpG-content annotations could not be investigated as 

they rely on empirical data). We observed that these four annotations were all significant 

in the joint analysis (Figure 5 and Table S13), with effect sizes roughly proportional to 

the standardized effect sizes for trait heritability reported in Figure 3c. This suggests that 

the joint impact of each of these annotations on trait heritability is a consequence of their 

predictive value for deleterious effects. Specifically, recent variants are more likely to be 

deleterious since selection has had less time to remove them, variants in low 

recombination rate regions are more likely to be deleterious due to reduced efficiency of 

selection (Hill-Robertson effect28), and variants in low nucleotide diversity regions are 

more likely to be deleterious due to increased efficiency of selection in those regions. In 

addition, the LLD-AFR annotation contains information complementary to allele age, 

recombination rate and nucleotide diversity; we note that LLD-AFR contains roughly the 

same amount of information (i.e. the same effect) as LLD measured in an ancestral 

population sampled just before the out-of-Africa event (Figure S9). We further 

determined that the predictive value of the nucleotide diversity annotation is contingent 

on the non-homogeneous distribution of selection coefficients, and that the predictive 

value of the LLD-AFR annotation is largely contingent on the out-of-Africa bottleneck 

and disappears in a constant population size model with a homogeneous distribution of 

selection coefficients (Figure S10).  
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We used the predicted allele age annotation to compare the strength of selection 

across functional annotations from the baseline model. We observed that predicted allele 

age is substantially smaller (> 0.1 standard deviations below average) in transcription 

start site (TSS), coding, conserved and UTR regions and below average for all functional 

annotations except repressed regions (Table S14), consistent with stronger selection. We 

then tested whether the impact of predicted allele age on trait heritability is stronger in 

functional regions by adding an interaction between predicted allele age and each 

functional annotation to the baseline-LD model in turn. We observed that the effect of 

predicted allele age on trait heritability is strongest in conserved regions, histone marks 

(H3K9ac, H3K4me3 and H3K4me1), digital genomic footprints (DGF) transcription 

factor binding sites (TBFS), and DHS (P = 8.00 x 10-61 to 2.42 x 10-14; Table S15), 

consistent with forward simulations indicating that the magnitude of interaction with 

allele age is informative for the strength of selection within each annotation (Figure S11). 

These annotations all had even larger interaction effects than coding regions (P = 2.85 x 

10-11). The large interaction effects emphasize the role of negative selection in non-

coding regions in shaping the genetic architecture of complex traits.  
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Discussion 

In this study, we assessed the LD-dependent architecture of human complex traits by 

extending stratified LD score regression8 from binary to continuous annotations, an 

approach that produces robust results in simulations. We determined that SNPs with low 

LLD have larger per-SNP heritability across all 56 complex traits analyzed. More than 

half of this signal can be explained by functional annotations that are negatively 

correlated with LLD and enriched for heritability, such as DHS and histone marks. The 

remaining signal is largely driven by MAF-adjusted predicted allele age, as more recent 

alleles have larger per-SNP heritability in 55 out of the 56 complex traits analyzed, but 

we also observed multiple jointly significant effects of other LD-related annotations. We 

showed via forward simulations that all of these jointly significant effects are consistent 

with the action of negative selection on deleterious variants. While negative selection has 

long been hypothesized to shape genetic diversity23, and previous studies have 

emphasized the importance of allele age20,35,36 and recombination rate16,28, our study 

demonstrates the impact of negative selection on complex traits on a polygenic genome-

wide scale. In particular, our genome-wide results on recombination rate differ from the 

results Hussin et al.16, who determined that regions of low recombination rate are 

enriched for exonic deleterious and disease-associated variants: although we do observe a 

similar recombination rate effect (consistent with the Hill-Robertson effect28) for jointly 

estimated effect sizes 𝜏∗, which are conditioned on other annotations and measure the 

additional contribution of one annotation to the model, the effect of recombination rate is 

largely canceled out when including the opposing effects of other annotations (Figure 4). 

Our results have several implications for downstream analyses. First, although 

recent work has suggested that the problem of LD-related bias in SNP-heritability 

estimates11,12 could be addressed by modeling regional LD (LD-REG) in addition to 

MAF13, our results suggest that modeling predicted allele age may be more informative 

(Figure 4). Second, we observed that the effect of predicted allele age on trait heritability 

is larger in conserved regions, histone marks, DGF, TFBS and DHS than in coding 

regions (Table S14), suggesting that statistical tests aggregating rare variant signals in 

whole-genome sequencing data sets37,38 should focus particularly on these non-coding 

regions. Third, previous studies have shown limited improvements in polygenic 
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prediction accuracy7 and association power39,40 using functional annotations, perhaps 

because the annotations analyzed in those studies have pervasive LD between in-

annotation and out-of-annotation SNPs7; however, our LD-related annotations by 

definition should not have this limitation, making them potentially more useful in those 

contexts. Fourth, although SNPs with low LLD have larger causal effect sizes, SNPs with 

high LLD may have larger 𝜒!  statistics if they tag multiple causal variants. In the 

presence of multiple causal variants, fine-mapping strategies based on ranking P values41 

might thus favor high-LLD non-causal variants over causal low-LLD variants. For this 

reason, approaches that explicitly model multiple causal variants while incorporating LD-

dependent architectures using integrative methods42 might improve fine-mapping 

accuracy. 

