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Abstract5

During perception, the brain combines information received from its senses with prior information about6

the outside world (von Helmholtz, 1867). The mathematical concept of probabilistic inference has previ-7

ously been suggested as a framework for understanding both perception (Lee and Mumford, 2003; Knill and8

Pouget, 2004; Yuille and Kersten, 2006) and cognition (Gershman and Beck, 2016). Whether this framework9

can explain not only behavior but also the underlying neural computations has been an open question. We10

propose that sensory neurons’ activity represents a central quantity of Bayesian computations: posterior11

beliefs about the outside world. As a result, sensory responses, just like the beliefs themselves, should de-12

pend both on sensory inputs and on prior information represented in other parts of the brain. We show13

that this dependence on internal variables induces variability in sensory responses that – in the context of14

a psychophysical task – is related both to the structure of that task and to the neurons’ stimulus tuning.15

We derive analytical predictions for the correlation between different neurons’ responses, and for their cor-16

relation with behavior. Furthermore, we show that key neurophysiological observations from much studied17

perceptual discrimination and detection experiments agree with those predictions. Our work thereby pro-18

vides a normative explanation for those observations, requiring a reinterpretation of the role of correlated19

variability for sensory coding. Finally, the fact that sensory responses (which we observe) are a product20

both of external inputs (which we control) and of internal beliefs, allows us to reverse-engineer information21

about the subject’s internal beliefs by observing sensory neurons’ responses alone. Population recordings of22

sensory neurons in animals performing a task can therefore be used to track changes in the internal beliefs23

with learning and attention.24
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Introduction25

At any moment in time, the sensory information entering the brain is insufficient to give rise to our rich26

perception of the outside world (von Helmholtz, 1867). To compute those rich percepts from incomplete27

and noisy inputs, the brain has to employ prior experience about which causes are most likely responsi-28

ble for a given input. In the framework of Bayesian inference, our (posterior) beliefs of these causes are29

computed from a combination of (prior) expectations and incoming sensory information (likelihood). While30

there is increasing empirical evidence that behavior approximates optimal Bayesian inference in many sit-31

uations(Pouget et al., 2013; Ma and Jazayeri, 2014), it is unclear whether behavior is simply the result of32

task-specific heuristics or whether neural activity can also be described in a Bayesian framework. In the first33

part of this paper we demonstrate that sensory responses change with detection and discrimination tasks as34

if they do indeed represent posterior beliefs. In the second part we show how this observation can be used35

to infer the structure of the internal beliefs held by a particular subject about an incoming stimulus.36

Results37

We start by testing the hypothesis that sensory neurons encode posterior beliefs over latent variables in38

the brain’s internal model (Lee and Mumford, 2003; Hoyer and Hyvärinen, 2003; Fiser et al., 2010; Haefner39

et al., 2016). If they do then their responses will depend both on information from the sensory periphery40

(likelihood), and on relevant information in the rest of the brain (prior). In a hierarchical model, the former41

are communicated by feedforward connections from the periphery, and the latter are relayed by feedback42

connections from higher-level areas (Lee and Mumford, 2003) (Figure 1a).43

We represent the directly observed variable – the sensory input – by E while we call the variable repre-44

sented by the recorded neural population under consideration x. I is a high-dimensional vector representing45

all other internal variables in the brain that are probabilistically related to x. For instance, when considering46

the responses of a population of V1 neurons, E is the high-dimensional image projected onto the retina, and47

x has been hypothesized to represent the presence or absence of Gabor-like features at particular retinotopic48

locations (Bornschein et al., 2013) or the intensity of such features (Olshausen and Field, 1996; Schwartz49

and Simoncelli, 2001). In higher visual areas, on the other hand, variables are likely related to the identity50

of objects and faces (Kersten et al., 2004). I represents these higher-level variables, as well as knowledge51

about the visual surround, task-related knowledge about the probability of upcoming stimuli, etc.52

