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Abstract:  
Genes whose function is selectively essential in the presence of cancer 

associated genetic aberrations represent promising targets for the 

development of precision therapeutics. Here we present CancerGD 

(www.cancergd.org), a resource that integrates genotypic profiling with large-

scale loss-of-function genetic screens in tumor cell lines to identify such 

genetic dependencies. CancerGD provides tools for searching, visualizing, 

and interpreting these genetic dependencies through the integration of 

functional interaction networks.  

 
Main text: 
The ability to inhibit tumors in molecularly defined cohorts of patients is a 

cornerstone of precision cancer treatment. A successful approach has been 

the development of drugs that inhibit proteins specifically required in tumors 

harboring aberrations in recurrently altered cancer ‘driver genes’ [1]. For 

example, oncogene addiction effects, such as the increased sensitivity of 

ERBB2 (HER2) amplified breast tumors to ERBB2 inhibitors [2], can be 

clinically exploited, as can non-oncogene addiction effects, such as the 

synthetic lethal relationship between BRCA1/BRCA2 mutations and PARP 

inhibitors [3]. To identify additional cancer genetic dependencies (CGDs) that 

may ultimately be exploited therapeutically, multiple groups have performed 
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large-scale loss-of-function genetic screens in panels of tumor cell lines[4-8]. 

Integrating the results of these screens with molecular profiling data creates 

hypothesis-generating resources where the hypotheses are of the form ‘tumor 

cells with a mutation in gene X are sensitive to inhibition to of gene Y’. These 

hypotheses are typically tested in subsequent experiments – for example, in 

larger panels of cell lines, using orthogonal mechanisms of gene inhibition, 

and/or in mouse models – to ensure they are not statistical or experimental 

artefacts. Recent examples of novel CGDs discovered through genetic 

screening approaches include an increased sensitivity of ARID1A mutant cell 

lines to inhibition of the ARID1A paralog ARID1B [9], of PTEN mutant breast 

tumor cell lines to inhibition of the mitotic checkpoint kinase TTK [4], and of 

MYC amplified breast tumor cell lines to inhibition of multiple distinct splicing 

components [10].  

 

Although the results of loss-of-function screens are typically made publically 

available, their integration with genotypic data remains challenging for those 

without bioinformatics skills. Sequencing and copy number data must be 

processed to identify likely functional alterations, cell line names matched 

between different data sources, and statistical analysis performed to identify 

associations between the alteration of driver genes and an increased 

sensitivity to inhibition of target genes. To address these challenges we have 

developed CancerGD (www.cancergd.org), a resource that integrates multiple 

loss-of-function screens [5, 7, 8] with genotype data [11-13] to identify CGDs 

associated with a panel of cancer driver genes.  

 
CancerGD currently facilitates the searching, visualization, and interpretation 

of CGDs (Figure 2) associated with 36 driver genes (Supplementary Table 1). 

These genes were selected based on their identification as driver genes in 

multiple independent analyses [5, 11, 14] and due to their alteration in at least 

five tumor cell lines featured in one or more of the included loss-of-function 

screens. Driver gene associated CGDs are identified both across cell lines 

from multiple histologies (‘Pan Cancer’) and within tumor cell lines arising 

from specific primary sites (e.g. ‘Breast’). With an intuitive search interface it is 

thus possible to retrieve CGDs associated with ERBB2 amplification across 
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cell lines from all tissue types or specifically associated with ERBB2 

amplification in breast tumor models (Figure 2A). The data supporting every 

CGD can be visualized in an interactive box plot (Figure 2B) and downloaded 

for reference.  
 

