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Abstract 

The functional architecture of spontaneous BOLD fluctuations has been characterized in 
detail by numerous studies, demonstrating its potential relevance as a biomarker. However, 
the systematic investigation of its consistency is still in its infancy. Here, we analyze both the 
within- and between-subject variability as well as the test-retest reliability of resting-state 
functional connectivity (FC) estimates in a unique data set comprising multiple fMRI scans 
(42) from 5 subjects, and 50 single scans from 50 subjects. To this aim we adopted a 
statistical framework enabling us to disentangle the contribution of different sources of 
variability and their dependence on scan duration, and showed that the low reliability of single 
links can be largely improved using multiple scans per subject. Moreover, we show that 
practically all observed inter-region variability (at the link-level) is not significant and due to 
the statistical uncertainty of the estimator itself rather than to genuine variability among areas. 
Finally, we use the proposed statistical framework to demonstrate that, despite the poor 
consistency of single links, the information carried by the whole-brain spontaneous 
correlation structure is indeed robust, and can in fact be used as a functional fingerprint.  
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1 Introduction 

Neuroimaging techniques allow us to deal non-invasively with two main principles of brain 
functioning: segregation and integration. Relationships between segregate regions can be 
described at different scales, with different techniques, and the strengths of these relationships 
can help us to understand their integrative roles. Some methods help to describe the physical 
wiring between the brain regions (e.g., diffusion tensor imaging, tractography, etc), while 
others quantify the functional relationship between regions’ activity (Friston [2011]). To date, 
one of the most widely adopted techniques used to characterize the functional structure (also 
referred to as functional connectome) has been resting-state functional magnetic resonance 
imaging (rs-fMRI). Resting-state is commonly defined as the condition in which the 
participant is not performing any overt task, but lies still in the scanner (with eyes closed or 
fixating on a cross on a screen) while not focusing on any particular thought or sensation (see 
e.g., Biswal et al. [1995] or more recent Zuo and Xing [2014]). The method is based on the 
quantification of local changes in blood oxygenation through the use of the so-called blood-
oxygen level-dependent (BOLD) signal (Ogawa et al. [1990]), that have been demonstrated to 
partially reflect underlying neural activations (Logothetis et al. 2001, Logothetis 2008, Magri 
et al. 2012). Functional connectivity (FC) between different regions of interests (ROIs) is then 
quantified with measures of statistical dependencies between such changes in different brain 
regions, with the Pearson correlation coefficient being the most commonly used (see e.g. 
Friston [2011]). 

Resting-state functional connectivity (rs-FC) has already been adopted to differentiate 
between subjects Finn et al. [2015] and groups, either coming from healthy or pathological 
populations (see for example Rosazza and Minati [2011] for a review and references therein), 
or between different brain states (see for example the case of learning in Guerra-Carrillo 
et al. [2014] and references in there). The advantages of this method lie on its spatial 
resolution, speed and completeness (Logothetis [2008]). In fact, by using a resting-state fMRI 
scan of about 5 minutes, it is possible to obtain a large-scale description of the functional 
relationships between all brain areas. Those advantages make this technique potentially very 
powerful, even considering that it measures neural activity only indirectly through the BOLD 
signal (Logothetis [2008]). The unrestricted nature of the resting-state experiments could in 
fact mirror a wide range of cognitive states and operations (Christoff et al., 2009; Richiardi et 
al., 2011; Hurlburt et al., 2015).  

Interestingly, functional connectome studies show a differential pattern of findings: on the one 
hand they show a very stable architecture of correlated spontaneous activity, on the other hand 
they indicate a high variability in the functional structure, with temporal dynamics  ranging 
from less than one second (Mitra et al. [2015])), to days (Anderson et al. [2011]; Laumann 
et al. [2015]. According to the current literature, a crucial factor influencing the stability of 
the resting-state FC is scan duration. The most common acquisition time is 5–10 min, even 
though recent evidence indicates the importance of using much longer scans to obtain reliable 
FC estimates (Anderson et al. [2011]; Birn et al. [2013]; Hacker et al. [2013]; Laumann 
et al. [2015]). A question that has both theoretical and practical relevance is how much data 
we need to accurately and reliable estimate the FC of a single subject (Birn 
et al. [2013]; Laumann et al. [2015]; Finn et al. [2015]). One of the main objectives of our 
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study is to reconcile these apparently conflicting aspects of resting-state FC. 

The development of biomarkers derived from resting-state BOLD-fMRI scans that are able to 
characterize the functional architecture of individual brains is important for cognitive as well 
as for clinical neuroscience. For a biomarker to be successful, it has to be reliable; as such, 
two conditions must be met: on one hand, it should be stable for the same subject (or 
condition) across different sessions, whereas on the other hand it should substantially vary 
over different subjects (or conditions). The second requirement ensures that the biomarker is 
selective for the variable of interest, and could thus be used to effectively discern between 
different subjects or conditions. The principle behind the two above mentioned criteria 
suggests a rather straightforward way to quantify the reliability of a potential biomarker, 
namely by comparing the within-subject (-condition) variability with the between-subject (-
condition) variability. If these two types of variability  can be described through the use of a 
normal variable, an index commonly adopted to measure this ratio is the intra-class 
correlation coefficient (ICC) a measure widely used in the psychological sciences to assess 
test-retest reliability (Shehzad et al. [2009]; Zuo and Xing [2014]). We will use the ICC as our 
main tool in assessing the reliability of resting-state FC. 

Although numerous studies have been devoted to characterize the functional architecture of 
spontaneous BOLD-fMRI fluctuations, the test-retest reliability of functional indices has 
begun to be addressed only recently (Anderson et al. [2011]; Birn et al. [2013]; Hacker 
et al. [2013]; Zuo and Xing [2014]). From the results reported in the literature, one of the 
main findings is that test-retest reliability of functional indices between regions of interest 
(ROIs), as quantified by the intra-class correlation (ICC), seems to strongly vary over brain 
regions and over pairs of brain regions (for link-based indices). What has not been made 
explicit in previous studies, however, is an analysis of the variability of the reliability 
measures themselves. Indeed, reported variation of reliability has been interpreted to reflect 
differences in the reliability of the functional indices, without taking into consideration the 
statistical uncertainty due to finite sample in the estimates of the ICC.  

Within the context of resting-state BOLD-fMRI, where the number of subjects and the 
number of scans by subject are usually limited, the variance of ICC estimators can be very 
high. Assessment of the variance of the estimated ICC is particularly relevant for 
investigating its heterogeneity over regions, links, and networks as done in Zuo and 
Xing [2014]. In fact, a proper assessment of the ICC variability was lacking in the above-cited 
studies, and as such its claimed that heterogeneity has still to be demonstrated.  

In the present study, we replicated most of the analyses presented in Shehzad et al. [2009]; 
Birn et al. [2013]; Zuo and Xing [2014]; Laumann et al. [2015], as indeed they are pioneers in 
the analysis of both FC variability and reliability. In particular, we investigate the test-retest 
reliability of resting-state FC-fMRI, and its variability. To this aim, we use fMRI to measure 
the resting-state activity in a group of 6 participants, each of them scanned 50 times, which 
allowed assessing the intersession (session-to-session) reliability.  

The paper is divided into three main sections, each one aimed at answering different questions: 
In the first section, we briefly present the data to provide the reader with an intuition of the 
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variability and reliability of FC. In the second section, we analyze the variability and 
reliability of functional connectivity at the link level; the former estimated by the standard 
deviation of the correlation coefficients between ROIs, the latter through the ICC. We analyze 
how a finite number of samples influences both the variability and the reliability of the 
functional connectivity estimates. We conclude the first section showing that it is not possible 
to statistically differentiate between links based on their ICC value, as all the correlation 
coefficients can be described, as a first approximation, with a unique, low ICC value (≈0.2). 
As it has been suggested before (see e.g. a nice schematic resume Fornito et al. [2010]) that 
different parcellations can influence the resulting FC estimates, we repeat our analysis using 
two different parcellations: one based on anatomy, (AAL, Tzourio-Mazoyer et al. [2002]), 
and one based on functionality (Shen et al. [2013]). We focus on characterizing and 
quantifying the nature of variability observed in empirical functional connectivity by 
decomposing it into the variability due to finite-sample statistical fluctuations and into 
variability that is likely due to real dynamic changes in the strength of the functional 
connections. We systematically analyze the behavior of these variability factors both for 
different scan durations and for multiple sessions. In the last section we analyze the reliability 
of the whole FC matrix. For this purpose, we compare the FC matrices obtained in different 
sessions both within- and between-subject, showing that the complex information contained 
in those matrices is much more stable than the correlations between individual pairs of ROIs. 
Indeed, by means of a general linear model, we solve the apparent contradiction of low link-
wise reliability and stability of the whole-brain FC matrix.  

