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Abstract

The binding and contribution of transcription factors (TF) to cell specific gene 1

expression is often deduced from open-chromatin measurements to avoid costly TF 2

ChIP-seq assays. Thus, it is important to develop computational methods for accurate 3

TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel 4

segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs 5

with position weight matrices. TEPIC can be applied to various open-chromatin data, 6

e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to 7

identify candidate TF binding sites. TEPIC computes TF affinities and uses 8

open-chromatin/HM signal intensity as quantitative measures of TF binding strength. 9

Using machine learning, we find low affinity binding sites to improve our ability to 10

explain gene expression variability compared to the standard presence/absence 11

classification of binding sites. Further, we show that both footprints and peaks capture 12

essential TF binding events and lead to a good prediction performance. In our 13

application, gene-based scores computed by TEPIC with one open-chromatin assay 14

nearly reach the quality of several TF ChIP-seq datasets. Finally, these scores correctly 15
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predict known transcriptional regulators as illustrated by the application to novel 16

DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, 17

respectively. 18

1 Introduction 19

Deciphering the system behind the complex regulation of gene expression in higher 20

organisms is a challenging task in computational biology. A key aspect is to better 21

understand the role of transcription factors (TFs), DNA binding proteins that regulate 22

the transcriptional machinery in cells. TFs can activate and repress expression of genes 23

that are located proximal or distal to their DNA binding site, by binding to promoters 24

of genes or enhancers that are brought into close proximity via DNA looping [54]. TFs 25

are known to have important roles in several diseases, e.g. a third of known human 26

developmental disorders are related to deregulated TFs [64]. 27

Several general approaches have been proposed to identify TFs acting as key players 28

in gene regulation depending on the available data: Coexpression analysis combined 29

with computational predictions of TF sequence binding can be used to identify key 30

TFs [18]. Genome-wide TF binding data, as produced by TF ChIP-seq, is widely used 31

to identify important TFs: ChIP-seq data was incorporated into coexpression 32

analysis [43], was combined with transcriptome data [49,66], used for the construction 33

of Gene Regulatory Networks (GRNs) [8], and used together with Hi-C data [40]. 34

Although ChIP-seq data delivers highly interpretable results, it is not well suited for 35

high-throughput studies due to high costs and laborious procedures. Thus, current large 36

epigenetic consortia such as Roadmap [39], Blueprint [1], and DEEP 37

(http://www.deutsches-epigenom-programm.de/ ), do not generate TF-ChIP data. 38

Instead, the generated epigenetic data is considered to predict TF binding, as it contains 39

a wealth of information to simplify this task. Especially data on open-chromatin, as 40

produced for example by DNaseI seq [34], ATAC-seq [6] or NOMe-seq [35], was shown 41

to be well tailored for this purpose [47] and has become the standard for the analysis of 42

tissue-specific TF binding in absence of TF-ChIP data. Using machine learning methods, 43

these predictions can be used to identify TFs acting as key regulators [4, 46,47]. 44

In addition to open-chromatin data, also Histone Modification (HM) ChIP-seq data 45

was used for the prediction of TF binding [4,5,13,24,51,67]. In these studies, HMs were 46

used either exclusively or along with open-chromatin data. It was shown that using 47

DNaseI-seq data alone can lead to highly accurate TF binding predictions [13,51], 48

therefore we mainly focus on open-chromatin data in this article. 49

There are two general classes of methods to predict TF binding: site-centric 50

methods [13, 32, 42, 51, 57, 69], and segmentation-based methods [3, 7, 24, 25, 27, 48, 50, 58]. 51

Site-centric methods require the identification of putative TF binding sites (TFBS) 52

using TF binding motifs represented with position weight matrices (pwms). According 53

to the signal of the included epigenetic marks, the putative TFBSs are either classified 54

as bound or unbound. There are various ways of incorporating epigenetic data in the 55

prediction methods: In Centipede, not only open-chromatin information, but also 56

histone modifications, genome conservation and the distance of a putative binding site 57

to the closest TSS are considered using a hierarchical mixture model [51]. Another 58

approach is taken in [13]. Here, an epigenetic prior is computed using the DNaseI-seq 59

signal that is combined with a simple motif score. In the method PIQ, TFBS are 60

predicted with Bayesian inference [57]. The supervised methods MILLIPEDE [42] and 61

BinDNase [32] use a binned DNaseI-seq signal around candidate TFBS as features in a 62

regression approach to predict truly active TFBS. 63

Segmentation-based approaches screen the DNaseI-seq signal for dips in DNaseI 64

hypersensitive sites (DHS), so called footprints. These footprints are believed to be 65
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caused by TFs that are bound to DNA, thereby preventing the DNaseI enzyme from 66

cutting [20]. Restricting the search space for active TFBS to footprints simplifies the 67

prediction. There are methods based on sliding windows [48] as well as approaches 68

based on hidden Markov models (HMM) [3,25]. Using a binomial z-score, DNase2TF, 69

interprets the depletion of DNaseI reads around putative footprints [58]. The method 70

Wellington, uses a binomial test to identify footprints. A putative footprint is classified 71

as a true footprint, if there are significantly fewer reads within it compared to its 72

flanking region [50]. A subset of the footprint detection methods includes DNaseI bias 73

correction [24], as the DNaseI cleavage bias was reported to affect the footprint 74

calling [26,36]. Unfortunately, footprinting methods have been applied mainly on 75

DNaseI-seq data, but neither on ATAC-seq nor NOMe data. In addition, the possibility 76

of segmenting based on peaks only, which are used for footprint detection, has not yet 77

been systematically analysed and compared to the performance of footprint based 78

segmentations. By considering only peaks, both ATAC-seq and NOMe data can be used 79

easily, as the only required processing step is peak calling. 80

A drawback of all aforementioned approaches for TF binding prediction is the usage 81

of hit-based motif screening algorithms, such as Fimo [21]. Hit-based methods use a 82

threshold to decide whether a genomic site is considered to be a putative TFBS or not. 83