Aside from oncogene addiction effects [1], which represent a tiny minority of 

the dependencies stored in CancerGD, the mechanistic interpretation of 

CGDs remains challenging. Why would mutation of one gene result in an 

increased dependency upon another? In yeast, the interpretation of such 

relationships has been greatly aided by the integration of protein-protein 

interaction networks with genetic screens [15]. Following a similar model, to 

aid the interpretation of CGDs in CancerGD we integrate functional 

interactions from the STRING database [16]. This facilitates the rapid 

identification of CGDs involving gene pairs with known functional 

relationships. For instance in the Campbell et al dataset [5] ERBB2 

amplification is associated with an increased dependency upon the ERBB2 

protein interaction partners JAK2 and ERBB3, as well as the ERBB2 

downstream effector PIK3CA (Figure 2A). Similarly in the Cowley et al dataset 

[7] loss or mutation of the BAF complex subunit ARID1A is associated with an 

increased dependency upon the ARID1A paralog and BAF complex member 

ARID1B [9]. Such dependencies may make more promising candidates for 

follow on experiments as they are supported by existing functional 

relationships in addition to the genetic association.  

 

In addition to identifying known functional interactions between the driver 

gene and associated dependency, it can be helpful to understand the 

relationships between all of the CGDs associated with a given driver gene.  

For instance we previously found that cell lines with a deletion or mutation of 

the tumor suppressor SMAD4 display a strong dependency upon the mitotic 

checkpoint kinase CHEK1 [5]. Considered in isolation it is not clear whether 

this CGD relates to a specific function of CHEK1 or a more general sensitivity 

to inhibition of the mitotic checkpoint. However, by analysing all of the 

dependencies associated with SMAD4 we found that they were densely 

connected on the protein interaction network and primarily involved in the 
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mitotic checkpoint [5], suggesting a more general sensitivity to perturbation of 

this pathway. To facilitate the identification of such pathway-level 

dependencies CancerGD provides network visualizations of the functional 

interactions between CGDs associated with each driver gene (Supplementary 

Figure 1).  

 

In contrast to the results of drug screening efforts in panels of tumor cell lines 

[12, 13, 17-20], the CGDs identified in loss-of-function screens include targets 

that have no inhibitors available and consequently may serve as the rationale 

for the development of new small-molecule inhibitors. To facilitate the 

identification of CGDs that may be more readily exploited with available 

inhibitors CancerGD integrates drug-gene interaction relationships from 

DGIdb [21]. 

 

The loss-of-function screens currently included in CancerGD were all 

performed using RNA interference (RNAi) approaches. Although existing 

CRISPR based loss-of-function screens include a relatively small number of 

cell lines [22-24] it is clear that CRISPR screens in larger panels of tumor cell 

lines will soon become available.  Nothing in the functionality or 

implementation of CancerGD is specific to RNAi screens and consequently as 

larger scale CRISPR screens become available we will incorporate their 

results into the resource. 

 

We believe that CancerGD will be a useful resource to aid a wider group of 

cancer researchers to benefit from the information generated in large-scale 

loss-of-function screens.  

 

Methods: 
Genotype data 
Exome data for ~1,000 cell lines are obtained from the GDSC resource [12, 

13]. We use this data to annotate ~500 driver genes [5] according to whether 

they feature likely functional alterations.  For oncogenes we consider 

recurrent missense or recurrent in frame deletions/insertions to be likely 

functional alterations, where recurrence is defined as at least 3 previous 
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mutations of a particular site in the COSMIC database [11]. In addition to 

recurrent missense or indel events, for tumor suppressors we consider that all 

nonsense, frameshift and splice-site mutations are likely functional alterations. 

For copy number analysis we use the gene level copy number scores from 

COSMIC for the same set of cell lines (which are derived from PICNIC 

analysis of Affymetrix SNP6.0 array data) [11-13, 19]. An oncogene is 

considered amplified if the entire coding sequence has 8 or more copies while 

a tumor suppressor is considered deleted if any part of the coding sequence 

has a copy number of 0 as per Garnett et al [19]. For the majority of driver 

genes we integrate the two sources together. For all tumor suppressors we 

consider a functional alteration to be either a deletion (derived from copy 

number profiles) or a presumed loss-of-function mutation (as identified in the 

exome data). For most oncogenes we consider a functional alteration to be 

either an amplification or a recurrent mutation/indel. For a small number of 

oncogenes (ERBB2, MYC, MYCN) we consider only amplifications as 

functional events, while for another group (KRAS, BRAF, NRAS, HRAS) we 

only consider recurrent mutations/indels.   