2 Materials and Methods  

2.1 Data acquisition and pre-processing 

Fifty eight participants were recruited. Eight of the participants volunteered to be included in 
the longitudinal part of the study in which they were scanned 40-50 times over the course of 6 
months (2 male, mean age 29, SD= 2.6, range: 24-32). Two of the participants (one male, one 
female) did not find the time to continue with the study and had to be excluded from further 
analysis. We had to exclude even the last male participant, who, in contrast to the instruction 
received, tried to apply relaxation exercise during the scan which largely influenced the 
measure (see figure S3 in the supplementary material). The other fifty participants (all female, 
mean age 24, SD=3.1, range: 18-32) were part of another study that was conducted during the 
same period of time and underwent scanning with the same MRI sequences only once. 
According to personal interviews (Mini-International Neuropsychiatric Interview, 
Margraf [1994]) the participants to the longitudinal study were free of psychiatric disorder 
and had never previously suffered from a mental disease. The other participants were asked 
on the phone during recruitment whether they ever had a psychiatric disease and negated that. 
Other medical and neurological disorders were also reasons for exclusion. No participant 
showed abnormalities in the MRI. The study was approved by the local ethics committee 
(Charité University Clinic, Berlin). After complete description of the study, we obtained 
informed written consent.  

Images were collected on a 3T Magnetom Trio MRI scanner system (Siemens Medical 
Systems, Erlangen, Germany) using a 12-channel radiofrequency head coil. Structural images 
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were obtained using a three-dimensional T1-weighted magnetization-prepared gradient-echo 
sequence (MPRAGE) based on the ADNI protocol (www.adni-info.org) (repetition time (TR) 
= 2500 ms; echo time (TE) = 4.77 ms; TI = 1100 ms, acquisition matrix = 256 x 256 x 192, 
flip angle = 7deg; 1 x 1 x 1 mm3 voxel size). Functional images were collected using a T2*-
weighted echo planar imaging (EPI) sequence sensitive to blood oxygen level dependent 
(BOLD) contrast (TR = 2000 ms, TE = 30 ms, image matrix = 64 x 64, FOV = 216 mm, flip 

angle = 80 deg, voxel size 3 x 3 x 3 mm3, 36 axial slices, 5 min duration).  

The first 10 volumes were discarded to allow the magnetisation to approach a dynamic 
equilibrium, and for the participants to get used to the scanner noise. Part of the data pre-
processing, including slice timing, head motion correction (a least squares approach and a 6-
parameter spatial transformation) and spatial normalization to the Montreal Neurological 
Institute (MNI) template (resampling voxel size of 3mm x 3mm x 3mm), were conducted 
using the SPM5 and Data Processing Assistant for resting-state fMRI (DPARSF, Chao-Gan 
and Yu-Feng [2010]). A spatial filter of 4 mm FWHM (full-width at half maximum) was used. 
Participants showing head motion above 3.0 mm of maximal translation (in any direction of x, 
y or z) and 1.0 deg of maximal rotation throughout the course of scanning would have been 
excluded; this was not necessary. We further analyzed head motion by correlating the frame-
displacement measure (FD) with the estimated FC (see text). FD is reduced to a scalar value 
per each volume using the formula indicated in Power et al. [2012], and then it is averaged 
over volumes.  

After pre-processing, linear trends were removed. Then the fMRI data were temporally band-
pass filtered (0.01-0.25 Hz); but we repeated our analysis even with temporally band-pass 
filter (0.01 - 0.08 Hz), commonly adopted to reduce the very low-frequency drift and high-
frequency respiratory and cardiac noise (Biswal et al. [1995]; Lowe et al. [1998]). The 
spatially normalized data were parcellated using two atlases: the automated anatomical 
labeling (AAL) atlas (Tzourio-Mazoyer et al. [2002]) and a recently proposed functional atlas 
(Shen et al. [2013]). Results for functional parcellations and for the narrow temporal filter are 
qualitative very similar to the ones presented in the main text, and are only reported in the 
supplementary material (see figures S1 and S2).  

We decided to instruct participants to close their eyes during the resting state data acquisition 
despite the fact that resting state acquisitions with eyes open have been shown to result in 
slightly higher reliability of BOLD functional connectivity (Zou et al. [2015]), since the 
resting state data acquisition, in the longitudinal study, was part of a 1 hour scanning protocol 
that the participants completed every other day. Due to this fact the likelihood of falling 
asleep during scanning seemed particularly high to the authors and therefore the decision was 
taken to record all resting states with eyes closed and ask the participants after each scan 
session to report whether they slept during the resting state scan or not. We tested whether 
being asleep or not affect the distribution, but we can exclude this possibility (see figure S4 in 
the supplementary material). Although recently it has been recommended to acquire 10-20 
min of Resting state (Birn et al. [2013]; Laumann et al. [2015]), we had to constrain data 
acquisition to 5 min per scan as the resting state sequence was only one of several sequences 
acquired in the longitudinal scan sessions. Moreover these 5 mins are representative of usual 
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scanning times in many clinical studies.  

2.2 Functional connectivity analysis 

Spontaneous fluctuations, both at the voxel- and ROI-level, were characterized by the 

population variance σ2(X) of the BOLD-fMRI time-series X. For the BOLD-fMRI time-series 

X = (X1,..., XN) of a given voxel/ROI, the variance was estimated by the sample variance   2(X)                           , 

which is an unbiased estimator of σ(X). In the above equation, X denotes the sample mean of 
X. Functional connectivity (FC) was characterized by the population Pearson correlation 
coefficient ρ:                         , 
where (X,Y ) denotes a pair of BOLD-fMRI time-series. For a pair of BOLD-fMRI time-series 
X = (X1,..., XN) and Y = (Y 1,...,Y N), ρ was estimated by the sample Pearson correlation 

coefficient   :                                            , 

From the experimental data, we obtained, for a given subject and link, a series of sample 
correlation coefficients   1,...,   K, where K denotes the number of scan sessions. To test for 

non-zero inter-scan mean and variance of the corresponding population correlation 
coefficients ρ1,...,ρK we used the sample mean and variance, respectively, of the series of 

sample correlation coefficients as test statistics. p-values were obtained by approximating the 
respective null-distributions using appropriate surrogate data (see Section 2.3) and corrected 
for multiple comparisons across links using the Benjamini-Hockberg method with a false-
discovery-rate (FDR) of 5%.  

2.3 Construction of surrogate data 

We constructed surrogate data under the null-hypotheses of zero inter-scan FC mean and 
variance, based on a constrained randomization procedure first proposed in Prichard and 
Theiler [1994]. We first describe the construction for data from a single scan session and 
subsequently, describe how to use it to test for zero inter-scan FC mean and variance.  

Let X = (X1,..., XN) and Y = (Y 1,...,Y N) denote BOLD-fMRI time-series from two different 

ROI’s, where N denotes the length of the scan. To construct a surrogate copy of the pair of 
time-series (X, Y ), the discrete Fourier transforms    = (  1,...,   N) of X and   = ( 1,...,  N) of 

Y are calculated and, subsequently, the Fourier coefficients are multiplied by random 
(complex-valued) phases:                  , 
for n = 1,..., N and similarly for Y . The phases    , ...,     are independently drawn from the 

uniform distribution on the interval [0,2π]. Surrogate copies Xsurr and Y surr of X and Y, 

respectively, are then obtained by applying the inverse discrete Fourier transform to   surr and  surr.  
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There are two cases to consider. In the first case, the phases  n
X are drawn independently 

from the phases  n
Y , and therefore the surrogate time-series Xsurr and Y surr have the same 

sample autocovariance functions as X and Y , respectively, but are uncorrelated. This data can 

hence be used to test for non-zero FC. In the second case,  n
X =  n

Y , so that Xsurr and Y surr 

have the same sample autocovariance functions as X and Y and also the same sample cross 
covariance function. This data can hence be used to test for dynamic FC (Hindriks 
et al. [2015]). We refer to these two types of surrogate data as incoherent and coherent, 
respectively.  

To construct surrogate data under the null-hypothesis of zero inter-scan FC variance, we 
concatenated, for a given subject, the BOLD-fMRI data from all scan sessions, generated 
1000 coherent surrogate copies, and subsequently calculated the test-statistic values to 
approximate their null-distribution and to calculate p-values.  

Concatenating data from different sessions can lead to jumps in the time-series, and therefore 
to a possible bias in the statistical hypothesis testing. To exclude any bias, we assessed the 
performance of the testing procedure by generating 1000 synthetic data-sets with the same 
dimensions and a similar auto-correlation structure as the experimental BOLD-fMRI data, 
applied the procedure to test for non-zero inter-scan FC variance using α = 0.05, and 
calculated the percentage of false positives, which yielded 5.6%. When the scan sessions were 
shortened, the percentage of false positives remained between 5 and 6%, only increasing to 8% 
in the extreme case of 15 samples per scan session. This shows that the testing procedure 
performs well.  