In this framework, measuring tuning curves corresponds to changing the external inputs E along some53

experimenter-defined stimulus axis s, for example visual orientation or auditory frequency. If the variable x54
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Figure 1: Illustration of ‘posterior coding’ for the visual system (also see Figure S1). (a) Neurons in visual
cortex represent latent, unobserved variables in a hierarchical probabilistic model. Posterior beliefs about x
depend both on the image on the retina, E, and relevant higher-level components of the internal model I.
Black arrows depict the implicit generative model, while red and blue arrows indicate the actual information
flow necessary to perform inference over x when E is “observed” (Lee and Mumford, 2003). (b-c) Top
(blue): prior, middle (gray): posterior, bottom (red): likelihood. x may live in a high dimensional space,
but only one dimension is illustrated here. In general, an informative likelihood and uninformative prior (b)
can yield the same posterior as an informative prior and uninformative likelihood (c). Although we have
illustrated the prior as flat in (b), in general it will not be, but will instead reflect the statistics of the natural
world (e.g. differences in the occurrence of vertical and horizontal orientations). (d) In psychophysical tasks,
the experimenter varies some parameter s to generate an image (e.g. changing the orientation of a grating
pattern). This will cause changes to the distribution ppxq if x depends on s. xs represents a projection of the
x-space along which the posterior over x varies with s. (e) The “posterior coding” hypothesis: a neuron’s
firing rate, r, depends on some statistics of the posterior distribution over x. Tuning curves fpsq in this
framework arise due to consistent changes in r as the posterior, ppx|E, Iq, changes as a function of s.
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represented by the recorded neurons depends on s, then the likelihood ppE|xq will vary as s is varied. As55

a result, the posterior ppxq will vary (Figure 1d), and in turn so will the neural responses representing it.56

The dependence of the mean of those responses on s gives rise to tuning curves (Figure 1e). The very same57

posterior, however, can also arise as the result of no information about x in the sensory evidence, but prior58

information about it in the rest of the brain encoded by ppx|Iq (Figure 1c), resulting in a dependence of59

sensory responses on internal variables even when the external stimulus is kept constant.60

Training a subject on a particular psychophysical task, on the other hand, involves learning the sensory61

statistics defined by the task. Prior information relevant to the task, such as which stimuli are more likely62

to appear, will influence the posterior, especially when the visual input is uninformative (Figure 1a). If63

neural responses represent posterior beliefs, then they should be the same whether this belief is due to an64

informative stimulus on the screen (Figure 1b), or prior expectations about this stimulus in the rest of the65

brain (Figure 1c). Hence there is an “equivalence” between changes in the external world and changes in66

internal beliefs, and formalizing this equivalence for a particular experimental context allows us to make67

predictions for changes in neural responses due to changing internal beliefs.68

To make this idea more concrete, consider a standard discrimination paradigm in which subjects make69

a categorical decision about a stimulus falling into one of two categories. Over time, the subject learns to70

expect a stimulus from one of two categories. Let us assume for the sake of exposition that the stimulus71

distribution across trials is bimodal, inducing a bimodal prior in the brain (Figure 2a-c). Many experiments72

contain a fraction of ‘zero-signal’ trials in which the stimulus is uninformative about the correct decision73

(Britten et al., 1996; Nienborg et al., 2012), that is the likelihood is symmetric with respect to the two74

categories. If both categories are equally likely a priori, then performing exact inference in these trials will75

yield a symmetric posterior (Figure 2a). However, inference in the brain is at best approximate, both in76

terms of computation and in terms of representation. On any one trial, the actual prior used by the brain77

deviates from the correct one, for example due to erroneously assumed serial dependencies between the trials78

(Fischer and Whitney, 2014) (Figure 2c). The likelihood also varies from trial to trial due to sensory noise,79

e.g. in photo receptors (Figure 2b). As a result, the posterior varies from trial-to-trial even in these zero-80

signal trials. Given our assumption that neural responses encode posteriors, this trial-by-trial variability in81

the brain’s posterior induces variability and covariability in the responses of sensory neurons representing82

that posterior. Having completely learned the task implies that the brain only expects stimuli that vary83

along the experimenter-defined s´dimension and, hence, any variability in internal beliefs, or sensory noise,84

will translate into variability in the posterior along the s´dimension (Figure 2d).85