Low affinity binding sites may be lost as they often do not pass the threshold. As it was 84

shown that low-affinity binding is essential in biology [12,59], this could negatively 85

affect downstream analyses of TFBS. Here, we use a method called TRAP, that 86

circumvents the drawback of hit-based methods by quantifying TF binding using a 87

biophysically motivated model that produces binding affinity values for each TF [55]. 88

TRAP affinity values for TFs have been shown to work well in the context of analysing 89

co-regulated genes [56], ChIP-seq data and SNP analyses in TFBS [60], in gene 90

expression learning [9] as well as in TF co-occurrence analysis using DHS regions [63]. 91

We present a novel, generalizable, segmentation-based method, called TEPIC, to 92

predict TF-binding using pwms, combined with a single open-chromatin assay. Using 93

TEPICs predictions, we learn regression models to predict gene expression in several cell 94

types using DNaseI-seq and NOMe-seq data. We show that using open-chromatin peaks 95

performs favourably compared to footprints and that incorporating low-affinity binding 96

enhances the quality of gene expression learning. In addition, we show that the signal of 97

open-chromatin assays within peaks contains quantitative information that improves 98

gene expression predictions further. Compared to previous work [46], TEPIC leads to 99

better results and shows performance close to what is obtained using more expensive 100

ChIP-seq data sets. 101

2 MATERIALS AND METHODS 102

2.1 Data 103

We apply TEPIC to data generated within the DEEP project, as well as to ENCODE 104

data [15]. From DEEP, we use DNaseI-seq, and RNA-seq data for a HepG2 sample, 105

DNaseI-seq and RNA-seq data for three biological replicates of primary human 106

hepatocytes, as well as NOMe-seq and RNA-seq data for six CD4+ T-Cell samples, 107

including different subtypes. From ENCODE, we downloaded DNaseI-seq data, gene 108

expression data, H3K4me3 ChIP-seq data, H3K27ac ChIP-seq data, and TF-ChIP-seq 109

files for K562, GM12878, and H1-hESC. For HepG2, we downloaded H3K4me3 110

ChIP-seq, H3K27ac ChIP-seq and TF-ChIP-seq files. In total, we obtained 33 TF 111

ChIP-seq files for K562, 50 for GM12878, 50 for H1-hESCs, and 39 for HepG2. So, 112

TEPIC is tested on both primary cells and cell lines. DEEP sample IDs and ENCODE 113

accession numbers are listed in Supplementary Table 1. Within TEPIC, we tested two 114
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different sets of position weight matrices (pwms): Using Jaspar [44] and Uniprobe [30], 115

we created a set of 439 pwms for usage within TEPIC. We downloaded the set of non 116

redundant TFs for vertebrates from Jaspar (version of 26.10.2015) and vertebrate TF 117

data from Uniprobe. In addition, we obtained the full set of human mononucleotide 118

profiles from Hocomoco, version 10, which includes 641 pwms [38]. However, we found 119

this collection of pwms to perform worse than the other one (see discussion, 120

Supplementary Figure 2), thus we do not consider the Hocomoco pwms in the 121

remainder of the manuscript. Another curated but only commercially available dataset 122

of pwms from the TRANSFAC database was not considered in this work [45]. For 123

further details on the origin and processing of the DEEP samples, we refer to 124

Supplementary Section Experimental Procedures. The EGA accession number for the 125

DEEP data used in this study is EGAS00001002073. 126

2.2 Data Preprocessing 127

Bedtools version 2.25.0 [53] has been used in several stages during preprocessing. Peak 128

calling on DNaseI-seq data has been conducted with JAMM [31] using the suggested 129

default parameters. JAMM takes bed files as input, which need to be generated from 130

the original bam files. For downstream usage, we considered all peaks that passed the 131

JAMM filtering step. NOMe peaks have been called using a HMM based approach 132

(Nordström et al., unpublished, available at https://github.com/karl616/gNOMePeaks). 133

For DEEP samples, BAM files of RNA-Seq reads were produced with TopHat 134

2.0.11 [61], with Bowtie 2.2.1 [41], and NCBI build 37.1 in --library-type 135

fr-firststrand and --b2-very-sensitive setting. Gene expression has been 136

quantified using Cufflinks version 2.0.2 [62], the hg19 reference genome and with the 137

options frag-bias-correct, multi-read-correct, and compatible-hits-norm 138

enabled. 139

Gene expression quantifications for K562, and GM12878, as well as HM peaks and 140

TF ChIP peaks were used as obtained from ENCODE. We considered the mean gene 141

expression in H1-hESC over four replicates, HM and TF-ChIP data were not modified. 142

2.3 TF annotation using TEPIC 143

We compute TF affinities within all identified open-chromatin regions/HM peaks using
TRAP [55] on the pwm sets described above. The annotation is parallelised in R. TF
affinities per gene are computed using python in four different ways: Summing up the
TF affinities in all open-chromatin/HM peaks within [1] a 3000bp window around a
genes TSS and [2] a 50000bp window around a genes TSS using exponential decay as
introduced in [49]. In addition to the positional information of the peaks, we
incorporate the signal abundance within a peak into the TF annotation by multiplying
the average per-base read count within the peak (DNaseI-seq/HM) or the average
methylation in the peak (NOMe-seq), by the TF affinities. We perform this for all
peaks in [3] the 3000bp window and [4] the 50000bp window. In the remainder of the
paper, we refer to [1] as the 3kb setup, to [2] as 50kb, to [3] as 3kb-S and to [4] as
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50kb-S, where S is short for scaled. Formally, TF gene scores are computed as

a3kbg,i =
∑

p∈Pg,3000

ap,i (1)

a50kbg,i =
∑

p∈Pg,50000

ap,ie
− dp,g

d0 (2)