Although our work has provided insights on the genetic architecture of human 

complex traits, it has several limitations. First, our extension of stratified LD score 

regression assumes a linear effect of each continuous annotation (Equations (1) and (3), 

see Online Methods), which may not always hold; however, this assumption appears 

reasonable in the continuous annotations that we analyzed (Figure 4). Second, we 

restricted all of our analyses to common variants (see Online Methods), as stratified LD 

score regression has several limitations when applied to rare variants8. Third, as noted 

above, results of stratified LD score regression may be biased in the presence of 

unmodeled functional annotations8; we believe it is unlikely that this impacts our main 

conclusions, both because we included a large number of baseline model annotations in 

our analyses and because our results (Figure 3c) are consistent with selection effects in 

forward simulations (Figure 5). Fourth, while the allele age predictions produced by 

ARGweaver20 were of critical value to this study, they have > 10% missing data, were 

computed on only 54 sequenced individuals (including only 13 Europeans), and rely on a 

demographic model with constant population size; the development of computationally 

tractable methods for predicting allele age remains a research direction of high interest. 

Fifth, while the effect directions of the LD-related annotations we analyzed were 

remarkably consistent across all 56 complex traits analyzed, this result does not imply 

that negative selection acts directly on each of these traits, as selection may be acting on 

pleiotropic traits43. Sixth, we have focused here on negative selection and have not 
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evaluated the role of positive selection, which (in contrast to negative selection) is 

associated with increased LD44; the role of positive selection in shaping human evolution 

is currently subject to debate45. Seventh, the interpretation of some LD-related 

annotations remains unclear. The LLD-AFR annotation captures a property of variant 

history that is currently unknown. The CpG-content annotation is highly correlated to the 

GoNL local mutation rate map annotation46 (r = 0.86, Table S16), but that annotation 

does not have a significant effect on trait heritability when conditioned on the baseline 

model (Table S17), suggesting that the CpG-content annotation might instead tag some 

functional process absent from the baseline model; indeed, some of our LD-related 

annotations could be viewed as proxies for currently unknown functional annotations. 

Despite all of these limitations, our results convincingly demonstrate the action of 

negative selection on deleterious variants that affect complex traits, complementing 

efforts to learn about negative selection by analyzing much smaller rare variant data sets.  
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Online Methods 
Extension of stratified LD score regression to continuous annotations. 

The derivation of stratified LD score regression using binary annotations has previously 

been described8. Here, we extend the method to continuous-valued annotations.  

Suppose that we have a sample of 𝑁 individuals, and a vector 𝑦 = 𝑦!,… ,𝑦!  of 

quantitative phenotypes, standardized to mean 0 and variance 1. We assume the 

infinitesimal linear model  

 𝑦 = 𝑋𝛽 + 𝜀 (2) 
where 𝑋 is a 𝑁 x 𝑀 matrix of standardized genotypes, 𝛽 = 𝛽!,… ,𝛽!  is the vector of 

per normalized genotype effect size, and 𝜀 = 𝜀!,… , 𝜀!  is a mean-0 vector of residuals 

with variance 𝜎!!. Here, we are interested in modeling 𝛽 as a mean-0 vector whose 

variance depends on 𝐶 continuous-valued annotations 𝑎!,… ,𝑎!: 

 𝑉𝑎𝑟 𝛽! = 𝑎!(𝑗)𝜏!
!

 (3) 

where 𝑎!(𝑗)  is the value of annotation 𝑎!  at SNP 𝑗 , and 𝜏!  represents the per-SNP 

contribution of one unit of the annotation 𝑎! to heritability. This is a generalization of 

stratified LD score regression8, with 𝑎!(𝑗) ∈ 0,1  if annotation 𝑎! has binary values.  

Let 𝛽! be the estimate of the marginal effect of SNP 𝑗 in our sample. According to 

Finucane et al.8, we can write  

 𝛽! = 𝑟!"𝛽!
!

+ 𝜀!! (4) 

where 𝑟!":=
!
!
𝑋!!𝑋! is the in-sample correlation between SNPs 𝑗 and 𝑘, and 𝜀!! = 𝑋!!𝜀/𝑁 

(𝜀!! has mean 0 and variance 𝜎!!/𝑁).  

We now consider the expectation of 𝜒!! = 𝑁𝛽!!. We can write 
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 𝐸 𝜒!! = 𝑁𝐸 𝛽!!

= 𝑁𝐸 𝑟!"𝛽!
!