Now consider the firing responses of two neurons as the external stimulus is changed along the task-86

relevant axis. Their mean responses change along a line in r1-r2-space as a result of the changing posterior87
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Figure 2: Posterior coding in a discrimination task. The x-axis in these plots illustrates a projection of the
x-space along which the posterior over x varies with s, xs. (a-c) as in Figure 1b-c. (a) The subject has
learned to expect stimuli from either of the categories, increasing prior mass in x-space along xs. “Zero-
signal” trials in which the given stimulus contains no information about the correct category correspond to
a likelihood with mass on either side of the decision boundary. Whether the prior is bimodal depends on the
fraction of zero-signal and zero-signal trials in the experiment and is not important for our argument (see
Figures S2 and S3). (b) Trial-by-trial changes in the likelihood, whether due to changes in the stimulus or
due to noise in its representation, will shift mass in the posterior along the xs direction. (c) Unequal prior
expectations about the upcoming category at the beginning of the trial (e.g. due to serial dependencies) will
shift the posterior along xs similar to the changing likelihoods in (b). (d) Axes and fpsq as in Figure 1e,
with the change in mean firing rates around the decision boundary (s “ 0) indicated by the derivative of the
tuning curves, f 1. The equivalence of posteriors in (b) and (c) implies that firing rates will move along f 1

regardless of whether the stimulus itself changed or beliefs about it changed. We assume that f is measured
during the task in order to account for the task-specific prior.

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 18, 2016. ; https://doi.org/10.1101/081661doi: bioRxiv preprint 

https://doi.org/10.1101/081661


(Figure 2d). The dependence of the mean of the neural responses on the stimulus s is given by each neuron’s88

tuning function, fipsq, as measured while the subject is performing the task (Figure 2d). For small changes89

– as are typical during threshold psychophysics – this can be linearly approximated as: fipsq « fip0q`sf
1
ip0q90

where f 1ip0q is the derivative of neuron i’s tuning function, and where we have defined s to be zero for91

the stimulus at the decision boundary. As a result of the equivalence noted above, the change in mean92

responses (corresponding to changes in the posterior) lies along the same line in r1-r2´space regardless of93

the particular combination of likelihood and prior giving rise to it. Under the assumption that the behavioral94

decision of the subject is based on the posterior belief represented by the neurons under consideration,95

the average posterior preceding choice 1 will have more mass favoring choice 1, and the average posterior96

preceding choice 2 will have more mass favoring choice 2, even if the average posterior across all trials is97

symmetric with respect to the decision boundary. Since the difference in the corresponding mean responses98

is proportional to the slope vector f 1p0q, we derive as a first prediction that ∆choiceri 9 f 1ip0q where ∆choiceri99

is the difference between neuron i’s mean response preceding choice 1 and the mean response preceding100

choice 2 (Methods). This prediction relates the dependence of a neuron’s response on the external stimulus101

to the dependence of its response on the choice given a fixed stimulus. In fact, when dividing both sides of102

this proportionality by the standard deviation of the neuron’s response, σi, one obtains a proportionality103

between choice probabilities and neural sensitivities(Britten et al., 1996; Nienborg et al., 2012; Haefner et al.,104

2013): CPi 9 d1i where d1i “ f 1ip0q{σi is the stimulus sensitivity of neuron i (measured as d-prime). Many105

empirical studies have found such a relationship (reviewed in (Nienborg et al., 2012)). Interestingly, the106

classic feedforward-only framework makes the same prediction when the decoding weights are linear optimal107

(Haefner et al., 2013). Therefore, this prediction alone cannot distinguish between the classic feedforward108

framework and the probabilistic inference framework.109

However, our probabilistic inference framework goes beyond the classic feedforward model and also pre-110

dicts a component of response (co)variance that is due to the shape of the prior and trial-to-trial fluctuations111

in internal beliefs. Since the prior learned in the task concentrates its mass along the task-relevant axis112