a3kb-Sg,i =
∑

p∈Pg,3000

ap,isp (3)

a50kb-Sg,i =
∑

p∈Pg,50000

ap,ie
− dp,g

d0 sp (4)

where [1]-[4] represent the previously described settings, ag,i is the total affinity of TF i 144

for gene g, ap,i is the affinity of TF i in peak p, the set Pg,x contains all open-chromatin 145

peaks in a window of size x around gene g, dp,g is the distance from the centre of peak p 146

to the TSS of gene g, sp is the scaling factor used for peak p, and d0 is a constant fixed 147

at 5000bp [49]. TEPIC is documented using a metadata xml file [16]. Each run 148

automatically generates a meta analysis file containing all parameters used. The general 149

workflow around TEPIC is shown in Figure 1. 150

2.4 Elastic net regression to predict gene expression 151

We use the linear regression framework with elastic net penalty as implemented in the
glmnet R-package [19] to predict gene expression from TEPICs, hit-based, and
ChIP-seq TF binding predictions. As TFs are likely to be correlated, the elastic net is
especially well suited for such a setting, because it resolves the correlation between
features by distributing the feature weights among them [71]. This is achieved by
combining two regularisation functions, the ridge penalty and the lasso penalty:

β̂ = arg min
β

||y −Xβ||2 + α||β||2 + (1− α)||β|| (5)

Here, β represents the feature coeffcient vector, β̂ the estimated coefficients, X the 152

feature matrix, and y the response vector. The ratio between lasso penalty and ridge 153

penalty is controlled using the parameter α. Nested cross-validation is used to learn the 154

models and to assess their performance. 155

In a ten-fold outer loop, we randomly select 80% of the data as training data and 156

20% as test data. On the training data, we perform a six-fold inner cross validation to 157

learn model parameters. Within this step, we identify the optimal value for the 158

parameter α, which is identified by a systematic search between 0.0 and 1.0 using a 159

step-size of 0.01. The performance of the learned model is assessed on the hold-out test 160

data. In the end, we report the average correlation cavg on the test data sets over the 161

ten-fold outer loop. Our learnig approach is further detailed in Supplementary Figure 1. 162

The data matrix X, containing TF gene scores, and the response vector y, 163

containing gene expression values, are log-transformed, with a pseudo-count of 1, 164

centered and normalised. 165

2.5 Competing TFBS prediction approaches 166

2.5.1 Experimental using ChIP-seq 167

To compare our predictions to ChIP-seq data, we computed gene TF scores for all 168

protein coding genes using ENCODE ChIP data and exponential decay as described 169

in [49]. We considered all ChIP peaks within a window of 50000bp around the TSSs of 170

genes. 171
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Figure 1. The general workflow of TEPIC is as follows: Data of an open-chromatin
or Histone modification ChIP-seq experiment needs to be preprocessed to generate a
genome segmentation, either by peak for footprint calling. Using the segmentation,
TEPIC applies TRAP in all regions of interest, and computes TF gene scores using
exponential decay to reweigh In addition, the magnitude of the open-chromatin signal is
considered to reweigh TF scores in the segmented regions.

2.5.2 Segmentation with footprints 172

We obtained DNaseI-seq footprint predictions for HepG2, K562, GM12878, and 173

H1-hESC generated with HINTBC [24]. As footprints can be shorter than the 174

considered pwms, we extended the footprints to a total size of 24bps and 50bps, 175

centered at the middle of the footprint. This data allows us to compare the peak-centric 176

segmentation to the footprint-based segmentation. The extended footprint regions are 177

annotated using all setups of TEPIC. 178

2.5.3 Hit-based annotation methods 179

We applied the motif annotation tool Fimo [21] to open-chromatin peaks using the same 180

set of pwms as we used for TEPIC. Thereby, we can assess the influence of the 181

affinity-based binding prediction on gene expression learning. In addition, we run Fimo 182

using a DNase prior [13], to compare TEPIC against a state of the art site-centric 183

approach. This comparison is also motivated by the fact that this method has been 184

used in a previous study on gene expression learning with TF binding predictions [46]. 185

Transcription factor scores are computed in 3000bp and 50000bp windows around the 186

transcription start sites (TSSs) of all protein coding genes. Gene TF scores are then 187
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calculated as described above for cases [1] and [2] using the log-ratio scores introduced 188

in [13]. Note that we thus do not log-transform the Fimo TF scores in the elastic net 189

model, comparable to [46]. We use the standard parameters of Fimo in all experiments, 190

except for the max-stored-scores options which we set to 200000 instead of the 191

default value 100000. 192

2.6 Evaluation using TF-ChIP-seq data 193

As it was noted previously, there is no standard procedure to compare TF binding 194

predictions to ChIP-seq data [42]. Here, the gold standard dataset is constructed in a 195

”peak-centric” manner: All x ChIP-seq peaks of a TF are considered as positive binding 196

events. The negative set comprises x randomly generated, non-overlapping peaks, that 197

have the same mean peak width as the positive peaks. The intersection between the 198

positive and the negative set is the empty set. We compare the gold standard set to our 199

TF predictions using bedtools intersect [53], with a minimum overlap of 1bp. All peaks 200

in the negative set/positive set, that do not overlap any of our TF predictions are 201

counted as True Negatives (TN)/False Negatives (FN). All predictions that do not 202

overlap the positive set, are considered to be False Positives (FP). The overlapping 203

predictions are evaluated with respect to TEPIC affinities and Fimo scores using the 204

package pROC [22]. We report Precision-Recall AUC (PR-AUC) to measure method 205

performance. 206

3 RESULTS 207

3.1 A segmentation-based method for gene expression 208

prediction 209

In this work, we present a segmentation-based method to predict TF binding in vivo. 210

The method can be applied to footprints as well as to open-chromatin and HM peaks. 211