+ 𝜀!!
!

= 𝑁 𝐸 𝑟!"! 𝐸 𝛽!!

!

+ 𝑁𝐸 𝜀!!
!

= 𝑁 𝐸 𝑟!"! 𝑎!(𝑘)𝜏!
!!

+ 𝑁 𝜎!!/𝑁

= 𝑁 𝜏! 𝑎!(𝑘)𝐸 𝑟!"!

!!

+ 𝜎!!

 (5) 

where the third equality follows because we assume that the variables are independent 

with mean 0. Let 𝑟!" denote the true correlation between SNPs 𝑗 and 𝑘 in the underlying 

population. In an unstructured sample, we have 𝐸 𝑟!"! ≈ 𝑟!"! + 1/𝑁. We thus have 

 
𝐸 𝜒!! ≈ 𝑁 𝜏! 𝑎!(𝑘) 𝑟!"! + 1/𝑁

!!

+ 𝜎!!

= 𝑁 𝜏! 𝑎!(𝑘)𝑟!"!

!!

+ 𝑁 𝜏! 𝑎!(𝑘)/𝑁
!!

+ 𝜎!!

= 𝑁 𝜏! 𝑎!(𝑘)𝑟!"!

!!

+ 𝑎!(𝑘)𝜏!
!!

+ 𝜎!!

= 𝑁 𝜏!𝑙 𝑗, 𝑐
!

+ 𝑉𝑎𝑟 𝛽!
!

+ 𝜎!!

 (6) 

where 𝑙 𝑗, 𝑐 = 𝑎!(𝑘)𝑟!"!!  is the LD score of SNP 𝑗 with respect to annotations 𝑎!. As 

the variance of our phenotype 𝑦 is 𝑉𝑎𝑟 𝛽!! + 𝜎!! and is equal to 1 by definition, this 

reproduces the main equation of stratified LD score regression (modulo the term Nb for 

confounding biases): 

 𝐸 𝜒!! = 𝑁 𝜏!𝑙 𝑗, 𝑐
!

+ 1 (7) 

We were interested in both comparing the estimated effect size of the different 

annotations and meta-analyzing them across different traits. For this reason, we focused 

on per-standardized annotation effect sizes 𝜏!∗, defined as the additive change in per-SNP 

heritability associated to a 1 standard deviation increase in the value of the annotation, 

divided by the average per-SNP heritability over all SNPs for the trait, and computed as 
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𝜏!∗:=

𝑀!!! . 𝑠𝑑!
ℎ!!

𝜏! (8) 

where ℎ!! the estimated SNP-heritability of the trait computed as ℎ!! = 𝑉𝑎𝑟 𝛽!! =

𝑎!(𝑗)𝜏!!! , 𝑀!!!  is the number of SNPs used to compute ℎ!!, and 𝑠𝑑! is the standard 

deviation of the annotation 𝑎!.  

To interpret the heritability explained by a continuous-valued annotation 𝑎!, we 

computed the expected heritability of each quintile of its annotations. Let 𝐶!,! denote the 

q-th quintile of annotation 𝑎! , so that ℎ!! 𝐶!,!  and ℎ!! 𝐶!,!  represent the heritability 

explained by the 20% of SNPs with the lowest and highest values of 𝐶!, respectively. We 

used the equation ℎ!! 𝐶!,! = 𝑎!,!𝜏!!!∈!!,!  to estimate ℎ!! 𝐶!,! . 

Application of stratified LD score regression was performed using Finucane et al.8 

guidelines and was restricted to data sets of European ancestry. Regression SNPs, used to 

estimate the vector of 𝜏 from GWAS summary statistics, were the HapMap Project Phase 

3 SNPs, used here as a proxy for well-imputed SNPs. SNPs with unusual 𝜒! association 

statistics (larger than 80 or 0.0001𝑁), as well as SNPs in the major histocompatibility 

complex (MHC) region (chr6:25Mb-34Mb) were removed from all analyses. Reference 

SNPs, used to estimate LD scores, were the set of 9,997,231 biallelic SNPs with minor 

allele count greater or equal than five in the set of 489 unrelated and outbred European 

samples47 from phase 3 of 1000 Genomes Project (1000G)17 (see URLs). Heritability 

SNPs, used to compute 𝑠𝑑!, ℎ!! and ℎ!! 𝐶!,! , were the set of 5,961,159 reference SNPs 

with MAF ≥ 0.05. To assess the reproducibility of our results, we also considered 3,567 

individuals of UK10K database31 (ALSPAC and TWINSUK cohorts) as a reference 

panel. We had 13,326,465 reference SNPs and 5,353,593 heritability SNPs in this 

analysis. 

  

MAF adjustment and LLD annotations. 

