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Abstract 
 
Serious and debilitating symptoms of anxiety are the most common mental health problem 
worldwide, accounting for around 5% of all adult ‘years lived with disability’ in the developed 
world. Avoidance behaviour –avoiding social situations for fear of embarrassment, for instance– 
is a core feature of such anxiety. However, as for many other psychiatric symptoms, the 
biological mechanisms underlying avoidance remain unclear. Reinforcement-learning models 
provide formal and testable characterizations of the mechanisms of decision-making; here, we 
examine avoidance in these terms. One hundred and one healthy and pathologically anxious 
individuals completed an approach-avoidance go/no-go task under stress induced by threat of 
unpredictable shock. We show an increased reliance in the anxious group on a parameter of our 
reinforcement-learning model that characterizes a prepotent (Pavlovian) bias to withhold 
responding in the face of negative outcomes. This was particularly the case when the anxious 
individuals were under stress. This formal description of avoidance within the reinforcement-
learning framework provides a new means of linking clinical symptoms with biophysically 
plausible models of neural circuitry and, as such, takes us closer to a mechanistic 
understanding of pathological anxiety. 
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Introduction 

Avoidance is a core feature of anxiety1 and plays a central role in psychological strategies for 
the treatment of anxiety2, but its underlying neural and cognitive mechanisms are unknown. 
Avoidance can be adaptive: if an individual perceives a situation as stressful then it makes 
sense to avoid that stressor in the future. However, excessive avoidance can result in a 
pathological downward-spiral. The more one avoids a situation, the less opportunity there is to 
learn that the situation is not as bad as feared, and a vicious cycle of avoidance and anxiety 
emerges1. For example, an individual who fears social embarrassment might ultimately end up 
housebound, avoiding all social interaction. 

The diathesis-stress model of anxiety3 proposes that maladaptive avoidance should be greatest 
during periods of environmental stress in vulnerable individuals. This idea has clear face-
validity, and is supported by clinical anecdote, but is largely derived from retrospective, 
subjective self-report. This is because quantifying avoidance under stress in an experimentally 
controlled yet ecologically valid manner in humans is methodologically challenging. In this study 
we address this challenge using: i) a translationally-validated ‘threat of shock’ procedure to 
induce stress4,5; ii) a cognitive task that has been shown to reliably index avoidance behaviour 
in healthy individuals1; and iii) a computationally precise method of defining of avoidance. 

Specifically, we operationalize avoidance as a behavioural bias towards withholding action (“no-
go”, i.e. inhibition) in the face of potentially negative outcomes. This powerful prepotent reflexive 
(or Pavlovian) bias has been observed consistently in humans and animals6-9 and is so 
profound that it can disrupt instrumental goal-directed behaviour6-9. This is known as Pavlovian-
Instrumental transfer10, and we harness it here to measure the degree to which individuals rely 
on their prepotent avoidance biases.  

Reinforcement-learning algorithms can provide parameterizations of avoidance behaviour that 
offer insight into both optimal behaviour when set correctly11, and to dysfunction and pathology 
when set incorrectly12. Critically, reinforcement-learning models enable us to parameterize the 
influence of Pavlovian avoidance biases on task performance in a formal manner. A large body 
of work has applied these models to healthy humans6-8, and they form the basis of human-level 
artificial intelligence11, but to date they have not been applied to individuals with anxiety 
disorders.  

We therefore tested pathologically anxious and healthy individuals completing an approach- 
avoidance go/no-go task under stress, which was induced by threat of shock. Avoidance was 
defined and parameterised within a reinforcement-learning framework. We predicted that 
anxious individuals would show high reliance on avoidance bias, and that this would be 
exacerbated by stress. 
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Materials and Methods 

Participants 

All data, task scripts and code to recreate the figures in this paper are freely available online*. A 
total of 101 participants were included in the study. Healthy participants (N=58 (originally N=62 
but four excluded because they failed to follow task instructions); 36 male [62.1%]; age range: 
18-57; mean (standard deviation) age=26.7 (7.1)) and (minimum 6 month) unmedicted 
individuals suffering from pathological anxiety symptoms (N=43; 27 male [62.8%]; age range 
18-53; mean age=28.8 (8.8)) were recruited from online advertising and institutional subject 
databases. The primary difference between the groups in initial recruitment was that only the 
pathological group self-defined as experiencing distress from mood/anxiety symptoms. Healthy 
participants responded to an advertisement asking for healthy individuals with no psychiatric 
symptoms. A phone screen confirmed no history of psychiatric, neurological or substance use 
disorders. The pathological group responded to an advertisement for individuals suffering with 
low mood, anxious or depressive symptoms. Following an initial phone screen, individuals who 
met criteria for mood or anxiety disorder symptomatology according to a face-to-face Mini 
International Neuropsychiatric Interview (MINI)13 were included. According to the MINI, the 
majority of participants (N=27) met criteria for both GAD and MDD (N=9 with additional panic 
disorder), N=8 met criteria for GAD (N=3 with panic disorder, N=1 with agoraphobia), N=2 Panic 
disorder and MDD, and a further N=6 MDD alone. The average number of depressive episodes 
was 5 (standard deviation ±7).  