(where all the stimuli are shown), fluctuations in the subject’s internal beliefs about the stimulus will lie113

along that axis. As a result, these fluctuations induce the same covariance between the sensory responses114

as fluctuations in the stimulus itself. Using the linear approximation from above, the covariability of the115

responses of two neurons i and j can be expressed as covpri, rjq “ C0
ij`f

1
if
1
jvarpsIq. Here, C0

ij is the intrinsic116

covariability of the neural responses in the absence of task-related variability in feedforward or feedback117

inputs (Methods). sI denotes the difference between the internal estimate of s and the externally presented118

s due to prior expectations about it and fluctuates from trial to trial. Dividing both sides by the response119

variability, we obtain the prediction that task-dependent noise correlations are proportional to the product120
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Figure 3: Predictions of the probabilistic inference framework. (a) first prediction, in agreement with classical
feedforward encoding-decoding models with optimal linear readout: neurons’ choice probabilities should be
proportional to their sensitivity to the stimulus d1. (b) second prediction, requiring top-down signals: the
difference in covariance structure between comparable tasks should be proportional to the difference in the
product of tuning curve derivatives for each task. By subtracting out intrinsic covariability, this is a less
noise-prone prediction than (c-e). (c) correlations induced by the prior should be proportional to d1d1. The
strength of the prior should modulate the slope rprior of this relationship. (d) the relationship in (c) should
not hold for neural sensitivities d1 measured with respect to other tasks’ d1 vectors. (e) summary of (c) and
(d): rprior should fall off with the “mismatch” between the task direction d1 and the regressor direction. (f)
Rabinowitz et al. (2015) results replotted, where it was found that the strength of top-down ‘modulator’
connections is linearly related to d1. (f) Emergence of differential correlations (Moreno-Bote et al., 2014) over
the course of a trial. Here, arrows show information flow. The signal s is embedded in a sequence of noisy
stimulus frames presented throughout the trial (Nienborg and Cumming, 2014; Bondy and Cumming, 2013).
The developing posterior belief about the correct choice acts as a prior on subsequent responses within the
same trial, inducing differential correlations. As a result, neural responses at any point throughout the trial
will contain information not just about the current sensory input, but also stimuli presented earlier during
the trial.

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 18, 2016. ; https://doi.org/10.1101/081661doi: bioRxiv preprint 

https://doi.org/10.1101/081661


of the neural sensitivities: cij 9 d1id
1
j . This predicted proportionality has two direct implications: first,121

performing a task should most change the noise correlation between neurons that are the most informative122

for this specific task, i.e. for whom d1 is the largest (positive or negative). Second, this change should be123

positive for neurons with the same task-specific selectivity, i.e. should both increase or both decrease their124

activity in response to a stimulus predictive of a particular choice.125

Existing studies have used two primary strategies to isolate this type of extra-sensory response modulation126

experimentally. First, one could take advantage of the fact that d1 is defined with respect to a particular127

task and vary the task a subject is performing, predictably altering their internal model. In such studies,128

the difference in neural responses to zero-signal stimuli will isolate the task-dependent component for which129

we make predictions. At least two studies have used this approach (Bondy and Cumming, 2013; Cohen and130

Newsome, 2008), and found changes in the correlation structure consistent with our predictions (discussed131

in (Haefner et al., 2016), Methods). The second experimental approach one could take is to statistically132

isolate the top-down component of neural variability within a single task. A recent study (Rabinowitz et al.,133

2015) inferred the main axis along which the responses of V4 neurons varied from trial to trial in a change-134

detection task (Cohen and Newsome, 2009), having accounted for feedforward sources of variability. The135

study found that the most important modulator affecting a neuron’s response is proportional to its d1i (Figure136