 

Loss of function screens 
Three large-scale RNAi datasets are currently included in CancerGD [5, 7, 8]. 

These include a kinome focussed siRNA screen covering a panel of 117 cell 

lines from diverse histologies [5], a genome-scale shRNA screen focussed on 

77 breast tumor cell lines [8] and a large-scale shRNA screen covering 216 

cell lines from diverse histologies [7]. Cowley et al [7] is largely a superset of a 

previous screen from the same lab [6] and hence the two resources are not 

included separately. Similarly the kinome siRNA screen from Cambell et al [5] 

contains the majority of the breast tumor cell lines screened in a previous 

breast cancer kinome siRNA screen from the same lab [4] and hence they are 

not included separately.  

 

Cell line naming  
Internally we follow the naming convention established by the Cancer Cell 

Line Encyclopedia [17]. The CCLE naming convention is the cell line name 

(containing only numbers and upper case letters) followed by an underscore, 
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followed by the tissue/primary site in upper case. The cell line names are 

taken from [12], converted to uppercase and punctuation removed. Where 

possible we use the same tissue types as the CCLE, in a small number of 

cases where a tissue was absent from the CCLE (e.g. CERVIX) we have 

created a new tissue type. Having the tissue type in the cell line name 

facilitates filtering the boxplots (e.g. to show the gene inhibition sensitivities for 

cell lines from a specific tissue) in the browser without having to perform 

additional database queries. Furthermore two of the published loss-of-function 

screens already follow this naming convention [5, 7] while the third features 

only breast cell lines and was trivially converted [8]. In instances where the 

same cell line is featured in two datasets but there is a naming disagreement 

(e.g. H1299_LUNG in Campbell et al [5] is NCIH1299_LUNG in our genotype 

set) we manually rename the RNAi dataset to match the genotype data. 

 
Gene identification 
CancerGD provides links to multiple external sources that use a variety of 

different gene identifiers. Consequently for each gene in the database we 

store multiple identifiers (Entrez Gene ID, Ensembl Gene identifiers, HUGO 

Gene Names, Ensembl Protein IDs). We also store synonyms for each gene 

to facilitate easy gene look up (e.g. ERBB2 can be identified by searching for 

HER2). These synonyms are obtained from the HGNC resource [25]. 

 

Drug target annotations 
Drug-gene relationships are obtained from the Drug-Gene Interaction 

Database (DGIdb), which integrates drug-gene relationships from multiple 

sources [26]. Only inhibitor relationships are retrieved, as we are interested in 

drugs that inhibit the products of specific genes, rather than drugs whose 

efficacy is associated with the mutation of specific genes. Results from DGIdb 

sourced from MyCancerGenome and MyCancerGenomeClinicalTrial are 

excluded for the same reason.  

 

Statistical analysis 
We use R for all statistical analysis. For each driver gene / target gene 

combination we compare cell lines harbouring a likely functional alteration in 
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the driver gene to cell lines with no alteration in that gene and test if the cell 

lines with the functional alteration are more sensitive to RNAi reagents that 

inhibit that gene. This is tested using a one-sided Mann-Whitney U test. A 

variety of alternative two-sample tests have been used in previous 

publications, including median permutation tests [4, 5] and mutual information 

based measures [7]. The Mann-Whitney U test has a number of advantages 

for CancerGD – it is rapid to calculate and it does not assume that the scores 

for each gene are normally distributed. The latter is important as it means the 

test can be used uniformly on loss-of-function screens from multiple sources 

that use different scoring schemes. For all screens we use the authors’ 

provided scoring scheme (zGARP for Marcotte et al [8], ATARIS phenotype 

score for Cowley et al [7], and robust Z-score for Campbell et al [5]). In 

addition to the p-value from the Mann-Whitney U test we calculate a common 

language effect size (CLES) for each dependency. The CLES is equivalent to 

the Area under the ROC curve and the Probability of Superiority and indicates 

the probability that a cell line with an alteration in a particular driver gene is 

more sensitive to a given RNAi reagent than a cell line without that alteration. 