Exclusion criteria were any form of medication within the last 6 months, any current psychiatric 
diagnosis (other than major depression or anxiety disorder), neurological or substance use 
disorders, or pacemaker. Previous unsuccessful treatments greater than 6 months prior to 
testing included medication (N=5), psychological treatment (N=8) or both medication and 
psychological treatment (N=12). A small number were undergoing current psychological 
treatment (N=5) but still met diagnostic criteria and 1 participant with MDD narrowly missed the 
diagnostic threshold (according to the MINI) but was included due to clear evidence of distress. 
A measure of trait anxiety was obtained for all participants using the State-Trait Anxiety 
Inventory (STAI)14. All participants provided written informed consent and were reimbursed 
£7.50/hour for participation. The study obtained ethical approval from the UCL Research Ethics 
Committee (Project ID Numbers: 1764/001 and 6198/001). 

Sample size was determined using a priori power calculations. The healthy control sample was 
powered for an effect size of d=0.49 based on the t-test of the within-subjects effect of an 
anxiogenic manipulation on a different action valence task15: N=57 gives 95% power for a two-
tailed t-test with α = 0.05. The size of the pathological group was based on an assumed 
between-groups effect size of 1.09 (observed in our prior study: 16), which was decreased to 0.8 
for the purpose of a conservative power analysis. N=42, gives 95% power for a two-tailed 
between-groups t-test with α = 0.05. Non computational analyses were completed using 
JASP.17 

Manipulation 

State anxiety was induced via threat of unpredictable electric shocks delivered with two 
electrodes attached to the non-dominant wrist using a Digitimer DS5 Constant Current 
Stimulator (Digitimer Ltd, Welwyn Garden City, UK). A highly unpleasant (but not painful) 

                                                
* https://figshare.com/articles/Avoidance_Anxiety_Materials/3860250  
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subjective shock level was established using a shock work-up procedure prior to testing. No 
more than five (to avoid habituation) shocks with gradual increasing shock level were 
administered. Participants rated each shock on a scale from 1 (barely felt) to 5 (unbearable). 
Shock level was matched at a level of 4 across participants. The experimental task was 
programmed in Psychtoolbox (http://psychtoolbox.org) for MATLAB 2014 (The MathWorks Inc., 
Natick, MA), presented on a laptop and administered under alternating safe and threat blocks. 
During the safe block, the background colour was blue and proceeded by a 4000ms message 
stating: “YOU ARE NOW SAFE FROM SHOCK”. During the threat block, the background colour 
was red and the message: “WARNING! YOU ARE NOW AT RISK OF SHOCK” was presented 
for 4000ms. Participants were told that they might receive a shock only during the threat 
condition but that the shocks were not dependent on their performance. In practice, a single 
shock was delivered at a pseudorandom timepoint during one-third of threat blocks (a total of 
four shocks across 480 trials). Note that it is the anticipation of these shocks, not the shocks 
themselves that constitutes the manipulation (see supplemental analysis). At the end of each 
experimental task, participants retrospectively rated how anxious they felt during the safe and 
threat conditions on a scale from 1 (“not at all”) to 10 (“very much so”). 