2.4 Test-retest reliability 

Test-retest reliability of the functional indices was quantified by the intraclass correlation 
coefficient (ICC), which, for a given functional index  , can be defined as follows (Shrout 
and Fleiss [1979]). Let     be the measured index values of subject i and scan session j, where         and        .  
The index is assumed to have the following form:             , where μ denotes the 

expectation value of    , bi denotes the random effect of the subjects, and     denotes all 

residual noise (due to dynamics, measurement error or conditions/sessions). The random 
variables    and     are assumed to be independent and normally distributed with zero mean 

and variance σb
2 and σw2, respectively. The ICC of v is now defined as              , (1) 

The ICC ranges between 0 and 1 and quantifies the test-retest reliability of the index v. Note 
that for an index to be reliable, it must vary between subjects (high between-subject variance 

σb
2) and it must be stable across scanning-sessions (low within-subject variance σw). The most 

straightforward and commonly used estimator of r, which is sometimes referred to as the 

analytical estimator, is defined as                        , where BMS and WMS denote the mean 

between- and within-subjects sum of squares, respectively (here we followed the description 
given in Atenafu et al. [2012]). Although there are other estimators for r, most notably, the 
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maximum likelihood (ML) and restricted maximum likelihood (ReML) estimators, we found 
them to have similar variances and only slightly different biases. The only advantage of these 
other estimators is the absence of negative estimates of r, but for simplicity we preferred to 
use the analytical estimator.  
Statistical hypothesis testing on    is done using an F-test. Specifically, since BMS and WMS 

are sample estimators of          and    , respectively, the random variable                      , is F-distributed with parameters n - 1 and n(k - 1). Under H0, f takes the 

following form:                       , which can be used to obtain the null-distribution or   .  
2.5 Sources of variability 

The issue of finite-sample variance of the Pearson correlation can be assessed by the phase-
randomized surrogate data (see section 2.3). We can model the Fisher-transformed sample 
Pearson correlation coefficient for different participant, i and different scan, j,   ij, with a 

normally distributed variable:                          , (2) 

where b, w, and f are independent, and standard-normally distributed random variables. The 
random variable w models the genuine variability of FC in each subject (within-subject), the 
random variable b models the FC variability for different subject (between-subject) and the 
variable f models the finite-sample error. Assuming σw to be independent of i (subject) means 

that the genuine variability of FC over scans, as measured by σw, is equal for all subjects (a 

strong assumption).  
The three sources of variability can then be separated and the three variances,     ,    , and     

can be calculated from the surrogate analysis:                   (3)               (4)           (5) 

 
where WMS and BMS are the mean square errors within and between subjects, WMS0 is the 

mean square error within subjects for the surrogate case, and k is the number of sessions. 
From this we get the ICC value:                     , (6) 

Since the surrogate data is constructed under the null hypothesis of no genuine FC variability 
over scans (that is, σw = 0), the ICC constructed from the surrogate data, ICC0 equals                  , (7) 

and therefore, ICC0 ≥ ICC, so that the surrogate data can be used to estimate the uncertainty 
in the ICC that is due to the finite-sample size.  

2.6 Definition and estimation of functional similarity 

Central to the analysis in Finn et al. [2015] (but see also Mueller et al. [2013]) are the within- 
and between-subject similarity indices, here denoted by   b and   w, respectively. Rw can be 
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calculated for every subject i and for every pair of scan sessions        and is defined as the 
sample Pearson correlation coefficient between the respective vectorized (and z-scored) FC 
matrices Xij and Xij′ with     :                                                             , (8) 

where μij is the average over the links of Xij, em       denotes the vector containing all 

ones and where we have suppressed the dependence of   w on       , and    from the notation. 

Similarly,   b can be calculated for every two subjects i and i′ (    :) and every pair of scan 

sessions:  
                                                            , (9) 

 
Note that Rw and Rb can be used to assess the similarity not only for the vectorized FC matrix, 

but for any multivariate biomarker. In the sequel, therefore, we let Xij denote an arbitrary m-

dimensional biomarker for subject i and scan session j.  

To assess the properties of   w and   b, we need to consider the respective population 

quantities, which we will denote by Rw and Rb, respectively. Below, we denote Xij for the 

observed value of the biomarker and xij for the corresponding population biomarker (Xij is a 

realization of xij). The definitions of Rw and Rb are obtained by replacing the sample Pearson 

correlation coefficients in Equations (8) and (9) by the population Pearson correlation 
coefficients and replacing Xij by xij:                                                                      , (10) 

 
for       and                                                                     , (11) 

 
for     . To assess the properties (bias and uncertainty) of the estimators   w and   w, we also 

need a statistical model for the population biomarker xij. This will be described in the next 

section.  

2.7 Statistical model for multivariate Gaussian biomarkers 

Let xij       denote an arbitrary m-dimensional (population) biomarker of subject i (i = 

1,...,n) on scan session j (j = 1,...,k). In analogy to the univariate linear model used to assess 
local test-retest reliability, we model xij by the following multivariate linear model:              , (15) 

where         denotes the group-wise expectation of xij, and where ηi       and ξij 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/081976doi: bioRxiv preprint 

https://doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/


      denote within- and between-subject fluctuations, respectively. The random vectors ηi 

and ξij are assumed to be independent and have expectation zero (that is, the m-dimensional 

zero-vector) and covariance matrices Σw and Σb, respectively. Note, that Σw and Σb are the 

generalizations to the multivariate case of the within- and between-subject variances σw
2 and 

σb
2, respectively.  

Assuming in first approximation that Σb and Σw are diagonal matrices, the expectations of the 

similarity indices Rw and Rb can be expressed in terms of the model parameters as                                               , (12) 

 
and                                        , (13) 

 
where tr denotes matrix trace and    denotes the average value of μ. As a special case, suppose 
that Σb and Σw are identity matrices multiplied by a factor, that is          and          

for certain σb and σw. Then Equations 12 and 13 reduce to                            , (14) 

                      , (15) 

 
where we defined                .  

It is possible to derive approximate formulas for the expectation of the similarity indices, for 
the more general case:                                                                    , (16) 

 
and                                                     , (17) 

The variances of the similarity indices were approximated using Equation 3.1 in Dutilleul 
et al. [1993]:                                       , (18) 

and                                    , (19) 

where          ,                 , and    and    denote m-by-m identity 
matrix and the matrix of ones, respectively.  
We checked the feasibility of this approximated formula using simulated data and found that 
it is an upper bound for the indices. In the simulations, we generated synthetic connectivity 
matrices FCij (i subjects, j sessions), with a multivariate general linear model, and using for 
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matrices        and       the estimated values obtained from the data. To simulate different 

conditions, as the ones analyzed in the experimental data set, we fixed Σb for several 

simulations and used different matrices           , where the parameter    was used as a 
multiplicative factor.  

 

3 Results 

We present a systematic analysis of the variability and reliability of resting-state functional 
connectivity, both at the level of individual ROI pairs and of the entire brain. We used five-
minute resting-state fMRI data from six participants, each of which was scanned 42 times (see 
Material and Methods for detailed information on subjects and pre-processing). ROI-level 
analyses were conducted using an anatomic parcellation (AAL, Tzourio-Mazoyer et al. [2002]) 
and the main results were replicated using a functional parcellation (Shen et al. [2013], see 
supplemental information).  

3.1 Data set description 

Before moving into the details of the analysis, we want to give a descriptive overview of the 
data-set to provide the reader with an intuition for how variable and reliable functional 
connectivity is. As a first step, we look at the inter-session variability of the average FC over 
links, <FC> (see panel A of figure 1). For the 5 subjects scanned multiple times, the average 
interval of time between the first and the last session spanned approximately 6 months. It is 
possible to appreciate that in general the average <FC> for the 5 subjects scanned multiple 
times (blue dots) resembles that computed on the 50 subjects, each of which scanned just once 
(gray continuous line). The same effect can be observed in panel B, in which we can compare 
the distribution of <FC> for the 5 subjects (blue lines) and the distribution of <FC> for the 
50 subjects (gray bar). 

In panel C of figure 1 we can see how the distributions of the FC values for the 5 subjects 
scanned multiple times (FCi, blue lines), and of the FC of the 50 subjects (FC50s, gray bar) are 

very similar, with a similar average; The distributions of all FC values for the 5 subjects and 
that of the 50 subjects are in general very similar, even though the latter is narrower with a 
standard deviation (SD) of 0.35 compared to the former, whose SD is 0.45. Another way of  
measuring the similarity between FC50s and FCi is through their correlation. In our data set, 

the average correlation between any couple of FCi is 0.8 (SD=0.02), and the correlation 

between an FCi and FC50s is slightly higher, 0.87 (SD=0.02, see the scatter-plot of panel D). 

Therefore, the average FC50 for the 50 subjects scanned just once can be considered as 

representative of the FC obtained from single individuals.  
To complete this preliminary description, we look at the inter-session variability of the 5 
subjects’ FC and subject-by-subject variability of the FC50 (panel E and F). We note the high 

similarity between the distributions of the standard deviation over sessions of FCi (SDFCi) and 

of FC50s (SDFC50s). However, we observed rather low values of correlation between the 

SDFCi of any two of the 5 subjects (0.53, SD=0.02), indicating high variability between 
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subjects of spatial distribution are quite different from subject to subject, and variability 
between-subject is even less representative.  