To investigate the LD-dependent architecture of human complex traits, it is essential to 

account for the relationship between minor allele frequency (MAF) and LD. Indeed, 

common variants have both higher LD scores and per-SNP heritability5,9. For this reason, 
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all our stratified LD score regression analyses included 10 MAF bin annotations (all with 

MAF ≥ 0.05, see Table S18) in addition to an annotation containing all SNPs. 

To quantify the level of LD (LLD) of reference SNPs, we first computed LD 

scores, defined as the sum of squared correlations of each SNP with all nearby SNPs in a 

1 cM window, using the ldsc software. Then, we MAF-adjusted these values via MAF-

stratified quantile normalization: for each MAF bin, LD scores were quantile normalized 

to a normal distribution of mean 0 and variance 1. The LLD of rare variants (MAF < 

0.05) was fixed to 0. Because stratified LD score regression is designed to quantify the 

heritability explained by common SNPs, and the heritability explained by rare variants is 

hypothesized to be relatively low1,5,48, we excluded rare variants from all MAF-adjusted 

annotations. For the LLD model (Figure 1), we thus modeled the variance of the per-

normalized genotype effect size of SNP 𝑗 as: 

 
𝑉𝑎𝑟 𝛽! = 𝜏! + 1!∈!"# !"# !𝜏!

!"

!!!

+ 𝐿𝐿𝐷!𝜏!!" (9) 

where 𝜏!  is an intercept term modeling the per-SNP contribution of each SNP to 

heritability, 𝜏! is the per-SNP contribution of a SNP in MAF bin 𝑗 to heritability, and 

𝜏!!" is the contribution of one unit of the annotation LLD to heritability.  

The LLD-D’ annotation of a SNP was measured by summing the D’ coefficients 

of that SNP with all nearby SNPs in a ±0.5 cM window. Version 1.90b3 of PLINK 2 

software49 (see URLs) was used to compute D’ coefficients for each pair of SNPs. The 

LLD of a genomic region (LLD-REG) was measured by averaging in 100 kb windows 

the LD scores computed in 20-Mb regions (ignoring LD r2 < 0.01), as previously 

described13, using the --ld-score-region option of version 1.25.1 of GCTA software2. 

LLD-D’ was MAF-adjusted via MAF-stratified quantile normalization. LLD-REG was 

quantile normalized without MAF-adjustment because it is a regional annotation.  

The LLD-AFR annotation was measured by computing LD scores of reference 

SNPs in 440 unrelated African samples from phase 3 of 1000 Genomes Project (ACB and 

ASW populations were removed due to the presence of European admixture). LD scores 

for reference SNPs that were absent in African samples were set to 1. LLD-AFR was also 

MAF-adjusted via MAF-stratified quantile normalization, using the same European MAF 

bins. 
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Other LD-related annotations. 

We used allele age as predicted by the ARGweaver20 method, estimated using 54 

unrelated sequenced individuals (including 13 Europeans; see URLs). This annotation 

was also MAF-adjusted via MAF-stratified quantile normalization, as common variants 

tend to be older (the correlation for common reference SNPs between available 

ARGweaver allele ages and MAF is 0.16). 10.2% of common reference SNPs had 

missing values for predicted allele age; these values were set to 0 after MAF-stratified 

quantile normalization. Adding a binary annotation indicating missing allele age 

information for common reference SNPs did not change the effect size estimates for 

predicted allele age (Table S19). 

Recombination rates, diversity, GC-content and CpG-content were computed 

using windows of different sizes: ± 10kb, ± 50kb, ± 100kb, ± 500kb, and ±1,000 kb. 

Recombination rates (measured in cM/Mb) were computed from three recombination 

maps (see URLs): the Oxford map, which estimates recombination rates from LD 

patterns in African, European and Asian populations from HapMap221,22; the African-

American map, which estimates recombination rates from admixture patterns in African-

American individuals29; and the deCODE map, which estimates recombination rates from 

Icelandic parent-offspring pairs30. These recombination maps measure recombination 

rates at different time scale: the deCode map measures recombination that occurred in 

recent generations, the African-American map measures recombination that occurred in 

the past ~20 generations, and the Oxford map measures recombination that occurred 

further back in time. The genetic positions of surrounding windows were interpolated 

linearly from recombination maps using PLINK. Nucleotide diversity was measured as 

the number of reference SNPs (with minor allele count ≥5) per kilobase. Measuring 

diversity on all 1000G SNPs (down to singletons or doubletons) or the fraction of rare 

variants50 (i.e. diversity of rare variants with allele count < 5) did not furnished more 

significant results (data not shown). GC-content and CpG-content were measured using 

version 2.17.0 of bedtools software51 and the human reference sequence used for the 

1000 Genomes project (see URLs).  
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The background selection statistic was computed as 1 - McVicker B statistic23 to 

facilitate the interpretation of the results. Background selection statistic values close to 1 

represent near complete removal of diversity as a result of background selection, and 

values near 0 indicate little effect. Replication timing was based on the Koren et al. 

annotation24. 0.19% and 0.27% of reference SNPs had missing values for background 

selection and replication timing, respectively; these were replaced by the median 

annotation value based on the remaining reference SNPs.  