Approach-Avoidance Task 

The task was based on the design of a previous probabilistic go/no-go reinforcement learning 
task8,15 modified to incorporate the threat manipulation. The task comprised four experimental 
conditions where action (go/no-go) was crossed with valence (reward/punishment): 1) go to win 
reward (GW), 2) go to avoid losing (GA), 3) no-go to win reward (NGW), and 4) no-go to avoid 
losing (NGA). On each trial, participants were presented with one of four fractal cues per 
condition, followed by a target detection task, and subsequently by a probabilistic outcome 
(Figure 1). The fractal cue, target detection task and the outcome were each presented for 
1000ms and separated by a 250ms inter-trial interval (ITI). Each fractal cue signified one of the 
four experimental conditions, but this was not made explicit at the start of the experiment. Thus, 
subjects had to learn that each fractal image indicated both which 1) action (go=make response; 
no-go=withhold response) to perform during the target detection task and 2) the associated 
valence of the outcome (reward/no reward; punishment/no punishment). The meaning of the 
fractal cues was randomised across participants. In the target detection task, a circle was 
presented randomly on one side of the screen (50% of trials on the left). In the go experimental 
conditions (GW/GA), participants had to match the position of the circle by pressing the 
corresponding key (i.e., press the left key when the circle was on the left and vice versa). In the 
no-go experimental conditions (NGW/NGA), participants had to withhold any response (i.e. any 
response was recorded as incorrect). The circle was presented for 1000ms regardless of 
response.  

In the rewarded conditions (GW/NGW), correct responses were rewarded 80% of the time, but 
resulted in no win 20% of the time. Incorrect responses led to no win 80% of the time, but were 
rewarded 20% of the time. In the punishment conditions (GA/NGA), correct responses avoided 
punishment 80% of the time but led to a loss 20% of the time (and vice versa for incorrect 
responses). Wins were indicated by a happy face and a gain of 10 points. Losses were 
indicated by a fearful face and a 10 point deduction. A horizontal yellow bar indicated when 
participants neither won nor lost points. Faces were selected from the Ekman facial set and the 
genders of the faces were counterbalanced across participants. 

Participants were informed about the probabilistic nature of the task but they were not told the 
action-outcome contingencies for each fractal cue. Instead, they were told that they had to learn 
the correct response for each fractal cue, which could be either a go response or a no-go 
response, by trial and error. The task was divided into 24 alternating safe and threat blocks (12 
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blocks of each) with the order of the safe and threat conditions counterbalanced across 
participants. A different set of fractal cues was used under threat and safe in order to avoid 
possible confounding effects from learning under the different conditions. The eight fractal cues 
for threat and safe (four in each condition) were counterbalanced across participants.  

Each block had five trials per experimental condition (GW, GA, NGW, NGA), with a total of 20 
trials per block. The trials were randomly presented within each block. There were thus a total of 
240 trials (60 trials for each fractal cue) per safe or threat condition. The task lasted around 35 
min with a single shock delivered in the third, seventh, tenth and twelfth threat blocks. These 
shocks were always presented in the ITI between trials (the 4th trial of the 3rd threat block, the 
18th trial of the 5th threat block, the 10th trial of the 10th threat block and the 2nd trial of the 12th 
threat block). Critically, these shocks were presented to maximise manipulation efficacy18 (see 
supplemental analysis of effect on choice behaviour).  Prior to the start of the task, participants 
completed nine practice trials without the threat manipulation. Each outcome appeared three 
times and identical black images were used instead of fractal cues in order to familiarise 
participants with the task without confounding learning of the action-outcome contingencies. 

Reinforcement-learning models 

Table 1: Model specification (NP = number of parameters) 

Model Name NP Parameters 

Standard - 
Action Bias 

5 Reward 
sensitivity 

Punishment 
sensitivity 

Learning rate Lapse  - Approach-Avoid bias 

Standard – 
Approach-Avoid 

5 Reward 
sensitivity 

Punishment 
sensitivity 

Learning rate Lapse  General 
action 
bias 

- 

Standard + 2 
Approach-Avoid 
- 1 Sense 

6 Sensitivity Learning rate Lapse  General 
action 
bias 

Approach 
bias 

Avoidance 
bias 

Standard 6 Reward 
sensitivity 

Punishment 
sensitivity 

Learning rate Lapse  General 
action 
bias 

Approach-Avoid bias 

Standard + 2 
Approach-Avoid 

7 Reward 
sensitivity 

Punishment 
sensitivity 

Learning rate Lapse  General 
action 
bias 

Approach 
bias 

Avoidance 
bias 

Standard + 2 
Learning Rates 

7 Reward 
sensitivity 

Punishment 
sensitivity 

Reward 
Learning 

rate 

Punishment 
Learning  

rate 

Lapse  General 
action 
bias 

Approach-Avoid bias 

Standard + 2 
Approach-Avoid 
+ 2 Learning 
Rates 

8 Reward 
sensitivity 

Punishment 
sensitivity 

Reward 
Learning 

rate 

Punishment 
learning 

 rate 

Lapse  General 
action 
bias 

Approach 
bias 

Avoidance 
bias 

Reinforcement-learning modelling proceeded in the same way as described in a prior paper8. 
Briefly, we built seven parameterized reinforcement-learning models to fit to the behaviour of the 
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subjects. All models were adapted Rescorla Wagner models. We use the term ‘Standard’ to 
denote the 6 parameter winning model from Guitart-Masip, et al. (2012) and either add or 
subtract parameters to test model fits for seven separate models (See Table 1 for a parameter 
specification summary). 