3.2 Link-wise analysis 

3.2.1 Within-subject variability 

We now present the analysis of reliability and variability of single links. Within-subject mean 
and variability of a given link’s correlation were quantified, respectively, by the sample mean 
and standard deviation, SD, of the corresponding time-series of correlation coefficients. By 
repeating the calculations for each link, two matrices for each subject and for the 50 subjects 
were obtained, corresponding to the within-subject average FC and variability (standard 
deviation, SD, of FC). In Figure 2, we show these matrices with heat-maps for the 50 subjects 
(panels A-C, blue), and for one of the subjects (panels B-D, cyan).  To represent a more 
robust measure, we averaged the links over macro-regions (see labels in the panels). The 
ROIs for this figure were defined with AAL parcellation (see supplementary material for the 
corresponding plots with Shen’s parcellation, with very similar results). They show that both 
the average FC and standard deviation vary considerably over links. Note also the existence of 
relatively high SD values for some links. This suggests that the FC strength between 
corresponding ROI’s varies considerably from scan to scan.  

Panels E-G display the same average FC and its standard deviation with scatter-plot and 
histograms. Average and standard deviation are calculated over scans (this means over 
sessions for the single subject and over subjects for the 50 subjects).  For both single subjects 
with multiple scans (cyan) and 50 subjects (blue), FC’s standard deviation ranges between 0.1 
and 0.3, with an average value of about ≈0.2 and a SD of about ≈0.038 (for the single subject 
with multiple scans the range the SD is slightly inferior 0.035). We can see that the value of 
the average FC is a factor influencing the variability of the FC itself: the correlation between 
average FC and its SD is ≈0.56 (≈0.4 for the single subject).  

Testing the null-hypothesis of static FC. Does the observed variability of the FC reflect 
genuine variability of spontaneous inter-areal co-activations, or does it arise from mere 
statistical uncertainty of estimates? It should be remembered that Pearson correlation 
coefficients are sample estimates of the population values (see Materials and Methods), and as 
such, finite-sample variability should not be confounded with the variability due to real 
underlying dynamics of the FC (see for example Lindquist et al. [2014]; Hindriks 
et al. [2015]).  

With this in mind, we tested the null-hypothesis that the observed fluctuations of FC can be 
fully explained by statistical uncertainty of the correlation estimates: to this aim, we first 
constructed appropriately randomized data Prichard and Theiler [1994] (see also Materials 
and methods). This randomization method yields data with the same statistical structure and 
the same mean FC as the empirical data, but introduce no dynamics (see Materials and 
Methods for more details); from now on, we will refer to these randomized data as surrogates. 
In panels E-G of Figure 2, one realization of the surrogates is plotted (black and gray lines 
and circles). From see panel G, it is evident that the distribution of the SD of the correlation 
for the surrogates (black and gray) are qualitatively different from the observed data (blue and 
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cyan). By construction, the distributions of the mean correlation of the surrogates (blue) and 
of observed data (black) are identical (panel D). Using this method, and by repeatedly 
randomizing the data multiple times, we can approximate the distribution of the variability for 
each functional connection under the null-hypothesis of constant FC variability of each link, 
and hence p-values can be calculated. Applying the Benjamini-Hochberg method for multiple 
comparisons with a false-discovery rate (FDR) of 5% we found that the approximate number 
of functional links whose variability can be explained by the null-hypothesis of no genuine 
variability is around 1%. This means that, for each of the five participants, practically every 
functional connection varies over different scanning sessions: in other words, the day-by-day 
co-variation between different brain regions appears to be dynamic.  

3.2.2 Test-retest reliability 

In statistics, the reliability of a measure indicates its consistency under similar conditions in 
contrast to dissimilar conditions: therefore, a measure is highly reliable and amenable to be a 
good biomarker, if it yields similar results under consistent conditions, but not under 
dissimilar conditions. An example of a reliable measure is people’s height, which tends to be 
stable for a given individual, but exhibit large variability across individuals. How reliable are 
the pairwise functional indices obtained in typical resting-state studies? To address this 
question, we measured how stable the FC estimates of the same participant were over 
different scan sessions (within-subject variability) compared to those obtained from different 
participants (between-subject variability). For the functional connectivity estimates to be 
considered reliable, according to the definition of reliability mentioned above, they should 
therefore exhibit small within-subject variability while at the same time large between-subject 
variability.  

Following previous studies (Shehzad et al. [2009]; Zuo and Xing [2014]), test-retest reliability 
of the functional indices was quantified by the intraclass correlation coefficient, ICC (see 
details in Materials and Methods). Estimated ICC’s for all links are plotted in panel A of 
Figure 3 against the subject-averaged FC (gray asterisks), while panel B shows the histogram 
of the estimated ICC values. In the legend we indicated the gray histogram as ‘observed’ in 
contrast to the values obtained with the simulation and the theoretical analysis (see below). 
The heat-map in panel C shows ICC values averaged over the regions indicated in the labels.  

Note that the estimated ICC values vary from link to link, ranging from approximately 0 to 
about 0.7. With the estimator we used, negative values of ICC can be obtained. Estimators of 
ICC based on the likelihood estimation can circumvent this problem, but as the two estimators 
showed no qualitative differences, we used the simple estimator. The average value of the 
ICC is ≈0.22 ±0.16, which is commonly considered rather low and indicates that link-wise FC 
for 5 mins scan performs poorly as a biomarker for individual subjects Nunnally [1994]. 
Despite the current absence of common consensus about what should be considered an 
acceptable level of reliability (Nunnally [1994]; Lance et al. [2006]), it is not debatable that 
ICC around 0.2 is a poor value. Indeed to observe such low ICCs, the within-subject variance 
has to be twice as large as the between-subject variance. Such a low ICC mirrors the fact that 
the within-subject variance is twice as large as the between-subject variance: low within-
subject variability compared to between-subject variability.  
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Earlier studies have reported similar values for the ICC Shehzad et al. [2009]; Zuo and 
Xing [2014], but with substantial differences in their interpretation (see below). Similar 
results have been observed also by Birn et al. [2013], even though these data is more difficult 
as they were obtained by combining different sessions, and with three different conditions 
(eyes-open, eyes-closed and fixation).  

The variability of ICC estimates across links is also in line with previous reports with similar 
duration scans Shehzad et al. [2009]; Zuo and Xing [2014]. In those studies, this variation was 
interpreted as evidence for heterogeneity of test-retest link-wise reliability of functional 
connectivity (among other biomarkers), but the statistical variability of the ICC estimates was 
not explicitly considered. It remains therefore possible that the observed variability in ICC 
values reflects statistical uncertainty, rather than true variation of the ICC across links. Indeed, 
even with 42 scan sessions and 5 subjects, the variance of the ICC estimators is considerable. 
We therefore tested the null-hypothesis of all links having the same population ICC. The 
population ICCav under the null-hypothesis was thus considered to be the estimated link-wise 

average ICC.  

We first calculated the probability of each link to have such a value of ICC, or higher, given 
the assumption of being an estimate of ICCav. Thus, this probability corresponds to a p-value. 

Then we calculated how many links had an ICC statistically different from ICCav after a false 

discovery rate correction (using Benjamini-Hochberg method with FDR=5%).  

In panel B of figure 3 the distribution of observed ICC (gray bars) and the theoretical 
distribution of ICC (light blue line) can be found, estimated from a general linear model 
(GLM) with a constant theoretical ICC (see section 2.4 for details). As mentioned above, the 
average theoretical ICC value chosen was ICCav. We can see that the three distributions are 

practically identical, demonstrating that there is no link having an ICC different from ICCav. 

The used statistical framework suggests that, as a first approximation, the ICC of each 
individual link can be drawn from a unique distribution, hence proving strong evidence that 
FC test-retest reliability is homogeneous over links.  
To further test this hypothesis, we simulated the links correlation variability with Gaussian 
stochastic variables having two sources of variability, ‘within-subject’ and ‘between-subject’. 
Each simulated correlation was generated as a Gaussian variable, whose average value is 
equal to the observed mean correlation of one real link:                     ; where 

the variances, σw
2 and σb

2, were maintained constant for all the simulated correlations. The 

ratio between the two variances was chosen equal to the average ICCav, and for simplicity we 

set σw
2=1 (the actual value does not influence the results of the simulation). We extracted 

these variables one time per each simulated subject, and 50 times per each simulated scan 
session. Finally, we calculated the ICC values for each simulated correlation, FCsim. The 

results of this simulation are reported in panel A as blue circles, and their distribution in panel 
B with a dark blue line. Even in this case, it is possible to appreciate that the simulated 
distributions very well approximates the empirical one.  
It should be stressed that one possible explanation for the lack of heterogeneity in the ICC 
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values of the links might be the lack of statistical power: few subjects, limited number of scan 
sessions, correction for multiple comparisons, etc. To circumvent the issue of having to 
perform a too restrictive multiple-comparison correction, we took the average ICC’s of 
different macro-regions (the names of these regions are indicated in the labels). Here, we use 
the term macro-region to indicate a brain region composed of several ROIs. The idea is based 
on the hypothesis that different macro-regions might have different reliabilities. This 
approach closely follows that taken in Zuo and Xing [2014] in which systematic differences 
were reported of ICC’s averaged over the different resting-state networks (RNSs) for several 
functional biomarkers, including (intrinsic) FC.  