TEPIC has been tested on DNaseI-seq, and NOMe-seq data, although it is generally 212

applicable to all open-chromatin methods, as long as open regions can be determined. 213

Further, our method has been tested on Histone peaks for H3K4me3 and H3K27ac. In 214

addition to the peak-centric view, the signal intensity of open-chromatin peaks is 215

included in the TF binding prediction. We propose that incorporating the 216

open-chromatin signal reflects the degree of openness of a particular genomic region in 217

the cell pool of the considered sample. Hence, if certain regions are accessible in the 218

majority of cells in a cell pool, higher weight is assigned to them by our method. In 219

contrast to traditional hit-based methods, TEPIC is based on TF affinities to include 220

low-affinity binding. We found that combining open-chromatin peaks, the signal 221

intensity within those, and the consideration of low-affinity binding sites improve gene 222

expression learning. Several aspects of our findings are detailed in the following sections. 223

3.2 Information about open-chromatin fraction in the cell 224

population improves prediction 225

Recall from the Methods section that TEPIC has been tested with four different 226

annotation setups to estimate TF affinities for genes: 3kb, 50kb, 3kb-S, and 50kb-S. 227

Including the signal intensity within open-chromatin peaks improves the correlation 228

between predicted and actual gene expression in both considered window sizes, as shown 229

in Figure 2a. We observe that the performance of the different setups to summarise 230

peak TF scores usually follows the order 3kb < 3kb-S < 50kb< 50kb-S. This holds 231

except for the samples: K562, LiHe1, and LiHe2; there the 3kb-S setup performs better 232
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Figure 2. (a) Mean test correlation achieved in gene expression learning is shown for
all tested setups and for all samples. The 50kb-S setup outperformed all other setups in
all samples. We observe, that the scaling using the average peak intensity seems to work
especially well for DNaseI-seq data, but not so well on NOMe-seq data, as the increase
of the mean test correlation between 3kb and 3kb-S as well as between 50kb and 50kb-S
is higher for the DNaseI-seq samples (GM12878, H1-hESC, HepG2, K562, LiHe1, LiHe2,
and LiHe3) than for the NOMe-seq samples (others). (b) The learning performance for
all setups with a varying number of considered peaks is shown. This analysis is based on
HepG2 data only. An interesting observation is that the curves for the 50kb approaches
saturate at around 400, 000 peaks, while the 3kb approach curves steadily increase till
all peaks are included in the model.

than the 50kb setup. However, combining exponential decay in the 50kb window and 233

scaling with the open-chromatin signal outperforms all other tested variants. This might 234

indicate that incorporating distal TF binding events is crucial to modelling gene 235

regulation accurately. We also notice that scaling TF affinities with the open-chromatin 236

signal seems to work better with DNaseI-seq (cell lines and primary human hepatocytes) 237

than with NOMe-seq (T-cells). Additionally, note that the hepatocyte sample LiHe2 238

performs worse than the other two hepatocyte replicates. This might be explained by 239

the varying number of open-chromatin peaks between the replicates, as LiHe2 is the 240

replicate with the fewest open-chromatin peaks. In Supplementary Table 2, all learning 241

results are shown. 242

3.3 Gene expression prediction depends on the number of 243

open-chromatin peaks 244

We investigated the influence of the number of considered open-chromatin peaks on the 245

performance of TEPICs prediction in the gene expression learning. For this purpose, 246

twelve different peak sets using HepG2 DNase data were constructed according to the 247

JAMM peak score. We considered 10, 000, 50, 000, 100, 000, 200, 000, ... , 900, 000, and 248

all filtered peaks, 1, 023, 463. Interestingly, the performance of the 50kb and 50kb-S 249

setups remains roughly constant for peak numbers ≥ 500000, while the performance of 250

the 3kb and 3kb-S setups continuously increases until the end. This may be considered 251

as support for the hypotheses that long-range regulation by TFs bound to distal binding 252

sites is vital to modelling gene regulation. Additionally it can be seen that the 253

difference between the setups pertaining to the same window size with and without the 254
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Figure 3. Gene expression learning results in GM12878, H1-hESC, HepG2, and K562
cells are shown for four different annotation setups using either the positions of H3K4me3
or H3K27ac peaks as input for TEPIC. Scores based on H3K4me3 work better than
those based on H3K27ac across all samples.

incorporation of the open-chromatin signal respectively, rises with increasing peak 255

numbers. This might reflect the importance of prioritizing certain peak regions using 256

the open-chromatin signal. 257

3.4 Including low-affinity binding sites improves over hit-based 258

TF annotation 259

We compare hit-based TF scores with the affinity-based annotation used in TEPIC. As 260

shown in Figure 4a, the incorporation of low-affinity binding sites using TRAP 261

outperforms the traditional hit-based scores. Another advantage of TEPIC is that it 262

consumes only 12.06 Gigabytes of memory, while the hit-based method Fimo required 263

86.6 Gigabytes (measured on HepG2). 264

3.5 Histone Marks contain information on TF binding 265

Histone Marks (HMs) have been successfully used in predicting TF binding 266

sites [4, 13,24,51,67]. Using ENCODE ChIP-seq data of H3K4me3 and H3K27ac 267

obtained for HepG2, K562, GM12878, and H1-hESC we show that HMs can also be 268

used in TEPIC. As shown in Figure 3, HMs lead to good performance in gene 269

expression learning. Similar to the open-chromatin data, we note that using a larger 270

window improves the learning results and that scaling the TF predictions using the 271

abundance of the ChIP-seq peaks improves the results further in most cases, excluding 272

the 50kb-S setup of H3K27ac in H1-hESC, HepG2, and K562. Further, we observe that 273

H3K4me3 leads to better results than H3K27ac in all samples. This might be due to the 274

strong association of H3K4me3 to active promoters [29], whereas H3K27ac is rather 275

related to enhancer regions [11]. In particular, this might explain the reduced 276

performance of H3K27ac peaks in the 3kb(-S) setups compared to H3K4me3. 277

Additionally, we compared the performance of running Fimo in HM peaks to using 278