Finally, telomeres and centromeres were defined using windows of 5, 10 and 15 

Mb, as described by Smith et al.15.  

We thus created 43 LD-related annotations in total (see Table S20). For 

annotations computed with different windows sizes, the one producing the most 

significant P value after conditioning on the baseline model was selected as the primary 

annotation (Table S3). Except telomere and centromere annotations that were not 

significant in this analysis, other annotations had consistent results with adjacent window 

sizes. To overcome over-fitting, we used a Bonferroni threshold of 0.05 / 43 = 1.16 x 10-3 

to assess statistical significance when analyzing one LD-related annotation at a time.  

 

Simulations to assess extension of stratified LD score regression to continuous LD-

related annotations. 

To ensure that applying our extension of stratified LD score regression to continuous LD-

related annotations does not produce false-positive signals or biased results, we simulated 

quantitative phenotypes from chromosome 1 UK10K data31 (3,567 individuals and 

1,041,378 SNPs). In each simulation, we used 1000G as the reference panel, and 

evaluated all 6 LD-related annotations of the baseline-LD model (Figure 3c), as well as 

the LLD annotation. We also included an annotation containing all SNPs and annotations 

for 10 MAF bins. In each simulation, we set trait heritability to ℎ! = 0.5 and selected 𝑀 = 

100,000 causal SNPs. Causal SNPs were selected randomly rom the 673,779 SNPs 

present in both UK10K and 1000G, such that all causal SNPs were represented in the 

reference panel. In null simulations, the variance of per-normalized genotype effect sizes 

was set to !
!

!
𝑝 1− 𝑝 !!!

 for a variant of frequency 𝑝. We considered simulations with 

both MAF-independent (𝛼 = -1, i.e. all SNPs have the same contribution to variance) and 
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MAF-dependent architectures (𝛼 = -0.28, as previously estimated9). In causal simulations 

(MAF+LD-dependent architecture), we used the 𝜏 coefficients estimated from the meta-

analyses reported in Figure 3a (12 𝜏 coefficients in total: one for the intercept term, 10 for 

the 10 MAF bins and one for the LD-related annotation of interest). These coefficients 

were rescaled to constrain the variance of each SNP to be positive and the total ℎ! of the 

100,000 causal SNPs to be 0.5. Phenotypes were simulated with GCTA2 (see URLs). 

10,000 simulations were performed for each of the three simulation scenarios (null MAF-

independent, null MAF-dependent, and causal MAF+LD-dependent). In each simulation, 

we estimated the effect size 𝜏 and corresponding 𝜏∗, computed using the simulated ℎ!. 

(We were interested in the bias of the 𝜏 parameter, and not in the ℎ!! parameter which 

might be underestimated in simulation scenarios where rare variants have large effect 

sizes. We note that estimates of 𝜏∗  in real phenotypes may be slightly biased by 

inaccurate ℎ!! estimates, but that this will not lead to false-positive nonzero 𝜏∗ estimates). 

We observed unbiased estimates of 𝜏∗ for most annotations in both null simulations 

(Figures 6a and S12) and causal simulations (Figure 6b) (numerical results in Table S21). 

Only the recombination rate annotation exhibited very slightly biases (between -0.028 

and -0.025) that are nevertheless far from the estimates observed on real data (-0.540; 

Figure 3a). We also confirmed accurate calibration of standard errors in both null and 

causal simulations (Table S22). We repeated each of these simulations drawing causal 

SNPs from all UK10K SNPs (to simulate a scenario where causal SNPs are not 

represented in the reference panel). Results for null simulations were similar to above, 

and results for causal simulations produced slight biases opposite to (i.e. slightly 

underestimating) true effects (Figure S13; numerical results in Table S23). 

 

Choice of traits for main analyses and meta-analysis. 

Stratified LD score regression was applied to 29 publicly available GWAS summary 

statistic data sets52–72 (for age at menopause70, effect sizes are publicly available but 

sample sizes for each SNP were obtained through collaboration), 18 summary statistic 

data sets from 23andMe, and summary statistic of 15 traits from UK Biobank (see 

below). This led to total of 62 summary statistic data sets spanning 56 traits (five traits 

were represented in multiple data sets) with an average sample size of 101,401 (computed 
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using the largest single data set for each trait; the average sample size of the 62 data sets 

is 101,989). Analyses were restricted to traits for which the 𝑧 score of total SNP-

heritability computed using the baseline model was at least 6 (Table S1). Traits displayed 

in Figure 1 were selected by prioritizing them according to the total SNP-heritability, 

excluding traits with absolute genetic correlation > 0.50 (ref. 19). Traits included in the 

meta-analyses were selected by prioritizing them according to the 𝑧 score of total SNP-

heritability and excluding genetically correlated traits in overlapping samples by 

measuring the intercept of cross-trait LD score regression19 as previously described8. We 

retained 31 independent traits (average N = 84,686, Table S1) and performed random-

effects meta-analyses using the R package rmeta.  