The heat-map in panel C of figure 3 shows a synthetic picture of ICC of the average 
correlation between pairs of macro-regions. The differences are small: all the average ICCs 
range between 0.1 and 0.3. We compared the ICC distribution between pairs of macro-regions 
with a non-parametric test (see Methods for details), and we did find most of them to be 
statistically different. Therefore we can sort the macro-regions according to average ICC 
value, and isolate the least reliable region (parietal region, whose average ICC≈0.15) and the 
most reliable one (cerebellum, whose average ICC≈0.24). The least reliable macro region 
outside itself is the pre-frontal one (whose average ICC=0.18) and the most reliable one is 
cerebellum, whose average ICC=0.27.  

3.2.3 Sources of variability 

We now analyze the different sources of variability of the FC, and how they relate to the ICC 
reliability. We can indeed disentangle the contribution of three different sources of variability: 
1. the genuine variability of FC in each subject, within-subject variability; 2. the FC 
variability for different subjects, between-subject variability; 3. the variability due to the 
statistical uncertainty associated with computing the correlation from a finite number of 
samples, finite-sample variability. We note that, while the first two sources have already been 
partially accounted for in the literature, the finite-sample variability has not been explicitly 
addressed before (Shehzad et al. [2009]; Birn et al. [2013]; Zuo and Xing [2014]; Laumann 
et al. [2015]). Note that the description in terms of these variability sources is slightly 
different from what has been reported in literature (see i.e., Zuo and Xing [2014]; Laumann 

et al. [2015]; Mueller et al. [2013]). For example, σb
2, defined as the between-subject variance 

is not obtained calculating the variances between the sessions of different subjects, that 

instead should be approximated by the sum of σb
2 + σw

2 (Laumann et al. [2015]). As we are 

describing the correlations as Gaussian variables, each source of variability is associated with 

a corresponding variance: between-subject variance σb
2, finite-sample variance σf

2, and 

within-subject variance σw
2.  

Note that for each subject, the inter-session variability of the correlations can be divided into 
within-subject variability and finite-sample variability. To calculate the contribution of the 
finite-sample variability, we used the surrogate data described before, as they possess finite-
sample variability, but not, by construction, within-subject variability (see Materials and 

Methods). Therefore, to obtain σf
2, for each link, we subtracted the value of the inter-session 

variability obtained from the observed data to the one obtained for the surrogate data. For the 
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observed data, both the finite-sample variability and the between-subject variability resulted 
on average approximately half of the within-subject variability; see the complete distribution 

of the three variances in panel D of figure 3. This strong difference between σb
2 and σw

2, 

evident from their distributions, is the main reason for the low reliability of the links, 
described in the previous section.  

The values of the three variances averaged over regions are reported in figure S5 of the 
supplementary material. Although the variances present homogeneous values for all the 
regions and it is not clear a pattern, we note that both the ICC and the three variances form a  
characteristic structure, with some macro-regions exhibiting different patterns of behavior 
with respect to the others (see e.g., the occipital).  

We also analyze how the three variances correlate with the ICC (see panel E of figure 3: the 

correlation of the ICC with the σb
2 is very high (≈0.86), while the correlations with other two 

variances is almost zero, σw
2 (-0.07, p-value > 0.05) and σf

2 (-0.05, p-values < 10-5). These 

results have a straightforward interpretation: the between-subject variability represents a 
structure similar to the one of the ICC, while the differences between the regions in the 
within-subject variability are not strongly related to the region differences in the ICC.  

Recently, different studies have warned against the influence of head-motion and micro-
movements (i.e. head displacements <1mm), in the observed variability and reliability of FC 
estimates (Power et al. [2012]; Laumann et al. [2016]). Taking into account this possibility is 
indeed very relevant for our analyses, as it indicates one of the different plausible causes 
behind within-subject variability, namely unavoidable head movements during the scan 
session, which should in principle being independent from scan to scan. To assess this 
possibility, we calculate the correlation between the inter-session variability of the average 
frame-displacement (FD) and that of each link’s correlation (see Methods for the calculus of 
FD). We found that head-motion explains part of the variance of the correlation (≈ 5%), even 
though the effect is not homogeneous over different regions, see panel A of figure S5 of 
supplementary material. Moreover, the FD-effect correlates positively with within-subject 
variability (≈ 0.35), but not with between-subject variability.  

3.2.4 Relevance of sample points: scan duration and multiple scans 

Different studies have analyzed the effect of scan duration on the reproducibility of FC 
(Anderson et al. [2011]; Birn et al. [2013]; Hacker et al. [2013]; Laumann et al. [2015]; Finn 
et al. [2015]), and on the reliability (Shehzad et al. [2009]; Birn et al. [2013]) demonstrating 
that long scan sessions increased both the reliability of FC and its reproducibility. We note 
that the former is not an obvious consequence of the latter, in that having highly reproducible 
FC within-subject could also mean highly reproducible FC between-subject and therefore low 
reliability. For example, Birn and colleagues demonstrated that reliability slowly increased 
with scan duration: on average, the maximal ICC value for very long scans (30 mins) is very 
low, ICC≈ 0.4 (Birn et al. [2013]).  

As such, we systematically studied the influence of scan duration on the reliability of FC 
indices. Moreover, we analyzed the behavior of the ICC as a function of the different sources 
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of variability (within-subject, between-subject and finite-sample). Panel A of figure 4 shows 
the behavior of the three variances and that of the ICC for different scan durations, as 
quantified by minutes.  

For very small scan duration (below 1 min), finite-sample, σf
2 (green line) is the most relevant 

source of variability of the FC indices, even though its contribution rapidly decreases with 
increasing scan duration. We observed that the behavior of finite-sample variability can be  
approximated by a power law of     , where N is the number of time points, and a is about 

1.3 (χ2 = 0.98). This is not surprising, as the finite-sample variance of the correlation between 
any two time-series having zero auto-correlation is equal to one. Within-subject variability 
(blue line) also tends to decrease with increasing scan duration, even though at a much slower 
rate, whereas between-subject variability (black line) remains approximately constant.  

Having many scan repetitions obtained from the same subject, we could also measure both the 
three variances and the ICC obtained using the average FC over several sessions (details can 
be found in the Materials and Methods). Results from this analysis are depicted in panel B of 
figure 4, in order to directly compare them to the evolution of the variances for different scan 

duration. We note that the between-subject variability σb
2 again tends to remain constant, 

whereas the finite-sample variability σf
2 continues to decrease with no evident changes in 

slope. On the other hand, within-subject variability σw
2 seems to exhibit discontinuous 

changes that are mirrored by abrupt changes in the slope of ICC. These abrupt changes are 
expected given the previous results reported in literature (Shehzad et al. [2009]; Birn 
et al. [2013]) on the difference between the reliability within-scan session (less than one hour) 
and between-scan sessions (more than one month), with higher values of reliability for the 
case within-scan session. This result indicates that to obtain intermediate or high level of 
reliability, we should average FC over multiple sessions. Indeed, according to the results of 
Birn et al. [2013], there seems to be a plateau for the ICC between-scan sessions above 18 
minutes (see figure 3a of Birn et al. [2013]). Evidence for this slope change can be found in 
the high value of ICC (≈0.7) obtained for FCs extracted from an average of 6 sessions 
(summing up to approximately 30 mins).  

We underline the relevance of this analysis: First, we can describe how reliability of the FC 
changes as a function of scan durations or using several scan sessions for the three different 
types of variance, and second, we conclude that the use of multiple sessions seems to be a 
potential way to overcome the low reliability upper limit indicated by Birn et al. [2013]).  

The relevance of the finite-sample variability is conspicuous, but it will shade out for 
increasing scan duration. The influence of scan duration on the sources of variability will be 
the subject of the next section. 