TEPIC. Similar to the results shown in Figure 4a for DNaseI-seq data, we observed that 279

the hit-based annotation is outperformed by TF affinities (Supplementary Figure 5). 280

3.6 TEPIC improves expression estimates compared to an 281

epigenetic prior used with Fimo 282

We compare our approach against a state-of-the-art TF binding prediction method that 283

extends Fimo with an epigenetic prior. We refer to this method as Fimo-Prior. It was 284

shown to perform competitively to the earlier state-of-the-art Centipede [13]. 285
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Figure 4. (a) The scatter plot shows the mean test correlation achieved in gene
expression learning using TF affinity scores with TRAP and a hit-based peak annotation
computed with Fimo. Clearly, the hit-based scores are outperformed by the TF affinities.
(b) The scatter plot shows the mean test correlation achieved in gene expression learning
using TEPIC applied on peaks and TF scores computed with Fimo-Prior. In general
TEPIC scores show better performance in the expression prediction than those computed
with Fimo-Prior, although both methods perform similar for several samples. Note that
the scaled annotation versions of TEPIC are used in the comparison against Fimo-Prior.

We applied Fimo-Prior to DNaseI-seq data of HepG2, K562, GM12878, H1-hESC, 286

LiHe1, LiHe2, and LiHe3. In Figure 4(b), we show the performance of TEPIC in the 287

3kb window (3kb-S) and the 50kb window (50kb-S) compared to Fimo-Prior. 288

Fimo-Prior and TEPIC perform similar for both setups of LiHe1 and LiHe3, for the 289

3kb setup of HepG2, and for the 50kb setup of LiHe2. The 50kb setup of HepG2 as well 290

as the 3kb setup of LiHe2 achieve better learning results, when TEPIC scores are used 291

instead of Fimo-Prior. This also holds for all cell line samples excluding the 3kb setups 292

of H1-hESC and GM12878. 293

In contrast to our observations presented in Figure 2, we observed that the 294

performance of Fimo-Prior on K562, on H1-hESC, and on GM12878 decreased in the 295

50kb window compared to the 3kb window. For ChIP-seq data it was shown that 296

extending the region up to 50kb improved the quality of gene expression prediction [49]. 297

This effect might be due to the design of Fimo-Prior, which is a site-centric method 298

that considers all binding sites in the 50kb window. Although the open-chromatin signal 299

is used for reweighting, it may be that too many false positive hits are considered in the 300

final gene TF scores. Overall, the performance of TEPIC is favourable compared to the 301

performance of Fimo-Prior. We observed that the runtime of Fimo-Prior is extensive 302

compared to TEPIC. Analysing the 50kb region for HepG2 using the prior of [13] took 303

about 6.5 days, while TEPIC performs this task in 16 hours (using 16 cores), including 304

the time required for peak calling with JAMM. We note however, that the current 305

implementation of Fimo-Prior is not parallelized. A summary of runtimes recorded 306

within this comparison is shown in Supplementary Table 5. 307
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Figure 5. The scatter plot shows the mean test correlation achieved in gene expression
learning using TF affinities computed within JAMM DNaseI-seq peaks and TF affinities
computed within a 24bp window centred at footprints called using HINTBC. On HepG2
and K562, the peak-based approach outperforms the TF-footprints, whereas in GM12878
footprints lead to a better model performance On average, H1-hESC samples show a
slighty better performance using peaks.

3.7 Footprints contain essential binding sites for gene 308

expression prediction 309

So far, most segmentation-based methods identify TF binding sites by predicting 310

footprints [24]. Here, we compared the footprint-based segmentation to a peak-based 311

segmentation. To this end, we considered 452, 281 footprints in HepG2, 738, 707 312

footprints in K562, 598, 500 footprints in GM12878, and 1, 023, 559 footprints in 313

H1-hESC identified with the currently most accurate footprinting method 314

HINTBC [24]. We used TEPIC to annotate the regions around each footprint with a 315

window of length 24bp and 50bp (see Methods). As the results between both setups are 316

very similar, we present only the results for the slightly better 50bp setup and refer to 317

Supplementary Figure 4 for a comparison of both. Figure 5 shows the comparison 318

between TEPIC applied to footprints and peak regions. The peak-based approach 319

outperforms the footprints in HepG2 and K562. In addition, peaks perform slightly 320

better than footprints in H1-hESC. In GM12878, the footprint based approach 321

outperforms the peaks. 322

In addition, we see that incorporating the open-chromatin signal is also applicable to 323

the extended footprint regions as the correlation increases between the 3kb and 3kb-S, 324

as well as, between 50kb and 50kb-S approaches. Only for GM12878, the 50kb approach 325

performs a little better than the 50kb-S approach. This observation also holds for the 326

24bp footprint extensions. Although using peaks to segment the genome seems to lead 327

to better results on average, it is remarkable that the rather small footprint regions 328

seem to cover most of the important binding sites. Using only 22.98%, 25.33%, 91.2%, 329

and 36.02% of base pairs in footprinting regions compared to peak regions in HepG2, 330

K562, GM12878, and H1-hESC respectively, illustrates that indeed most of the essential 331

TF binding events in these cells are overlapping the footprint calls. 332
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Figure 6. Barplots showing the performance of gene expression learning for HepG2,
K562, GM12878, and H1-hESC using several different computational TF scores as well
as TF-ChIP-seq data. Although the ChIP-seq data outperformed all computational
TF binding prediction methods, TEPIC scores achieved good results compared to all
other computationally derived scores. In this Figure, the best performing variants of the
individual methods are represented.