Learning models: All the models assigned a probability to each action at on trial t based on an 
action weight and the current stimulus. The action weights were constructed according to a 
simple Rescorla–Wagner-like update equation with a learning rate. Reinforcements were coded 
as +1 for a reward, -1 for a punishment and 0 for no feedback. A sensitivity parameter 
determined the effective size of reinforcements for a subject. For the majority of models the 
sensitivity parameter could take on different values for the reward and punishment trials. For 
one model (‘Standard + 2 Approach-Avoid - 1 Sense’) there was only one sensitivity parameter 
per subject, thus assuming that failure to obtain a reward was as aversive as obtaining a 
punishment. The initial value for the go action was set to zero and the action weight was 
modified to include a static general action bias parameter which denoted overall go tendency 
(with the exception of one model ‘Standard - action bias’, in which this was not included). The 
Pavlovian approach-avoid bias parameter (excluded for one model ‘Standard - Approach-Avoid) 
inhibited the tendency to go in proportion to the negative value of the punishment stimulus, 
while it similarly promoted the tendency to go in proportion to the positive value of the reward 
stimulus. For the model with two Approach-Avoid parameters (‘Standard + 2 Approach-Avoid), 
there were two parameters, updated separately for rewarded and punished trials. For the 
models with two learning rates (‘Standard + 2 Approach-Avoid + 2 learning rates’ / ‘Standard + 2 
learning rates’), there were separate learning rates for rewarded and punished trials. In sum, for 
a given action (a = go / no-go), stimulus (s = GW / GA / NGW / NGA), reinforcement (r = +1 /-1 / 
0) on each trial (t): 
 

𝑄! !!,!! =  𝑄!!! !!,!! + 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∙ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑟! − 𝑄!!! !!,!!                1  
 

𝑉𝑎𝑙𝑢𝑒! !! = 𝑉𝑎𝑙𝑢𝑒!!! !! +  𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∙ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑟! − 𝑉𝑎𝑙𝑢𝑒!!! !!                (2) 
 

𝐴𝑐𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡! !,! =
𝑄! !,! +  𝐴𝑐𝑡𝑖𝑜𝑛𝐵𝑖𝑎𝑠 + 𝐴𝑝𝑝𝐴𝑣𝑜𝐵𝑖𝑎𝑠 ∙ 𝑉𝑎𝑙𝑢𝑒!(!)

𝑄! !,!
  
𝑎 = 𝑔𝑜
𝑎 = 𝑛𝑜𝑔𝑜(3) 

 
 
Observation model: For action selection, the probability of each action was passed through a 
squashed softmax function with the addition of an irreducible lapse parameter (referred to as 
‘noise’ in earlier papers, but renamed lapse here to avoid confusion with temperature noise 
parameters), which was free to vary between 0 and 1. 

𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(!!,!!) =  
exp (𝐴𝑐𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡!(!!,!!))
exp (𝐴𝑐𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡! !!,!! )!!

∙ 1 − 𝐿𝑎𝑝𝑠𝑒 +
𝐿𝑎𝑝𝑠𝑒
2

                (4) 

 
Parameter Estimation 

We used an hierarchical Type II ML expectation–maximization (EM) procedure to fit the 
parameters across all subjects and conditions. These procedures are identical to those used by 
Huys et al 201110. Briefly, the top level of the hierarchical model specified distributions over the 
parameters for the subjects (see below). At each iteration, the current top-level distributions 
were used as a prior for a Laplace approximation to the intermediate-level posterior distribution 
of the parameters for each subject (the E-phase). These intermediate-level distributions were 
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then used to determine the next iteration of the top-level distributions (the M-phase). The 
algorithm was initialized with maximum likelihood values of all the parameters for the subjects; 
the Laplace approximation was based on the use of fminunc in MATLAB, using multiple random 
initial values at each iteration of optimization to help avoid local minima. Four different 
population distributions were tested (see Figure 3):  

1) Four distributions: one for anxious individuals under threat, one for controls under threat, 
one for anxious individuals under safe, one for controls under safe. This is the most 
relaxed procedure and serves to pull all parameters apart. 