3b), implying correlated variability in proportion to d1id
1
j . Importantly, the predicted noise correlations are137

task-context-specific and therefore likely depend on top-down signals. For the same reason, our prediction138

is different from the often observed relationship between noise correlation and tuning curve/receptive field139

overlap (which are task-independent) (Kanitscheider et al., 2015).140

In addition to making empirically testable predictions for the influence of top-down signals on neural141

responses, the probabilistic inference framework provides a normative explanation for their existence. While142

in the classic feedforward framework decision-related signals contaminate the sensory evidence and decrease143

behavioral performance (Wimmer et al., 2015), here they serve the function of communicating to a sensory144

neuron knowledge derived from stimuli at earlier points in time, or any other relevant information from the145

brain’s complex internal model. Consider the case of a dynamic stimulus in which the noise obscuring the146

fixed signal is dynamically redrawn over the course of the trial. In that case the brain’s posterior belief about147

the signal should integrate information over all stimulus frames presented up to that moment. At any point in148

time, this belief over the correct choice acts as a prior that is to be combined with the likelihood representing149

the next stimulus frame. Communicating that prior to sensory neurons allows them to take the information150

provided by previous stimulus frames into account and not just rely on the current inputs (Figure 3f).151

Interestingly, the d1d1-correlations induced through top-down signals in the probabilistic inference framework152

have the same shape as the information-limiting correlations previously described (Moreno-Bote et al., 2014).153
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Figure 4: (a) Trial-to-trial fluctuations in the posterior beliefs about x imply trial-by-trial variability in the
mean responses representing that posterior. (b) Correlation structure of simulated sensory responses during
discrimination task. Neurons are sorted by their preferred orientation (based on (Haefner et al., 2016)).
(c) Eigenvectors of correlation matrix (principal components) plotted as a function of neurons’ preferred
orientation. The blue vector corresponds to fluctuations in the belief that either a vertical or horizontal
grating is present (task 1), and the yellow corresponds to fluctuations in the belief that an obliquely-oriented
grating is present (task 2). See Methods for other colors. (d) Eigenspectrum of the correlation matrix
showing five dominant subspace dimensions in responses corresponding to the five plotted eigenvectors,
above.

However, unlike in the feedforward case where these correlations limit information (Moreno-Bote et al., 2014),154

here they are induced through feedback signals that may contain prior information about the stimulus, e.g.155

from earlier times in the trial (Figure 3f), or due to the subject’s internal beliefs going into the trial. In156

general, differential correlations limit information only when they are induced by variability unrelated to the157

stimulus (i.e. actual noise), and not if they are induced by prior knowledge about the stimulus, e.g. due to158

temporal dependencies within a trial.159

Reverse-engineering the internal model160

From our analysis follows that variability in internal beliefs will induce correlated variability in the sensory161

responses of neurons related to these beliefs. Conversely, this means that the statistical structure in sensory162

responses can be used to infer properties of these beliefs. Importantly, this applies not just to the task-induced163

prior but also to priors corresponding to natural input statistics concentrated their mass in a low-dimensional164

subspace of x (Olshausen and Field, 2004). As a result, trial-by-trial variability in internal beliefs will lie165

within this subspace, and variability in the feedforward inputs will induce posterior variability that is larger166

within that subspace than in directions outside it. Hence, inferring the directions of largest variability167

in sensory responses can yield information about the structure of the brain’s prior on x, in particular its168

task-related component.169

The task structure of a simple discrimination task as discussed above determines the only task-relevant be-170

lief (which of two target stimuli is the better explanation for the external inputs). However, more complicated171

tasks may involve inference over more than one binary variable, and therefore more than one task-relevant172
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belief. For instance, a task in which the target stimuli can vary from trial to trial involves inference both173

over the correct task and over the correct choice. Even if a pre-trial cue indicates the correct task, the174

cue may not be completely reliable, or the subject may not be completely certain about the cue (Cohen175

and Newsome, 2008; Sasaki and Uka, 2009). This uncertainty may be about the task parameters (e.g. the176

specific target orientation, or spatial frequency), or due to confusion with a previously learned task. If those177

task-related uncertainties are sufficiently large, trial-by-trial variability in the associated beliefs will lead178

to measurable changes in the statistical structure of sensory responses, as well as a decrease in behavioral179

performance. Importantly, since we know how the neural responses depend on the stimulus, we can gain an180

intuitive understanding of these statistical structures in terms of the stimulus.181