3.8 TEPIC applied to DNaseI-seq data performs comparable 333

to TF ChIP-seq data in gene expression learning 334

We compared the performance of our method with that of gene expression learning using 335

TF ChIP-seq data. In Figure 6 we show the learning results for HepG2, K562, GM12878, 336

and H1-hESC. To illustrate the relation between the different TF binding prediction 337

methods, the figure includes the best correlation achieved [1] on footprints, [2] using 338

Fimo within open-chromatin peaks (labelled as Hit-based), and [3] using Fimo-Prior. 339

In HepG2 and K562, we find that TEPIC applied on peaks outperforms all other 340

approaches, including Fimo-Prior as used in [46], and achieves correlation values that 341

are close to what is obtained by using TF ChIP-seq data. In GM12878 and H1-hESC, 342

TEPIC applied to footprints, outperforms the competitive approaches and also achieves 343

good correlation. As the computational models lack some of the capabilities of the ChIP 344

data, it was surprising to us that using a computational model, allows to get so close to 345

ChIP-seq based predictions for some of the datasets. In addition to comparing all pwms 346

against all available ChIP-seq data, we compared the performance of using exactly those 347

pwms for which ChIP-seq data is available and vice versa. Although the overall 348

correlation between observed and predicted gene expression decreased, we again found 349

that TEPIC produces results often close to those with ChIP-seq data (Supplementary 350

Figure 6). 351

3.9 TF binding predictions computed by TEPIC perform well 352

in a comparison to TF-ChIP-seq data 353

The common way to evaluate TF binding prediction methods is to conduct a 354

comparison to TF ChIP-seq data. We used such an evaluation setup to benchmark the 355

different approaches in addition to the analysis of gene expression prediction. To this 356

end, we calculated Precision-Recall(PR) AUCs, as described in the Methods section, for 357

predictions on HepG2, K562, GM12878, and H1-hESCs compared to TF ChIP-seq data. 358

We compared TEPIC applied to open-chromatin peaks against Fimo scores computed 359

in open-chromatin peaks, against Fimo-Prior, which is applied genome-wide, and 360
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Table 1. Mean Precision-Recall(PR)-AUC of computational TF predictions compared
to experimentally determined TF binding sites. We consider TEPIC applied to peaks
and footprints(fp), a scaled and an unscaled version of TEPIC, Fimo applied to peaks,
and Fimo-Prior.

Sample #TFs TEPIC TEPIC-
Scaled

TEPIC(FP)Fimo Fimo-
Prior

HepG2 34 0.89 0.89 0.87 0.73 0.85
K562 17 0.89 0.9 0.9 0.66 0.66
GM12878 21 0.85 0.86 0.91 0.66 0.58
H1-
hESC

21 0.85 0.85 0.90 0.69 0.62

against TEPIC scores computed in footprints. Detailed results are shown in 361

Supplementary Figures 8, 9, 10, and 11. In Table 1 we present our results in a compact 362

way, by listing the mean PR-AUC values over all TFs for the individual comparisons. 363

We observe that the scaled TEPIC scores perform comparable to the unscaled 364

scores, except for a minor improvement in K562 and HepG2. This indicates that 365

prioritising peaks using the open-chromatin signal is more relevant in a gene expression 366

prediction task compared to an evaluation against TF ChIP-seq data. The ChIP-seq 367

comparison clearly indicates, that affinity-based scores are superior to a simpler 368

hit-based annotation using Fimo, as mean PR-AUC values across samples are 369

considerably larger for TEPIC scores than for Fimo. This is in concordance with the 370

analysis shown in Figure 4a. The mean PR-AUC values computed for Fimo-Prior are 371

superior to the simple Fimo scores only on HepG2, in K562 they are equal and worse for 372

the remaining samples. TEPIC scores computed in footprints and peaks show a 373

comparable performance, which is in concordance to the findings shown in Figure 5. 374

3.10 Models learned using TEPIC scores are tissue-specific 375

To determine whether the learned models are tissue-specific, a Principal Component 376

Analysis (PCA) was performed on the model coefficients of all samples used in this 377

study. As it can be seen in Figure 7, the primary human hepatocyte samples (LiHe) are 378

clearly separated from the remaining samples, while HepG2, a human liver cancer cell 379

line, is their next neighbour, according to PC1. The T-cell samples are positioned in the 380

right area of the PCA plot. Their nearest neighbour is GM12878 which is located very 381

close to two of the T-cell samples. GM12878 is a lymphoblastoid cell line. 382

Lymphoblasts can differentiate into T-cells, hence the position of GM12878 in the PCA 383

plot could be explained. We note however, that the T-cell samples are obtained from 384

NOMe peaks, whereas all other peaks are from DNAse1, therefore PC1 appears to also 385

capture that difference. 386

In addition to the PCA analysis, we performed a cross-sample comparison using our 387

models. To this end, we learned a model using data for a distinct sample x and used 388

this model to predict gene expression across all samples. The results are shown as a 389

heatmap in Supplementary Figure 7. Similar to the PCA analysis, this experiment 390

argues for a tissue-specificity of our models, as the clustering of the model performances 391

clearly indicates a similarity/dissimilarity between related/unrelated cell types. Thus, it 392

should be worthwhile to investigate the feature vectors in more detail to learn about 393

tissue-specific regulators. 394

3.11 TF expression filtering does not reduce model 395

performance and simplifies interpretation 396

We checked how many of the TFs selected as a non-zero feature by the elastic net model 397

are actually being expressed. Thereby, we found that the mean expression level of 398

selected TFs is higher than the mean expression level of the TFs that are not selected 399
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Figure 7. Principal component analysis of normalised model coefficients for all samples
considered in this study. There is a clear separation of primary human hepatocytes, cell
lines, and T-cells.