3.3 Global FC analysis 

After having analyzed reliability from a local, link-wise perspective (Section 3.2), we focused 
on studying the inter-scan variability of the whole-brain, global FC structure. This means that 
instead of considering the variability of the different pair-wise functional correlations, we 
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consider the within- and between-subject variability of the vectorized FC matrices in their 
entirety. As in the local analysis (see Section 3.2), and following earlier studies Mueller 
et al. [2013]; Laumann et al. [2015]; Finn et al. [2015], functional connectivity was quantified 
using Pearson correlation coefficient. The richness of information contained in the 
multivariate structure of whole-brain resting-state FC matrices has recently been 
demonstrated Finn et al. [2015]. In that study, it was shown that the FC matrix can be used as 
a “functional fingerprint” in that it allows identification of individual subjects from a 30-
minute resting-state scan. The findings in Finn et al. [2015] appeared to be in stark contrast 
with the low test-retest reliability of local FC indices. For example, Birn et al. [2013] reported 
low ICC’s (≤ 0.4) for pair-wise Pearson correlations even for long scan sessions (30 min) and 
we reported similar values (see Section 3.2). 

In this section we reproduce the findings in Finn et al. [2015] (Section 3.3.1), providing a 
statistical framework that can be used to assess the factors influencing functional 
fingerprinting (Section 3.3.2). Taken together, our results confirm the strength of whole-brain 
FC analysis over local measures.  

3.3.1 Subject identification from resting-state FC 

In this section, we reproduce the observations of Finn et al. [2015] and again assess the effect 
of scanning duration. The analysis carried out in Finn et al. [2015] is based on the sample 
Pearson correlation coefficients between different pairs of vectorized FC matrices, to which 
they referred to as similarity indices. These similarity indices can be calculated between 
(vectorized) FC matrices of different scans of the same subject (within-subject) or between 
FC matrices obtained from different subjects (between-subject). The within- and between-
subject similarity indices are denoted here by Rw and Rb, respectively. Details are provided in 

Section 2.7. Finn and colleagues demonstrated that for 30-minute resting-state scans, Rw > Rb, 

for practically all values of Rw and Rb (calculated from all possible pairs of scan), which 

implies that Rw and Rb can be used as “functional fingerprints” to identify individual subjects. 
We repeat the analysis of F2015, calculating the distribution of Rw and Rb, collapsing together 

different sessions. In figure 5, panel A,C-E show the observed distributions of (Fisher 
transformed) Rw (gray) and Rb (black) for a different numbers of samples (number of 

sessions). It is possible to appreciate that the separation between the distributions of the two 
similarity indices, Rw and Rb, increases rapidly when increasing the number of sessions: from 

panel A (1 session) to panel E (6 sessions). This separation is almost complete (zero overlap 
between the distributions) even with 4 sessions. This is noteworthy as with 4 sessions the 
average ICC of single link is still around 0.4 (similar value is reported by Birn et al. [2013]), 
and however on the whole-brain level they allow for complete identifiable FC (Finn 
et al. [2015]).  

To explain why functional fingerprinting is possible and how its quality depends on different 
factors (scanning length, for example), we constructed a statistical model for the vectorized 
(and z-transformed) FC matrices. Specifically, the vectorized FC matrix of subject i at scan j, 
denoted by xij is modeled as a normally distributed random vector having the following 

structure: 
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              (20) 

where        denotes the group-wise expectation of xij, and where ηi       and ξij       denote within- and between-subject fluctuations, respectively. The random vectors ηi 

and ξij are assumed to be independent and have expectation zero and covariance matrices Σw 

and Σb, respectively (see Section 2.7 for more details). As we will see below, we can express 

all properties of the similarity indices Rw and Rb and their estimators   w and   b in terms of 

the model parameters μ, Σw and Σb.  

Instead of considering Rw and Rw, it will be convenient to consider their Fisher-

transformations, denoted by zw and zb, respectively, and similarly for their estimators. We 

first consider the special case in which Σb and Σw are diagonal matrices (but see panel B of 

figure 5 to see the observed values of Σb and Σw), that is Σb = σb
2Im and Σw = σw

2Im for certain 

σb and σw. In Section 2.6 it is shown that in this case, the similarity indices can be expressed 

in terms of the model parameters as follows:                         (21) 

and                     (22) 

where we have defined               . Note that σμ
2 is the variance of FC over links 

that is common to all subjects. These formulas allow interpreting the similarity indices and 
relating them to the link-wise ICCs, or more exactly to the parameters determining it.  

3.3.2 Quality of functional fingerprints 

With respect to the number of sample points (or number of sessions), σμ
2 and σb

2 (      and       , respectively) are constants, but σf
2 and σw

2 decreases rapidly (the exact speed is 

irrelevant for now) toward zero, as we showed in figure 4. So, the asymptotic value of zb = 

arctanh(Rb) is a limited value (arctanh is the inverse hyperbolic tangent), but as Rw tends to 1, 

zw = arctanh(Rw) tends to infinity. Moreover, the variances of zb and zw are bounded (by one 

over the number of links), as the links are correlated between them and the correlations are 
increasing tending to one. The result is mainly based on the behavior of the sources of 
variability shown in figure 4, in particular the fact that for every brain i, exists a constant FCi, 

and that the genuine variability rapidly fade out for increasing number of sample.  

To conclude, the model proposed to describe the whole FC is qualitatively in agreement with 
the experimental results, and it has the advantage of being simple: Few parameters and 
marginal assumptions determine it completely. In a nutshell: the distributions of (Fisher 
transformed) Rw and Rb are two Gaussian distributions, whose variances are approximately 

constant and whose expected values are moving away from one another tending toward 
infinite values, and with a speed that follows approximately the number of samples.  
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4 Discussion 

In this study, we assessed the variability and test-retest reliability of the human functional 
connectome taking advantage of a unique data set comprising multiple (42) fMRI scans of 5 
minutes each for 5 subjects during a classical resting-state paradigm, together with another 
sets of single-scans obtained from 50 different subjects.  

Single link reliability 

From this analysis we obtained the reliability of the functional links between ROIs, as 
quantified by the ICC. In order to avoid potential biases due to the parcellation, ROIs were 
obtained both using an anatomical (AAL) as well as a functional parcellation recently 
proposed by Shen et al. [2013]. From our results we conclude that the average reliability of 
single link FC is quite low (≈0.2) (figure 3), which is in agreement with the literature 
(Shehzad et al. [2009]; Birn et al. [2013]). These results, as well as all other results, are 
qualitatively equal for the two parcellations. Interestingly, we found that the correlation 
values of all links have an ICC drawn from the same distribution. In other words, our data 
contains no evidence for heterogeneity of test-retest reliability over links. Indeed, this result 
suggests an overall homogeneity in the reliability of links in the whole brain, in contrast to 
what is claimed in the literature (Shehzad et al. [2009]; Zuo and Xing [2014]).  

A small ICC variance is crucial to distinguish between reliable and unreliable links. To obtain 
a small ICC variance, a very large number of the product of subjects and scan sessions is 
needed (a large number of sessions for few subjects, or vice-versa are equivalent in this sense). 
To date, analyses of resting-state fMRI test-retest reliability typically used a large number of 
subjects performing two or three scans; we adopted the opposite strategy, but still did not 
reach a better power resolution for the ICC. To be more specific, in our data-set we have 42 
scans for 5 subjects, and the SD of the estimated ICC was approximately 0.2; similar SD 
resulted for the data-set analyzed by Zuo and Xing [2014], with 75 subjects and 3 scans. 
Therefore, to substantially decrease ICC variance in successive studies, we have to use a 
much higher number of subjects or scans. For example, a fifth of the SD can be achieved with 
more than 100 participants instead of 6, and 42 scans. These numbers point out the 
experimental difficulty in differentiating between the reliability of each link of the FC matrix.  

Sources of variability 

Thanks to our analysis based on surrogate data, we were able to characterize and quantify 
different sources of inter-session variability of the correlations between distinct brain regions. 
As a first approximation, we identify two sources: 1. the statistical uncertainty produced by 
calculating correlations from a finite number of samples (finite-sample variability), 2. the 
genuine session-dependent fluctuation of the correlations between different brain regions 
(within-subjects variability). In order to describe the subject-to-subject variability 
appropriately, we further identified a third source of variability next to these two sources of 
variability, that we called simply between-subject variability.  

The importance of being able to separate these different sources of FC variability is that it 
allows us to understand more in depth the temporal dynamics as well as the link-to-link 
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differences in reliability itself. For example, our between-subject variability shows time-
consistency, in contrast to the behavior of the finite-sample and within-subject variances, as 
both decrease for increasing number of sample points. While the decrease of the finite-sample 
variance with the number of samples is trivial, neither the between- nor the within- subject 
variances behavior can be foreseen from previous analyses.  

Moreover, from this result, and the results of Birn et al. [2013], we can predict that within-
subject variance reaches a plateau, at  0.012. Indeed, Birn and colleagues showed that the 
link reliability reaches a maximum value (0.4) for scan duration of approximately 20 minutes. 
Such a low ICC value limits the use of single link FC as a potential biomarker. Here, we 
showed that a possible solution can be that of using joining multiple sessions: Our results 
indicate that in order to obtain an intermediate to high ICC, 6-8 of 5 minutes each sessions are 
required. Clearly, it would be convenient to use longer scan sessions to diminish the number 
of scan sessions.  