 For analyses of psychiatric and autoimmune diseases, we considered five 

psychiatric diseases with low sample overlap (anorexia, autism, bipolar disorder, 

depressive symptoms and schizophrenia) and six autoimmune diseases with low sample 

overlap (celiac, cirrhosis, eczema, lupus, inflammatory bowel disease and rheumatoid 

arthritis). We meta-analyzed standardized effect sizes 𝜏∗ for the five psychiatric diseases 

and six autoimmune diseases using random effects, and compared the results with results 

for non-psychiatric and non-autoimmune diseases using a t-test. Non-psychiatric and 

non-autoimmune diseases were defined by removing psychiatric diseases and 

autoimmune diseases from the set of 31 independent traits, leading to a total of 28 and 29 

traits, respectively. 

 

23andMe data set.  

For the 23andMe study, participants were drawn from the customer base of 23andMe Inc. 

(Mountain View, CA), a consumer genetics company73,74. All participants included in the 

analyses provided informed consent and answered surveys online according to the 

23andMe human subjects protocol, which was reviewed and approved by Ethical & 

Independent Review Services, a private institutional review board. Samples were 

genotyped on one of four genotyping platforms. The V1 and V2 platforms were variants 

of the Illumina HumanHap550+ BeadChip, including about 25,000 custom SNPs selected 

by 23andMe, with a total of about 560,000 SNPs. The V3 platform was based on the 

Illumina OmniExpress+ BeadChip, with custom content to improve the overlap with our 
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V2 array, with a total of about 950,000 SNPs. The V4 platform in current use is a fully 

custom array, including a lower redundancy subset of V2 and V3 SNPs with additional 

coverage of lower-frequency coding variation, and about 570,000 SNPs.  

Participants were restricted to a set of individuals who have > 97% European 

ancestry, as determined through an analysis of local ancestry75. A maximal set of 

unrelated individuals was chosen for each analysis using a segmental identity-by-descent 

(IBD) estimation algorithm76. Individuals were defined as related if they shared more 

than 700 cM IBD, including regions where the two individuals share either one or both 

genomic segments identical-by-descent. This level of relatedness (roughly 20% of the 

genome) corresponds approximately to the minimal expected sharing between first 

cousins in an outbred population. 

Participant genotype data were imputed against the March 2012 “v3” release of 

1000 Genomes reference haplotypes, phased with ShapeIt2 (ref. 77). Data were phased 

and imputed for each genotyping platform separately. Data were phased using a 23andMe 

developed phasing tool, Finch, which implements the Beagle haplotype graph-based 

phasing algorithm78, modified to separate the haplotype graph construction and phasing 

steps.  

In preparation for imputation, phased chromosomes were split into segments of no 

more than 10,000 genotyped SNPs, with overlaps of 200 SNPs. SNPs with Hardy-

Weinberg equilibrium P < 10−20, call rate < 95%, or with large allele frequency 

discrepancies compared to European 1000 Genomes reference data were excluded. 

Frequency discrepancies were identified by computing a 2x2 table of allele counts for 

European 1000 Genomes samples and 2000 randomly sampled 23andMe participants 

with European ancestry, and identifying SNPs with a chi squared P < 10−15. Each phased 

segment was imputed against all-ethnicity 1000 Genomes haplotypes (excluding 

monomorphic and singleton sites) using Minimac2 (ref. 79), using 5 rounds and 200 states 

for parameter estimation. 

The genetic association tests were performed using either linear or logistic 

regression as required assuming an additive model for allelic effects and controlled for 

age, sex, and five principal components of genetic ancestry. 
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UK Biobank data set.  

We analyzed data from the UK Biobank (see URLs) consisting of 152,249 samples 

genotyped on ~800,000 SNPs and imputed to ~73 million SNPs. One individual who had 

withdrawn consent was removed, leaving 152,248 samples (see URLs, Genotyping and 

QC). We selected 15 phenotypes with large sample size. For each phenotype, we 

computed mixed model association statistics using version 2.2 of BOLT-LMM software80 

(see URLs) with genotyping array (UK BiLEVE / UK Biobank) and assessment center as 

covariates. We included 607,518 directly genotyped SNPs in the mixed model 

(specifically, all autosomal biallelic SNPs with missingness < 2 % and consistent allele 

frequencies between the UK BiLEVE array and the UK Biobank arrays), and we 

computed association statistics on imputed SNPs in HapMap3 (1,186,683 SNPs on 

average over the 15 phenotypes). Heritability enrichment analyses of UK Biobank data 

were based on analyses of summary statistics, despite the availability of individual-level 

data, both to ensure consistency with the remaining 48 summary statistic data sets and 

because we are not currently aware of a heritability enrichment method applicable to 

individual-level data that can analyze a large number of overlapping or continuous-

valued annotations. 