2) Two distributions: one distribution for threat and one distribution for safe. This fitting 
procedure was blind to the existence of group. 

3) A single distribution for all participants and conditions (i.e. each participant was included 
twice within the distribution; once for the safe, and once for threat conditions). This fitting 
procedure was blind to the existence of both group and threat condition, and serves to 
pull all parameters closer together.  

4) Two distributions: one distribution for anxious individuals and one distribution for 
controls. This fitting procedure was blind to the existence of induced anxiety. 

The fit of each model and distribution was compared using the integrated BIC (iBIC). The iBIC is 
the integral of the likelihood function over the individual parameters (for details, see10). Small 
iBIC values indicate a model that fits the data better after penalizing for the number of 
parameters. The parameter fitting procedure results in one iBIC per distribution. These are then 
summed together to provide a single iBIC to enable model comparison across distributions. The 
lowest overall iBIC denotes the ‘winning’ model and distribution combination (an approximate 
Bayes Factor of the comparison of iBIC scores can be calculated using exp(ΔiBIC/2).) Note that 
fitting the parameters of the winning model using a different, hierarchical Bayesian, approach 
recovered similar parameters (see supplement). 

The parameters recovered from the winning model were then compared across groups and 
conditions using permutation tests implemented in MATLAB 2014 (see http://tiny.cc/2slwby for 
code and supplement for replication using different software). The recovered p-values are 
comparable to those derived from standard t-tests, but do not require the assumption of 
normality (critical given the possibility of multimodal distributions recovered from the model 
fitting procedure).  
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Results  
 
Basic analysis of symptoms and behaviour 
 
Our sample consisted of 58 healthy individuals and 43 unmedicated individuals suffering from 
pathological anxiety symptoms. The learning task (adapted from8,15) comprised four 
experimental trial types which orthogonalized action (go/no-go) and valence 
(reward/punishment; see Figure 1 for details). All trials were completed under threat of shock 
(i.e. stress) and safe conditions.  

Figure 1 Experimental paradigm: The trial sequence for each trial-type condition under threat 
(red) and safe (blue) conditions. There were equal numbers of Go to Win (GW), Go to Avoid 
(GA), No-Go to Win (NGW) and No-Go to Avoid (NGA) trials within each safe and threat block, 
and these were randomly ordered within each block (note that safe sequence proceeds in the 
same way as threat but is curtailed here for brevity). The prepotent Pavolovian bias to a win is a 
go response (approach) and the prepotent Pavlovian response to a loss is no-go (avoid); hence 
in GW and NGA, the bias and task instructions are aligned; but in GA and NGW, participants 
have to learn to overcome their avoidance and approach biases respectively. The safe and 
threat blocks were presented in alternating order, counterbalanced across participants. A 
different set of fractal cues was used for the safe and threat blocks, counterbalanced across 
participants. At feedback, a face (happy +10 points, fear -10 points) was shown 80% of the time, 
and no points (i.e. a yellow bar – not shown in the figure) was shown 20% of the time. 

WARNING! 
 

YOU ARE NOW AT  
RISK OF SHOCK 

+10 points 

1000 ms  
cue 

250 ms  

1000 ms  
Target Detection 

250 ms  

1000 ms  

250 ms  
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As expected, the anxious group reported significantly higher symptoms of trait anxiety relative to 
controls (F(1,97)=69.9, ηp

2 =0.4, p<0.001); Figure 2a). Participants retrospectively reported 
feeling greater anxiety during the stress manipulation relative to the matched safe condition 
(F(1,99)=166, ηp

2=0.6, p<0.001; Figure 2b), which was similar between groups (main effect of 
group: F(1,99)=2.0, ηp

2=0.02, p=0.16; group x condition interaction F(1,99)=0.007, ηp
2<0.001, 

p=0.9). 

Analysis of overall performance accuracy revealed a main effect of action (F(1,99)=90, ηp
2=0.5, 

p<0.001), qualified by an action (go/no-go)-by-valence (reward/punishment) interaction 
(F(1,99)=94, ηp

2=0.5, p<0.001; Figure 2c). As expected, this was driven by worse performance 
in the conditions where Pavlovian biases had to be overcome in order to make the appropriate 
response (i.e. a loss-driven avoidance bias in GA; and a win-driven approach bias in NGW) as 
well as an overall bias towards making go responses. There was a main effect of group 
(F(1,100)=15, ηp

2=0.1, p<0.001) driven by worse overall accuracy in anxious individuals, but no 
other interactions with group or condition (all p>0.5). However, as apparent in Figure 2d, 
learning follows a complex time-course which differs by condition (and by individual). We 
therefore turned to a computational model-based analysis to examine these differences at a fine 
scale. 