As we showed, the variability of the FC is in part due to the finite sample. Thanks to our 
surrogate-based analysis, we could quantify how large the relative contributions of the finite 
sample and genuine variability are. We stress that this genuine (within-subject) variability is 
much higher than the one reported in Laumann et al. [2015, 2016]. Even though we are not 
sure what causes this discrepancy, our result seems in quantitative agreement with what has 
been reported in other reliability studies (Shehzad et al. [2009]; Birn et al. [2013]).  

Note that even though the macro-regions do have approximately the same low values of ICC, 
there is a small region-to-region variability. In principle, these differences can be caused by 
the three variances; however we showed that the between-subject variance is mainly 
responsible of the observed structure in ICC. For example, we have described higher values of 
ICC in cerebellum compared to the lower values of ICC in the pre-frontal region. Similar 
analysis were carried out in Laumann et al. [2015]; Mueller et al. [2013], however, in those 
studies the three sources of variability were not completely separated, which makes the results 
more difficult to interpret.  

From from link-wise unreliability to whole brain stability 

We analyzed the similarity between entire FC between subjects and between sessions, 
describing the consistency of the entire correlation structure within a general linear model (for 
similar approaches see Mueller et al. [2013]; Finn et al. [2015]). With this statistical model, 
we provide theoretical ground to understand and solve an apparent paradox: how is it possible 
that very low link-wise reliability (Birn et al. [2013]) can generate such high stability at the 
global level (whole FC), as has recently been shown (Finn et al. [2015])?  

In particular, we studied the distribution of two similarity indices, Rw and Rb, that measure the 

distance (in terms of correlation) between FC of two sessions of the same subject and of two 
subjects, respectively. Taking advantage of the multiple sessions of our data set, we calculated 
the distribution of these indices for an increasing number of concatenated sessions. In addition, 
we obtained an approximate expression for the average and the variance of the estimators of 
the distributions of Rw and Rb (see eqs.18 and 19). These estimators are simple functions of 
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the between- and within-subject variances. In this context, it is straightforward to show that 
for an increasing number of sessions, the average Rw goes to infinity, while the average Rb 

remains finite; while their variances are limited. Therefore, if the two distributions do not 
overlap, the identification is perfect.  

Finn et al. [2015] analyzed the identification, without directly adopting these similarity 
indices. Moreover, they used an increasing number of data-points within the same scan 
session instead of multiple sessions. The latter is a considerable difference, and as we 
mentioned before, based on the analysis of Birn and colleagues, we predict a lower 
asymptotic value for the variance within-subject for scan sessions longer than 20 minutes. 
This implies, following our analysis, that Rw has an asymptotic limit (upper bound) for scan 

duration greater than 20 minutes. This prediction is confirmed by the results shown in figure 
3B in Finn et al. [2015].  

We believe that the relevance of this analysis goes beyond this result: Indeed, we hope that 
this simple statistical framework can be used as an ordinary tool for further analyzing the FC, 
and to generate a link between the analysis of the single link and the analysis of the whole FC, 
or even macro-regions.  

Limitations 

The resting-state literature has proposed several measures to characterize spontaneous fMRI 
fluctuations (see for example the review by Zuo and Xing [2014]). These measures can be 
related to single voxels Zuo and Xing [2014]), to larger functional networks (based, for 
example, on independent component analysis), or to the statistical interdependencies between 
the time-courses of different voxels or regions. 

In this study we only focused on one measure, namely the Pearson correlation coefficient 
obtained from the BOLD signals of different pairs of ROIs. We considered this measure as a 
starting point, and indeed all analyses performed here can be in principle applied to the 
measures mentioned above. This choice is motivated essentially by two factors: its simplicity, 
a linear measure of the relationships between activities, and its widespread use, probably the 
most commonly used. However, in the recent past different measures of BOLD activities have 
been presented (see the ones analyzed in Zuo and Xing [2014]) increasing the potentiality of 
fMRI studies. Here, we choose to study thoroughly the FC generated from the Pearson 
correlation measure, at the cost of neglecting these other measures.  

In our study, we used two parcellations: one anatomical, the AAL, and one based on 
functional parcellation, proposed in Shen et al. [2013]. In our study, we did not found strong 
quantitative differences in the results of the two parcellations. However, different studies (e.g., 
the graph study Fornito et al. [2010]), illustrated the relevance of the parcellation and then we 
hope to see in future studies an analysis applied to multiple and different kind of parcellations.  

In this study, we assessed FC variability without directly analyzing its origin (apart from 
head-motion). Other studies already started to focus on this important aspect, that can have a 
very broad application, going from physiological (body heat, cardiac and respiration artifacts, 
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head motion) to technical (machine noise, scanner type, experimental instructions, data 
standardization, data pre-/post-processing strategies) to brain status (e.g., Birn [2012]; Yan 
et al. [2013]; Hurlburt et al. [2015]; Yan et al. [2013]; Power et al. [2012]; Laumann 
et al. [2016]). It would be useful to capitalize the description developed in this work, and to 
use these insight when planning future studies, therefore to improve our understanding of the 
sources of variability in the human functional connectome.  

The potential of resting-state functional connectivity is well illustrated by its ability to 
characterize both healthy and abnormal cognitive processes and to predict perception and 
performance. Further drawing from its potential, however, requires a systematic assessment of 
its variability and test-retest reliability. Our study has demonstrated how such an assessment, 
together with the application of appropriate statistical concepts, helps to explain the apparent 
contradiction between local unreliability and global stability of resting-state fluctuations in the 
human brain. 

Acknowledgments 

This research is supported by the European Research Council (ERC) Advanced Grant 
DYSTRUCTURE (n. 295129), by the Spanish Research Project PSI2013-42091; PSI2016-
75688-P; by the Catalan Agency for Management of University and Research Grants, 
AGAUR (2014SGR856); (RGB) FI-DGR scholarship of the Catalan Government through the 
Agencia de Gestío d’Ajuts Universitari i de Recerca, agreement no. 2013FI-B1-00099. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/081976doi: bioRxiv preprint 

https://doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

    Anderson, J. S., Ferguson, M. A., Lopez-Larson, M., and Yurgelun-Todd, D. (2011). 
Reproducibility of single-subject functional connectivity measurements. American journal of 
neuroradiology, 32(3):548–555.  

    Atenafu, E. G., Hamid, J. S., To, T., Willan, A. R., Feldman, B. M., and Beyene, J. (2012). 
Bias-corrected estimator for intraclass correlation coefficient in the balanced one-way random 
effects model. BMC medical research methodology, 12(1):126.  

    Birn, R. M. (2012). The role of physiological noise in resting-state functional connectivity. 
Neuroimage, 62(2):864–870.  

    Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., Nair, V. A., 
Meyerand, M. E., and Prabhakaran, V. (2013). The effect of scan length on the reliability of 
resting-state fmri connectivity estimates. Neuroimage, 83:550–558.  

    Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional 
connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic 
resonance in medicine, 34(4):537–541.  

    Chao-Gan, Y. and Yu-Feng, Z. (2010). Dparsf: a matlab toolbox for “pipeline” data 
analysis of resting-state fmri. Frontiers in systems neuroscience, 4.  

    Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., and Schooler, J. W. (2009). 
Experience sampling during fmri reveals default network and executive system contributions 
to mind wandering. Proceedings of the National Academy of Sciences, 106(21):8719–8724. 

    Dutilleul, P., Clifford, P., Richardson, S., and Hemon, D. (1993). Modifying the t test for 
assessing the correlation between two spatial processes. Biometrics, pages 305–314.  

    Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., 
Papademetris, X., and Constable, R. T. (2015). Functional connectome fingerprinting: 
identifying individuals using patterns of brain connectivity. Nature neuroscience.  

    Fornito, A., Zalesky, A., and Bullmore, E. T. (2010). Network scaling effects in graph 
analytic studies of human resting-state fmri data. Resting state brain activity: Implications for 
systems neuroscience, page 40.  

    Friston, K. J. (2011). Functional and effective connectivity: a review. Brain connectivity, 
1(1):13–36.  

    Guerra-Carrillo, B., Mackey, A. P., and Bunge, S. A. (2014). Resting-state fmri a window 
into human brain plasticity. The Neuroscientist, page 1073858414524442.  

    Hacker, C. D., Laumann, T. O., Szrama, N. P., Baldassarre, A., Snyder, A. Z., Leuthardt, 
E. C., and Corbetta, M. (2013). Resting state network estimation in individual subjects. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/081976doi: bioRxiv preprint 

https://doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neuroimage, 82:616–633.  

    Hindriks, R., Adhikari, M., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis, N., and 
Deco, G. (2015). Can sliding-window correlations reveal dynamic functional connectivity in 
resting-state fmri? NeuroImage.  

    Hurlburt, R. T., Alderson-Day, B., Fernyhough, C., and Kühn, S. (2015). What goes on in 
the resting-state? a qualitative glimpse into resting-state experience in the scanner. Frontiers 
in psychology, 6.  