 

Coalescent simulations to assess the link between LLD and allele age. 

Coalescent simulations were performed using ARGON software26 (see URLs) to assess 

the correlation between the LLD and MAF-adjusted allele age of a SNP. We used 

demographical model parameters estimated in Gravel et al.27 to simulate European and 

African human genetic data, and assumed a generation time of 25 years. Recombination 

rate was set to 1 cM/Mb and mutation rate to 1.65 x 10-8 (ref. 81). We generated 33 

fragments of 100 Mb for 500 European and 500 African individuals, representing a 

realistic genome size and sample sizes equivalent to the reference populations of 1000G. 

LD scores were computed independently in each 100 Mb fragment on SNPs with an 

allele count ≥ 5 in Europeans, and allele age and LD scores were MAF-adjusted via 

MAF-stratified quantile normalization after merging the 33 fragments. 
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Baseline model and functional annotations. 

The 58 functional annotations that we used to define the baseline model consist of the 52 

binary annotations from ref. 8 and an additional six annotations. The 52 annotations are 

derived from 24 main annotations including coding, UTR, promoter and intronic regions, 

the histone marks monomethylation (H3K4me1) and trimethylation (H3K4me3) of 

histone H3 at lysine 4, acetylation of histone H3 at lysine 9 (H3K9ac) and two versions 

of acetylation of histone H3 at lysine 27 (H3K27ac), open chromatin as reflected by 

DNase I hypersensitivity sites (DHSs), combined chromHMM and Segway predictions 

(which make use of many Encyclopedia of DNA Elements (ENCODE) annotations to 

produce a single partition of the genome into seven underlying chromatin states), regions 

that are conserved in mammals, super-enhancers, and FANTOM5 enhancers. We added 

four binary annotations based on super enhancers and typical enhancers82, as previously 

described25. We also added two conserved annotations based on GERP++ scores83, 

including one continuous annotation based on the neutral rate (NS) score and one binary 

annotation based on a rejected substitutions (RS) score ≥ 4, as we observed significant 

effects for these annotations (see Table S24). 

 

Construction of the baseline-LD model 

We first considered a model including the eight LD-related annotations that were 

significant after being conditioned on 10 MAF bins and the baseline model (i.e. LLD, 

predicted allele age, LLD-AFR, recombination rate, nucleotide diversity, the background 

selection statistic, GC-content and CpG-content), and also including 10 MAF bins and 

the baseline model. We removed LD-related annotations that were not significant (in the 

meta-analysis of 31 independent traits) one at a time based on the least significant P 

value (GC-content was first removed, then LLD). This procedure produced a baseline-LD 

model with the annotation containing all SNPs, the 10 MAF bins, the 58 annotations of 

the baseline model, and 6 remaining LD-related annotations, leading to a total of 75 

annotations. We have made these annotations publicly available (see URLs). 
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Forward simulations to assess the connection between LD-related annotations and 

negative selections. 

To investigate the connection between the LD-related annotations of the baseline-LD 

model (predicted allele age, LLD-AFR, recombination rate and nucleotide diversity; note 

that background selection statistic and CpG-content cannot be assessed in simulations as 

they rely on empirical data, and that these simulations used true allele age instead of 

predicted allele age) and the selection coefficient 𝑠, we performed forward simulations 

under a Wright-Fisher model with selection using version 1.8 of SLiM software34 (see 

URLs). We simulated 1Mb regions of genetic length 1cM. To ensure realistic 

recombination rate patterns, we divided the 1Mb regions into three recombination 

environments16, including a coldspot region of 475 kb containing 4.1% of recombination 

events (i.e. 0.08 cM/Mb) and a high recombination rate region of 140 kb containing 

58.6% of recombination events (4.18 cM/Mb). The mutation rate was again set to 1.65 x 

10-8 (ref. 81). New mutations had probability 𝑑 to be deleterious with a dominance 

coefficient of 0.5 and a selection coefficient s drawn from a gamma distribution with 

parameters -0.05 and 0.2 (as suggested in the SLiM manual), and 1− 𝑑 to be neutral (i.e. 

𝑠 = 0). To study the impact of a non-homogeneous distribution of 𝑑 across the genome, 

we divided each recombination environment into two sub-regions and assigned alternate 

probabilities 𝑑! and 𝑑! to be deleterious in these sub-regions (results reported in Figure 5 

used 𝑑! = 0.60 and 𝑑! = 0.90). We performed simulations spanning 100,000 generations 

under 2 different demographic scenarios. First, we started from a fixed population size of 

7,300 individuals, used the realistic demographic model of Gravel et al.27 for the last 

5,920 generations, and outputted 500 European genomes and 500 African genomes. 