Figure 2: Self-report anxiety and task performance. Between groups, a) our anxious sample 
reported significantly higher trait anxiety scores (data missing for two participants in the healthy 
group), while b) the whole sample reported increased (induced) anxiety, rated retrospectively, 
under threat relative to safe conditions (violin plots; each point represents a subject, background 
shading represents estimated distribution). c) Collapsed mean accuracy differs as a function of 
trial type, but this ignores that d) performance on the task changed over time such that the 
probability of making a response (P(go)) differed as a function of trial type, condition and group 
(shading represents standard error of the mean). (HC=healthy control=green; ANX=pathological 
anxiety=grey; Saf =safe; Thr= threat; Avo=Avoid) 

Reinforcement-learning model selection and validation 

We fitted reinforcement-learning models to trial-by-trial choice behaviour using an hierarchical 
Type II maximum likelihood expectation–maximization approach10. The most parsimonious 
model (‘Standard + 2 Approach-Avoid + 2 Learning Rates’; Table 1; Figure 3e; methods) is an 
adapted Rescorla-Wagner model19 identical to the winning model in prior studies of healthy 
individuals6,8, with the exception that there are separate Pavlovian approach, avoid and learning 
rate parameters for the cases of rewards and punishments. In other words, this model included 
an approach bias parameter, an avoidance bias parameter, and accommodated separate 
speeds of learning about rewards and punishments.  
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The hierarchical model fitting procedure requires the specification of population level priors. This 
raises an important conceptual question when it comes to considering multiple groups. Should 
we consider groups of anxious individuals and healthy controls as being sampled from the same 
or different populations? We answered this question through the adoption of a population-level 
model comparison approach. We compared fits for models ranging from four separate prior 
distributions for each group and stress condition (Figure 3a) to a single distribution for all 
subjects and conditions (Figure 3c). The best fit for our winning model was achieved by fitting a 
single population distribution (Figure 3c), implying that we did not obtain sufficient evidence to 
suggest that anxious and healthy individuals were sampled from different populations. Box plots 
and means of the posterior parameter distribution across subjects (under the Type II empirical 
prior) are shown in Figure 3f; that all subjects share the same prior implies that the recovered 
parameters will be drawn closer together. 

 

Figure 3: Model Fitting and Comparison Four different population distributions were tested 
separated by a) group and threat condition (4 distributions); b) by threat condition alone (2 
distributions); c) blind to group and threat condition (1 distribution); and d) by group alone (2 
distributions). Comparison of models and distributions using integrated Bayesian Information 
Criteria (iBIC) scores (colours match distributions throughout figure) revealed a winning model 
of ‘Standard + 2 Approach-Avoid + 2 Learning Rates’, fit across a single prior distribution (inset 
zoomed in on the distribution comparison for this model). Box and whisker plots of the 
recovered parameters from the wining model/distribution are presented in f) separated by group 
and condition (red triangles denote means, lines denote medians; based on individual 
parameter estimates). Note that transforming the data into interpretable space skews the 
distributions of inferred parameter values away from normality and thus many values fall outside 
the whiskers. Log scales are used for the sensitivity and approach-avoidance parameters to aid 
visualisation of these exponentially transformed parameters (HC=healthy control; ANX = 
pathological anxiety; Rew = reward; Pun = punishment; Stand= standard; Ap-Av = approach 
avoid; Sense = sensitivity; LR=learning rate; Avoid=Avoidance Bias; Approach = Approach 
Bias) 

We next ran a posterior predictive model with parameters set to those from the winning model 
(i.e. having a computer make decisions as if it was each individual subject). Average 
parameters recovered from simulated data were close to those that were originally observed 

a 

e 

f 

d 

H
C

 

AN
X 

AN
X 

th
re

at
 

H
C

  
threat 

AN
X 

sa
fe

 

H
C

  
safe 

c 

al
l 

b 

th
re

at
 safe 

Stan
d -

 Actio
n b

ias
  

Stan
d -

 Ap-A
v  

Stan
d +

 2 
Ap-A

v -
 1 

Sen
se

  

Stan
d  

Stan
d +

 2 
Ap-A

v  

Stan
d +

 2 
LR

  