(Supplementary Figures 12 and 13). Therefore, we repeated the gene expression learning 400

with a set of TFs that has been filtered with regard to expression levels. We used a low 401

FPKM cut-off of 1.0 and additionally removed all TFs that could not be mapped to a 402

gene ID. Supplementary Figure 14 shows that this reduction of considered TFs does not 403

reduce the learning performance. As the TF filtering reduces the number of features, it 404

simplifies the interpretation of the model coefficients. Non-zero coefficients mean that 405

TFs influence gene expression, either as activators (positive coefficients) or as repressors 406

(negative coefficients). TEPICs different annotation setups allow us not only to 407

estimate the influence of different TFs on gene expression but also to compare factors 408

that are predicted to bind in the promoter region (3kb-S setup) and those that are 409

predicted to bind in addition to distal regions to the TSSs of genes (50kb-S setup). 410

Thus, we will consider both setups in the analysis of the primary human hepatocytes 411

and the T-cell samples described in the following sections. 412

3.12 Analysis of primary human hepatocyte datasets using 413

DNaseI-seq data 414

To investigate the role of TFs in the liver hepatocyte samples, we computed the total 415

feature overlap between the learned models. In Figure 8a a Venn diagram is shown 416

visualising the overlap between the models. We found that 65 (38.5%) TFs are 417

commonly selected between all replicates using the 50kb-s setup (Figure 8a). In Figure 418

8b, we show the top 10 positive and top 10 negative features selected by our model. By 419

conducting literature research we found that there is evidence for 52 of the 65 factors to 420

be associated to hepatocyte function. Within the top 10 positive and negative features, 421

we found for example, the heterodimer PPARG::RXRA. This factor plays a key role in 422

hepatic transcription [52]. Another example is CEBPA, which is known to be important 423

in liver regeneration [10,14]. The TF GATA4 was shown to be involved in liver 424

induction [2]. CTCF was found to have a role in imprinting liver [23,28], and NRF1 425

has a protective function against oxidative stress in liver [68]. 426

A list of all factors is provided in Supplementary Table 3, Supplementary Figure 15 427

is analogous to Figure 8 but based on the 3kb-S annotation. 428

3.13 Application to NOMe analysis in T-cells 429

Overall, there are 53 (39%) TFs commonly selected in all T-cell samples. The feature 430

overlap between the individual T-cell replicates is shown in Figure 9a. We suggest that 431

those 53 TFs are potential key regulators within T-cells. By conducting literature 432

research, we found evidence that 42 out of the 53 are known to be related to the 433

immune system, see Supplementary Table 5. For example, among the top 10 positive 434
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Figure 8. (a) Venn diagram visualising the overlap between the liver hepatocyte
replicates using the 50kb-S annotation. In total, 65 factors are shared between the
replicates, and only 3, 17, and 19 are selected uniquely. (b) Heatmap listing the top 10
positive and top 10 negative selected features, which are among the 65 shared features
in the 50kb-S setup. TFs labelled with a ∗ could not be validated by literature to be
related to hepatocytes.

and negative coefficients (Figure 9b) we found the factor Gmeb1. This factor was shown 435

to inhibit T-cell apoptosis [33]. Another TF with a positive coefficient is Ets1, which 436

was shown to be critical for T-cell development [17]. Among the negative coefficients is 437

the factor Zbtb7b, which is known to act as a repressor in CD4+ T-cells [65]. 438

By comparing the TFs selected between the 3kb-S and the 50kb-S setup (see 439

Supplementary Table 4) we observed that the TF TBP, which binds to the TATA motif 440

in core promoters, is selected only in the 3kb-S setup. This might indicate that factors, 441

that are involved in basal transcriptional regulation, such as TBP [37] might not 442

contribute additional information to the model if distal binding events are considered. 443

We also noted that the feature coefficient signs agree between all TFs common in both 444

setups. This can be seen as a hint to the robustness of the learning itself. 445

Supplementary Figure 16 shows these analysis for the 3kb-S setup on the T-cells. 446

4 DISCUSSION 447

Here, we introduce a new method, TEPIC, to predict TF binding using an 448

open-chromatin assay as a prior to reduce genomic search space. Within TEPIC, several 449

new aspects in this field are proposed. 450

Previous segmentation-based methods for TF prediction segment the genome using 451

TF footprints [24]. Here, we include a segmentation paradigm which we call 452

peak-centric, as we consider all open-chromatin peaks to represent accessible DNA and 453

predict TF binding exactly in these regions. Earlier, it was observed that DNaseI-seq 454

signal corresponds well to TF-binding, e.g. in [13], but a peak-centric segmentation has 455

not been explored in detail, so far. A comparison to footprints called with HINTBC in 456

a gene expression learning setup showed that peaks perform similar to footprints. A 457

clear advantage of the peak-centric paradigm is that it is assay-independent. We applied 458

our method to DNaseI-seq data, which is the open-chromatin assay used in the majority 459

of TF binding prediction methods, but also to NOMe-seq data, without any changes to 460

the code. This is not easily possible for footprint-based methods, as they are 461
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Figure 9. (a) Heatmap showing the overlap between the T-cell replicates. There are
53 (39%) factors shared between all T-cell samples. (b) The top 10 positive and top
10 negative features among the 53 shared ones, are listed here. TFs labelled with a
∗ could not be validated by literature to be related to regulation in T-cells. For the
others, we were able to find literature that sets those factors into relation to T-cells (see
Supplementary Table 4).

assay-specific. TEPIC could be easily applied to other open-chromatin assays, for 462

example ATAC-seq data [6]. 463

An investigation whether the performance of a peak-centric segmentation would be 464

affected by the used peak caller showed that JAMM [31] peaks deliver better results on 465

DNaseI-seq data than MACS2 [70] peaks. However this could have been expected, as 466

JAMM was designed to handle the characteristics of DNaseI-seq data. The learning 467

results with MACS2 peaks are listed in Supplementary Table 2 and are visualised in 468

Supplementary Figure 3. 469

In order to improve TF binding predictions further, we included the absolute signal 470

of the open-chromatin assay within a peak in the score describing TF binding (see 471