Second, we considered a fixed population size of 10,000 individuals and outputted 500 

individual genomes at the last generation. We simulated 200 1Mb regions in each 

demographic scenario. LD scores were computed independently in each 1Mb fragment 

based on SNPs with a minor allele count ≥ 5; allele age and LLD-AFR or LLD 

(depending on the demographic scenario) were MAF-adjusted via MAF-stratified 

quantile normalization after merging the 200 1Mb regions. We performed a multivariate 

linear regression of the absolute value of the (known) selection coefficients |s| against the 

10 MAF bins annotations, the MAF-adjusted allele age, the MAF-adjusted LLD-AFR or 
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LLD (depending on the demographic scenario), the true recombination rate, and the 

nucleotide diversity measured in a ± 10 kb window.  
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Figures 
 

 

 

 
Figure 1: Effect size of MAF-adjusted level of LD (LLD) on 20 highly heritable 
complex traits. Results are displayed for 20 traits with the highest SNP-heritability 
(subject to low genetic correlation19 between traits). Numerical results for all 56 complex 
traits are reported in Table S2. Error bars represent jackknife 95% confidence intervals.  
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Figure 2: Correlations between LD-related and functional annotations. We report 
correlations computed on common SNPs (MAF ≥ 5%). LLD, LLD-D’, LLD-REG, 
predicted allele age and LLD-AFR annotations are MAF-adjusted. Numerical results are 
reported in Table S4.   
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Figure 3: Effect size of LD-related annotations meta-analyzed over 31 independent 
traits. (a) Meta-analysis results for 9 LD-related annotations. (b) Meta-analysis results 
for nine LD-related annotations, conditioned on baseline model. (c) Meta-analysis results 
for six LD-related annotations conditioned on each other and on baseline model. Results 
are displayed for the six LD-related annotations that are jointly significant when 
conditioned on each other and on the baseline model (see (c)). In (a) and (b) only, results 
are also displayed for the remaining LLD annotations. Numerical results for all 
annotations analyzed are reported in Table S3 for (a) and (b), and Table S8 for (c). 
Numerical results for all 56 complex traits are reported in Table S2 for (a), Table S7 for 
(b), and Table S9 for (c). Asterisks indicate significance at P < 0.05 after Bonferroni 
correction (0.05/43, 0.05/43, and 0.05/6 for (a), (b), (c), respectively). Error bars 
represent 95% confidence intervals.  
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Figure 4: Proportion of heritability explained by the quintiles of each LD-related 
annotation, meta-analyzed over 31 independent traits. We report results for each LD-
related annotation of the baseline-LD model, and for MAF for comparison purposes. 
Numerical results are reported in Table S12. Results for all 56 complex traits are reported 
in Figure S8 and Table S9. Error bars represent jackknife standard errors around the 
enrichment estimates. The red line indicates the proportion of heritability when there is 
no enrichment (20% of SNPs explain 20% of heritability). 
 
 
 
 
 

 
Figure 5: Forward simulations confirm that LD-related annotations predict 
deleterious effects. We report standardized coefficients for each of four LD-related 
annotations in a joint regression of absolute selection coefficient against these 
annotations in data from forward simulations (see text). Numerical results are reported in 
Table S13. Error bars represent 95% confidence intervals around the regression 
coefficient estimates.   
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Figure 6: Simulations to assess extension of stratified LD score regression to 
continuous LD-related annotations. We report bias (estimated vs. true 𝜏∗ ) across 
10,000 simulations for (a) Null simulations with MAF-dependent architecture and (b) 
Causal simulations with MAF+LD-dependent architecture. Results for null simulations 
with MAF-independent architecture are reported in Figure S12. Numerical results are 
reported in Table S21. Results for simulations with causal SNPs that are absent from the 
reference panel are reported in Figure S13 and Table S23.  
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URLs 
ldsc software, http://www.github.com/bulik/ldsc; 
baseline-LD annotations, https://data.broadinstitute.org/alkesgroup/LDSCORE/; 
1000 Genomes Project Phase 3 data, 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502;  
PLINK software, https://www.cog-genomics.org/plink2;  
ARGweaver allele ages, http://compgen.cshl.edu/ARGweaver/CG_results/download;  
Oxford recombination map, http://www.shapeit.fr/files/genetic_map_b37.tar.gz;  
African-American and deCode recombination maps, 
http://www.well.ox.ac.uk/~anjali/AAmap/maps_b37.tar.gz;  
bedtools software, http://bedtools.readthedocs.org/en/latest; 
Human reference sequence, ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz; 
GCTA software, http://cnsgenomics.com/software/gcta/download.html;  
ARGON software, https://github.com/pierpal/ARGON;  
BOLT-LMM software, https://data.broadinstitute.org/alkesgroup/BOLT-LMM; 
UK Biobank, http://www.ukbiobank.ac.uk/;  
UK Biobank Genotyping and QC Documentation, http://www.ukbiobank.ac.uk/wp-
content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf; 
SLiM software, https://messerlab.org/slim/;  
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