Stan
d +

 2 
Ap-A

v +
 2 

LR
  

#104

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9
Cumulative iBIC

#104

4.402

4.404

4.406

4.408

4.41

4.412

4.414

4.416

4.418

4.42 Thre
at 

ANX  

Safe
 ANX  

Thre
at 

HC  

Safe
 HC  

100

102

Rew Sense

Thre
at 

ANX  

Safe
 ANX  

Thre
at 

HC  

Safe
 HC  

100

101

Pun Sense

Thre
at 

ANX  

Safe
 ANX  

Thre
at 

HC  

Safe
 HC  

0

0.2

0.4

0.6

0.8

1
Rew LR

Thre
at 

ANX  

Safe
 ANX  

Thre
at 

HC  

Safe
 HC  

0

0.2

0.4

0.6

0.8

Pun LR

Thre
at 

ANX  

Safe
 ANX  

Thre
at 

HC  

Safe
 HC  

10-1

100

Approach

Thre
at 

ANX  

Safe
 ANX  

Thre
at 

HC  

Safe
 HC  

10-1

100

101
Avoid

Thre
at 

ANX  

Safe
 ANX  

Thre
at 

HC  

Safe
 HC  

0

0.1

0.2

0.3

0.4

0.5
Lapse

Thre
at 

ANX  

Safe
 ANX  

Thre
at 

HC  

Safe
 HC  

-1
0
1
2
3
4
5

Action Bias



 11 

(Figure 4a), albeit with more noise for the NGW condition. Average simulated behaviour over 
time matched closely that of the subjects (Figure 4b; compare to Figure 2c) 

Pathological anxiety is associated with increased reliance on avoidance bias, especially 
under stress. 

We finally performed permutation tests on the posterior parameters to assess the effects of 
group and threat condition. These revealed an increased reliance on the avoidance bias 
parameter in the anxious group (effect of group averaged across threat and safe): 
p(permutation)=0.03) (Figure 4c) and a significantly greater increase in the avoidance parameter 
under threat vs safe conditions in the anxious group relative to controls (p(permutation)=0.012; 
Figure 4d) driven by a significantly greater avoidance in anxious relative to controls under 
threat (p(permutation)=0.008), but not safe (p(permutation)=0.18) conditions. No other parameter differed 
across either group or condition (all p(permutation)>0.1). 

 

Figure 4: Posterior Predictive Model Running the estimated parameters for each subject 
through a posterior predictive model recovered both a) average go probabilities for each trial 
type (sensitivity plots: each marker represents one subject under one condition so there are 
twice as many markers as subjects), and b) group-averaged trial-by-trial performance (compare 
to real data in Figure 2c). Comparing parameters across group and condition revealed c) a 
significantly higher avoidance bias parameter in pathological anxiety across conditions as well 
as greater threat-potentiated avoidance in pathological anxiety (error bars represent standard 
error of the mean; HC=healthy control=green; ANX=pathological anxiety=grey; Saf =safe; Thr= 
threat; Avo=Avoid) 
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Discussion  

Anxious individuals show strong avoidance behaviour that can be debilitating and self-
perpetuating1. Here, using a novel computational approach, we provide evidence that 
pathologically anxious individuals show increased reliance on an avoidance bias (a Pavlovian 
bias to withhold responding in the face of punishments) during reinforcement-learning. 
Moreover, consistent with the diathesis-stress hypothesis, this effect was exacerbated under 
stressful conditions only in the anxious group. 

We provide a potential computational mechanism for this effect. We show that avoidance 
behaviour – which is currently measured by retrospective self-report - can emerge at the level of 
stimulus-action associations. Specifically, anxious individuals may show avoidance in the face 
of threats because they inhibit their action tendencies when faced with a perceived negative 
outcome. Over time, individuals may be ultimately able to learn to overcome this bias (i.e. 
promote instrumental override of Pavlovian bias parameters) if they are given the opportunity to 
experience outcomes (i.e., NGW go probability is lower at the end than GW here). However, in 
the real world, avoidance means that, by definition, predicted outcomes are rarely experienced 
and challenged, there is little opportunity to learn, and a persistent miscalibration can emerge. 