In the database we store all nominally significant dependencies (p<0.05) with 

a CLES ≥ 0.65. In a small number of instances multiple ATARIS scores are 

presented for a single gene – when storing CGDs we incorporate the ATARIS 

score with the lower p-value. 

 

Functional interactions 
Functional interactions are obtained from STRING. We store all interactions 

that are medium confidence (STRING score > 0.4) or higher. Cut-offs to 

identify interactions as ‘Medium’, ‘High’ and ‘Highest’ confidence are those 

defined by STRING. For displaying the functional interactions between the 

dependencies associated with each driver gene we use the STRING API [16]. 

   

Implementation 
CancerGD is implemented in Python using the Django framework and follows 

a model/view/controller architecture. JQuery is used for Javascript processing 

in the browser interface.  MySQL is used by default for data storage but 

SQLite can be used for development / testing purposes with minimal 
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documented changes. The application is currently hosted on the 

PythonAnywhere system, a generic Python web services host, suggesting 

that the application is portable.  

 

Code availability 
Source code for the entire project (R/Python/Javascript/HTML) is publicly 

available on GitHub (https://github.com/cancergenetics/cancergd). Detailed 

instructions on how to run the statistical analysis, install the web application 

and populate the database are also provided in the GitHub repository 

(CancerGD_Manual_v1.1.doc).  
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Figure 1. CancerGD overview  
Loss-of-function screens from multiple sources are integrated with exome and 

copy number profiles from the GDSC resource. Cell lines are annotated 

according to the mutational status of a panel of driver genes. Statistical 

analysis is then performed to identify associations between the presence of 

driver gene alterations and sensitivity to reagents targeting specific genes. 

These CGDs are filtered such that only those with nominal significance 

(p<0.05) and moderate common language effect sizes (≥ 65%) are retained.  

Finally all CGDs are annotated according to whether they occur between 

driver-target pairs with known functional relationships (STRING) and whether 

there is an inhibitor available for the target gene (DGIdb).  

 

Figure 2. Genetic dependency exploration and visualization 
A) The principle view of the database. Each row represents a gene identified 

as a dependency associated with ERBB2 amplification in Campbell et al[5] 

across all tumor types (Pan cancer). Columns display experimental details 

along with the p-value, common language effect size and difference in median 

sensitivity score for each dependency. Genes with a known functional 

relationship to the driver gene (e.g. PIK3CA) are indicated in the ‘String 

interaction’ column and drugs known to inhibit the target gene indicated in the 

‘Inhibitors’ column. Toggles/search boxes permit easy filtering of interactions 

– e.g. to select only those genes with an associated inhibitor available. 

B) Example boxplot showing an increased sensitivity of ERBB2 amplified cell 

lines to inhibition of MAP2K3. Each circle represents the sensitivity of a 

particular cell line to RNAi reagents targeting MAP2K3. Cell lines are grouped 

according to ERBB2 amplification status with the wild-type group on the left 

and amplified group on the right. Cell lines are coloured according to site of 

origin and toggles on the right permit the hiding/showing of cell lines from 

specific sites. Hovering over a given shape provides the cell line’s name, the 

primary site, and the score associated with the RNAi reagent in that cell line. 

An overlapped box-whisker plot displays the interquartile range and the 

median for each group. High-resolution PNG images for each box plot can be 

downloaded along with a CSV file containing all of the data presented in the 
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box plot. Links to the target gene (MAP2K3) on additional sites are provided 

at the bottom of the plot. 

 

Supplementary Figure 1. Visualizing the interactions between all CGDs 
associated with a specific driver gene 
High confidence STRING functional interactions between CGDs associated 

with ERBB2 amplification in Campbell et al are shown. 

 
Supplementary Table 1. Driver genes currently included in CancerGD 
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Figure 2 

 
  

A 

B 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 26, 2016. ; https://doi.org/10.1101/081992doi: bioRxiv preprint 

https://doi.org/10.1101/081992
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 1 
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