    Lance, C. E., Butts, M. M., and Michels, L. C. (2006). The sources of four commonly 
reported cut-off criteria what did they really say? Organizational research methods, 9(2):202–
220. 

    Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z., Joo, S. J., Chen, M.-Y., 
Gilmore, A. W., McDermott, K. B., Nelson, S. M., Dosenbach, N. U., et al. (2015). 
Functional system and areal organization of a highly sampled individual human brain. Neuron, 
87(3):657–670.  

    Laumann, T. O., Snyder, A. Z., Mitra, A., Gordon, E. M., Gratton, C., Adeyemo, B., 
Gilmore, A. W., Nelson, S. M., Berg, J. J., Greene, D. J., et al. (2016). On the stability of bold 
fmri correlations. Cerebral Cortex.  

    Lindquist, M. A., Xu, Y., Nebel, M. B., and Caffo, B. S. (2014). Evaluating dynamic 
bivariate correlations in resting-state fmri: A comparison study and a new approach. 
Neuroimage, 101:531–546.  

    Logothetis, N. K. (2008). What we can do and what we cannot do with fmri. Nature, 
453(7197):869–878.  

   Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001). 
Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843):150–157.  

    Lowe, M., Mock, B., and Sorenson, J. (1998). Functional connectivity in single and 
multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 7(2):119–132.  

   Magri, C., Schridde, U., Murayama, Y., Panzeri, S., and Logothetis, N. K. (2012). The 
amplitude and timing of the bold signal reflects the relationship between local field potential 
power at different frequencies. The Journal of Neuroscience, 32(4):1395–1407.  

    Margraf, J. (1994). Mini-DIPS. Springer Berlin Heidelberg, Berlin, Heidelberg.  

    Mitra, A., Snyder, A. Z., Blazey, T., and Raichle, M. E. (2015). Lag threads organize the 
brain’s intrinsic activity. Proceedings of the National Academy of Sciences, 112(17):E2235–
E2244.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/081976doi: bioRxiv preprint 

https://doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/


    Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J., Sabuncu, M. R., Shafee, R., Lu, 
J., and Liu, H. (2013). Individual variability in functional connectivity architecture of the 
human brain. Neuron, 77(3):586–595.  

    Nunnally, J. C. (1994). Psychometric theory. New York: McGraw-Hill.  

    Ogawa, S., Lee, T.-M., Kay, A. R., and Tank, D. W. (1990). Brain magnetic resonance 
imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy 
of Sciences, 87(24):9868–9872. 

    Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., and Petersen, S. E. (2012). 
Spurious but systematic correlations in functional connectivity mri networks arise from 
subject motion. Neuroimage, 59(3):2142–2154.  

    Prichard, D. and Theiler, J. (1994). Generating surrogate data for time series with several 
simultaneously measured variables. Physical Review Letters, 73(7):951.  

    Richiardi, Jonas, Hamdi Eryilmaz, Sophie Schwartz, Patrik Vuilleumier, and Dimitri Van 
De Ville. Decoding brain states from fMRI connectivity graphs. Neuroimage 56.2 (2011): 
616-626. 

    Rosazza, C. and Minati, L. (2011). Resting-state brain networks: literature review and 
clinical applications. Neurological Sciences, 32(5):773–785.  

    Shehzad, Z., Kelly, A. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., Lee, S. H., 
Margulies, D. S., Roy, A. K., Biswal, B. B., et al. (2009). The resting brain: unconstrained yet 
reliable. Cerebral cortex, 19(10):2209–2229.  

    Shen, X., Tokoglu, F., Papademetris, X., and Constable, R. T. (2013). Groupwise whole-
brain parcellation from resting-state fmri data for network node identification. Neuroimage, 
82:403–415.  

    Shrout, P. E. and Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater 
reliability. Psychological bulletin, 86(2):420.  

    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., 
Mazoyer, B., and Joliot, M. (2002). Automated anatomical labeling of activations in spm 
using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage, 
15(1):273–289.  

    Yan, C.-G., Craddock, R. C., Zuo, X.-N., Zang, Y.-F., and Milham, M. P. (2013). 
Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 
1000 functional connectomes. Neuroimage, 80:246–262.  

    Zang, Y., Jiang, T., Lu, Y., He, Y., and Tian, L. (2004). Regional homogeneity approach to 
fmri data analysis. Neuroimage, 22(1):394–400.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/081976doi: bioRxiv preprint 

https://doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/


    Zou, Q., Miao, X., Liu, D., Wang, D. J., Zhuo, Y., and Gao, J.-H. (2015). Reliability 
comparison of spontaneous brain activities between bold and cbf contrasts in eyes-open and 
eyes-closed resting states. NeuroImage, 121:91–105.  

    Zuo, X.-N. and Xing, X.-X. (2014). Test-retest reliabilities of resting-state fmri 
measurements in human brain functional connectomics: a systems neuroscience perspective. 
Neuroscience & Biobehavioral Reviews, 45:100–118.  

    Zuo, X.-N., Xu, T., Jiang, L., Yang, Z., Cao, X.-Y., He, Y., Zang, Y.-F., Castellanos, F. X., 
and Milham, M. P. (2013). Toward reliable characterization of functional homogeneity in the 
human brain: preprocessing, scan duration, imaging resolution and computational space. 
Neuroimage, 65:374–386.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/081976doi: bioRxiv preprint 

https://doi.org/10.1101/081976
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures caption 
 
Figure 1: Variability of FC. Panel A: Average FC over links, <FC>, of the 5 subjects for all 
42 sessions (blue dots), and for the 50 subjects (gray line). Panel B: distribution of <FC> of 
the 5 subjects (blue lines) and the distribution of <FC> for the 50 subjects (gray bar). Panel C: 
the distributions of the FC values (blue lines for the 5 subjects, and gray bar for the 50 
subjects). Panel D: the FC values of a participant (FCi) against FC values of another 

participant (FCj, blue circles), and against the FC values of the average of the 50 subjects 

(FC50s, gray asterisks). In the same panel, we reported the correlation between two 

participants’ FC (corr(FCi,FCj) ≈0.8), and the correlation between a subject’s FC and FC50s 

(corr(FCi,FCj) ≈0.87). Panel E: the distributions of the standard deviation over sessions of the 
FC (SDFC). Same color conventions as panel C. Panel F: one participant’s SDFC against the 

SDFC of another participant (blue circles), and against the SDFC of the 50 subjects (gray 

asterisks). In this panel, we reported the correlation between two participants’ SDFC 

(averaged over 42 sessions), and the SDFC of a subject against the ones of the 50 subjects. 

 
 
Figure 2: Between- and within-subject FC variability. Panels A-B show the heat-maps of 
the average FC for a single subject and for 50 subjects, respectively. Panels C-D show the FC 
standard deviation (SD) for a single subject and for 50 subjects, respectively. The average FC 
is Fisher-transformed (inverse hyperbolic tangent), and the SD is calculated from these 
transformed values. Color convention is cyan and blue indicate 50 subjects and single subject, 
respectively; black and gray dots indicate surrogate data for the 50 subjects and the single 
subject, respectively. Panel E shows the scatter-plot of the average FC against the FC standard 
deviation. Panels F and G plot the distributions for average FC and SD with the same color 
conventions. All the plots of this figure refer to one exemplary participant. The figures for the 
other four participants are qualitatively similar, but not reported. 

 

Figure 3: Reliability of the correlation strength. Panel A shows the scatter-plot for the 
correlation strength against ICC value, panel B shows the histogram for the distribution of the 
ICC values, and panel C is the heat-map of the average ICC values for the different macro-
regions. For the panels on the left and on the center, the colors light blue, dark blue and gray 
refer to the theoretical, simulated and observed values, respectively (see main text). Panel D 
shows the distribution of the three variances (σf

2, σb
2, and σw

2). Panel E shows the scatter plot 
of the three variances against the ICC, with the values of the correlations between the three 
variances and the ICC; the colors follow the same convention of panel D. 
 
 
Figure 4: Effect of scan duration on the FC reliability. The graph shows the behavior of the 
average reliability, ICC, and the behavior of the three variances related to the three sources of 
variability of FC for different scan duration (panel A) and using multiple scan sessions (panel 

B). The empty circles refer to the three sources of variability: within-subject (σw
2, blue), 
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finite-sample (σf
2, green) and between-subject (σb

2, black). The red asterisks refer to ICC. To 

plot ICC we used a second y-axis (in red, on the right). In gray the SD of each measure are 
reported. The points are slightly misaligned to improve the plot readability. 

 
Figure 5: Analysis of FC at global level. The two panels on the left refer to the analysis done 
using the single session. Panel B shows the distributions of the estimated parameters’ values 
with the general linear model. Panels A, C-E plot the distribution of zw (gray) and zb (black) 
for FC averaged over 1, 2, 4, and 6 sessions, respectively. The observed data are represented 
with dots, and the theoretical approximated values with continuous lines. The separation 
between the distributions of zw and zb increases rapidly when increasing the number of 
sessions. 
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