The growing field of computational psychiatry12 seeks to use theory-driven approaches to 
explain psychiatric phenomena. Testable theories are a pre-requisite to a clear mechanistic 
understanding: here, we have outlined a precise and formalised computational theory about 
how avoidance emerges in anxiety under stress. This approach has at least two further 
advantages. Firstly, it allows us to reduce a highly dimensional dataset (here, choices over time) 
into small number of parameters that respect the temporal variability of the data (unlike 
responses averaged over time). Secondly, we can directly integrate this model into biophysically 
plausible models of underlying neural activity20. Indeed, performance of this task in healthy 
individuals has been linked neurocognitively to striatal and midbrain regions associated with 
network models of action7,8 as well as dopaminergic modulation of this circuitry21. Striatal 
regions of this circuitry are also modulated by the threat of shock technique used here18, 
providing a link between these substrates and stress. This computational approach therefore 
holds promise as a means of unifying complex psychiatric phenomena, such as avoidance, with 
their underlying neural circuitry. 

Such a mechanistic link is critical if we wish to develop improved treatments. Without 
mechanistic understanding, treatment development has to be targeted at downstream 
symptoms – e.g. self-reported avoidance. The problem with this approach can be illustrated by 
the symptom of cough22. Lung cancer, allergies, bronchitis or tuberculosis all result in a cough 
through fundamentally different mechanisms, but the treatment for one will be ineffective for the 
others (and indeed may even cause harm through side effects). Targeting clearly defined 
mechanisms, not symptoms, should ultimately improve the effectiveness of interventions. For 
example, extensive work in the development of psychological interventions for anxiety has 
suggested that exposure therapy should be paired with behavioural training to overcome 
avoidance in order to be effective1, but the mechanism is unclear. The present findings suggest 
that this may be because such training encourages an instrumental override of Pavlovian bias 
during action selection. One avenue for future exploration, therefore, is whether training to 
overcome bias on GA trials on tasks like the present could promote instrumental override (cf.23 
but also24). If proven effective, such speculative task-based interventions (completed via 
smartphones, for example) could have enormous potential value for public health. 
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Supplement 

Effect of shocks 
Comparing pooled performance on the five trials before and after the four shocks (i.e., 20 pre- 
and 20 post-shock trials) revealed no impact of the shock stimulation on accuracy (pre- vs post-
shock: F(1,99)=1.6, p=0.21, ηp

2=0.016; pre- vs post-shock*group: F(1,99)=0.7, p=0.39, 
ηp

2=0.007) or reaction time (pre- vs post-shock: F(1,98)=0.13, p=0.72, ηp
2=0.001; pre- vs post-

shock*group: F(1,98)=0.1, p=0.75, ηp
2=0.001). An analysis separate by trial type (GA, NGA, 

GW, NGW) revealed no significant interactions (all p>0.2). 
 
Model-fitting 
Fitting our winning model using a hierarchical Bayesian approach implemented using the 
hBayesDM (hierarchical Bayesian modeling of Decision-Making tasks) toolbox1 recovered very 
similar avoidance parameters (correlation between parameters: avoidance under threat: r=0.85, 
p<0.001; avoidance under safe: r=0.84, p<0.001). 
 
We note that our model does a better job of fitting the trials that contribute to the avoidance bias 
parameter fitting (i.e. the avoid trials; Figure 4a) than the rewarded trials (especially NGW). This 
means that inference is based on the trials that are best captured by the model. Future work 
might seek to refine model components that improve the fit of the rewarded trials. One option is 
to test the effect of varying the population priors at the parameter level, rather than the model 
level. For example it may be that avoidance bias is best fit across a single population, but that 
other parameters would be best fit across separate populations. Specifying such differences is 
out of reach of our current tools, but should become available within the coming years. Another 
potential way to improve fits would be to run permutation tests at the model-fitting stage (rather 
than on the final recovered parameters). In other words, trial-by-trial data could be randomly 
assigned to groups and conditions prior to fitting, with as many permutations as possible tested. 
With our current computing setup this procedure would take several hundred hours to run, but 
this approach may become feasible within the coming years. 
 
Group parameter comparisons check 
We confirmed our permutation tests with independent Matlab code (http://tiny.cc/oygmdy) and 
the R package coin (http://tiny.cc/o6brdy IndependenceTest). Both showed increased reliance 
on the avoidance bias parameter in the anxious group (effect of group on average across threat 
and safe: p(permutation_matlab)=0.044 / p(permutation_R)=0.049 and a threat*group 
interaction: (p(permutation_matlab)=0.015/ p(permutation_R)=0.018. 
 
1.  Ahn, W.-Y., Haines, N. & Zhang, L. Revealing neuro-computational mechanisms of 
reinforcement learning and decision-making with the hBayesDM package. bioRxiv, 
doi:10.1101/064287 (2016). 