Methods). This allows us to capture heterogeneity of TF binding over the large amount 472

of cells considered in bulk sequencing approaches. We showed that this extension 473

improves gene expression prediction compared to the 3kb and 50kb approaches (Figure 474

2a). Therefore the biological interpretation of the models becomes more reliable. The 475

scaling also improved predictions carried out on footprints. In addition to considering 476

the open-chromatin based segmentation, we have shown that also HMs can be used 477

within TEPIC to identify candidate TF binding sites and that incorporating the signal 478

within the HM-peaks also improves gene-expression prediction. 479

Former TF binding prediction methods that integrate open-chromatin information 480

were using a hit-based approach and had to rely on p-value thresholds. It is not obvious 481

that estimating binding affinity of a TF, e.g. using TRAP [55], within the complete 482

peak regions must improve over a more reduced search space when using hit-based 483

methods to define binding sites within peaks, as one could argue that the affinity based 484

approaches accumulate more noise. We believe that there are two major reasons why 485

TRAP outperforms the hit-based approach: first by default the same p-value threshold 486

is used for all pwms, although the information content of pwms may vary widely. An 487

additional optimization of the p-value threshold for each pwm may improve the result. 488

Second, a drawback of hit-based methods is that low-affinity binding sites are lost. 489

Incorporating these biologically important binding events [12,59] seems to be relevant 490

for improving the predictions. 491

The combination of those novel aspects enabled TEPIC to outperform a state of the 492
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art site-centric method that incorporates an epigenetic prior within Fimo [13]. TEPIC 493

achieves the best correlation in gene expression learning among all tested methods and 494

nearly reached the quality of using several ChIP-seq data sets. However, these findings 495

also point us to a few drawbacks of our method. Although the exponential decay in the 496

50kb window, proposed in [49], improves the learning result, it is likely that it also adds 497

noise to the gene TF scores. This could be improved by replacing the exponential 50kb 498

weighting with a more sophisticated function based on 3D chromatin structure using 499

Hi-C data. In addition, the pwm based annotation allows neither modelling indirect TF 500

binding nor allows a modelling of TF complexes. These points might explain why we 501

cannot fully reach, or even overcome, the quality of ChIP-seq based predictions. 502

TEPIC is an unsupervised method for predicting TF binding. Because we wanted to 503

include as many TFs as possible in the input for the gene expression learning, we 504

decided to exclude supervised methods, such as the recently published BinDNase [32], 505

in the comparison with other methods. These approaches require the presence of 506

ChIP-seq data for all TFs of interest and therefore are not applicable for many of the 507

large epigenetic datasets produced. 508

To test the performance of TEPIC’s TF predictions, we performed an evaluation 509

against TF-ChIP-seq data as well as gene expression prediction experiments. Note, that 510

we do not conduct a TF motif filtering to remove ChIP-seq peaks that are unlikely 511

direct binding events of the chipped TF. For this step, either Fimo or TEPIC 512

predictions would normally be used as a filtering criteria, leading to a bias in the 513

evaluation setup. The rather bad performance of Fimo-Prior in our TF-ChIP-seq 514

evaluation might be due to the design of our gold standard set in a peak-centric manner 515

or because the prior is not well suited to be applied genome-wide. For example, the 516

number of stored hits is limited in the current implementation of Fimo, which might 517

cause problems if the tool is used on a large scale. However, it was shown by both 518

evaluation strategies that a hit-based TF annotation is less accurate than an 519

affinity-based annotation. Moreover, both validation setups encourage a deeper analysis 520

comparing TF annotations based on either open-chromatin peaks or footprints, as it is 521

not obvious which segmentation methodology is more accurate in general. As footprint 522

calling is computationally more involved than peak calling, the latter might be more 523

applicable in practice. As pointed out in [58], TFs with short DNA residence times do 524

not exhibit footprints, therefore it might be possible to improve predictions by deciding 525

for each TF whether peaks or footprints should be used. 526

We note that gene expression learning for validation has several advantages over a 527

simple comparison to ChIP-seq data. As it was observed by the authors of 528

Millipede [42], there is no common strategy of validating TF binding predictions directly 529

by comparing them to TF ChIP data. Using gene expression learning [1] avoids 530

problems arising by imbalanced positive and negative sets, and [2] vague definitions of 531

gold standard sets, and [3] enables a biological interpretation of the results. We believe 532

the method may be exploited in other aspects relevant for TF binding prediction, e.g., 533

the evaluation of footprinting methods [24]. 534

In this study, we applied our method to primary cell types, primary human 535

hepatocytes and CD4+ T-cells, as well as to cell lines. We showed that the TF binding 536

predictions of TEPIC used for gene expression learning led to the identification of TFs 537

that are highly associated with the regulation of the analysed cell types and identified a 538

number of interesting candidates that show strong regulation but are not associated 539

with regulation in these cells. 540

The observation that factors which are generally participating in transcriptional 541

regulation at promoters, such as TBP [37], are not stably selected by the learning 542

method applied to the 50kb window, suggests that these are not more predictive for 543

gene expression than factors that bind in more distal regions from TSSs, e.g., enhancer 544
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regions that are known to define tissue-specificity. 545

5 CONCLUSION 546

We propose a novel method for TF binding predictions, validated using gene expression 547

learning. Compared to previous segmentation-based methods, our method offers a 548

peak-centric mode and, thus, is assay-independent. Instead of using a hit-based 549

annotation, TEPIC uses an affinity-based annotation, and additionally combines TF 550

affinities with the open-chromatin signal in a simple quantitative manner to improve the 551

binding predictions further. We showed that with just a single open-chromatin assay 552

and straightforward data preprocessing, it is possible to achieve approximately the same 553

quality in gene expression learning as compared to the use of several expensive ChIP-seq 554

assays. Further TEPIC outperforms several competitive approaches. Our method 555

including routines for parallelization is freely available at 556

www.github.de/schulzlab/TEPIC. 557
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