In order to demonstrate the usefulness of this approach, we used it to infer the structure of an existing182

neural-sampling-based probabilistic inference model for which the ground truth is known (Haefner et al.,183

2016). In the simulated task, subjects had to perform a coarse orientation discrimination task either between184

a vertical and a horizontal grating (cardinal context), or between a ´45deg and `45deg grating (oblique185

context) (Figure 4b). The subject was cued to the correct context before each trial. In the model we assumed186

a remaining uncertainty about the correct task context corresponding to an 80% ´ 20% prior. The model187

simulates the responses of a population of primary visual cortex neurons with oriented receptive fields. Since188

the relevant stimulus dimension for this task is orientation, we sorted the neurons by preferred orientation.189

The resulting noise correlation matrix (Haefner et al., 2016) – computed for zero-signal trials – has a190

characteristic structure in agreement with empirical observations (Figure 4c)(Bondy and Cumming, 2013).191

The correlation matrix has five significant eigenvalues (Figure 4d) corresponding to five eigenvectors (Figure192

4c). Each of these eigenvectors represents one direction in which the neural responses vary from trial-to-trial.193

Knowing the stimulus selectivity of each neuron, i.e. how the response of each neuron depends on variables194

in the external world, allows us to interpret this eigenvector in terms of variables in the external world. For195

instance, the elements of the eigenvector associated with the largest eigenvalue in our simulation (blue in196

Figure 4c) are largest for neurons with vertically oriented receptive fields, and negative for those neurons197

with preferred horizontal orientation. The means that on any one trial, the population response indicates198

the presence of a vertical orientation in the stimulus and not a horizontal orientation, or vice versa. Recall199

that the presented stimulus was fixed, i.e. that this variability is due to variability in the internal beliefs,200

not the external stimulus. Finding such an eigenvector in empirical data therefore indicates that there is201

trial-to-trial variability in the subject’s internal belief (represented by the rest of the brain and communicated202

as a prior on the sensory responses) about whether “there is a vertical grating and not a horizontal grating”203

or vice versa in the stimulus. Knowing the stimulus-dependence of the neurons’ responses allows us to204

interpret the abstract statistical structure in neural covariability in terms of the stimulus space defined by205
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the experimenter. Equally, one can interpret the eigenvector corresponding to the third-biggest eigenvalue206

(yellow in Figure 4c-d) as corresponding to the belief that a `45-degree grating is being presented, but not207

a ´45-deg grating, or vice versa. This is the correct axis for the wrong (oblique) context, indicating that208

the subject maintained some uncertainty about which is the correct task context across trials. Maintaining209

this uncertainty is the optimal strategy from the subject’s perspective given their imperfect knowledge of the210

world. However, when compared to certain (perfect knowledge), it decreases behavioral performance on the211

actual task defined by the experimenter. In the probabilistic inference framework, behavioral performance212

is optimal when the internal model learned by the subject exactly corresponds to the experimenter-defined213

one. An empirical prediction, therefore, is that eigenvalues corresponding to the correct task-defined stimulus214

dimension will increase with learning, while eigenvalues representing other dimensions should decrease (see215

Methods for interpretation of other eigenvectors shown in Figure 4c). While no study has analyzed data in216

this framework, we know that the first and third eigenvalue must initially be increasing during task learning217

simply because task-dependent correlations can by definition only emerge over the course of learning. At the218

same time, the third eigenvalue should decrease again at some point since it represents uncertainty over the219

correct task context, which is presumably decreasing with learning. Furthermore, a previous study reported220

a decrease in average noise correlations due to learning(Gu et al., 2011). In our analysis, this corresponds221

to a decrease in the 2nd eigenvalue, which happens to correspond to average noise correlations since the222

associated eigenvector is approximately constant (see Methods).223

Much research has gone into inferring latent variables that contribute to the responses of neural responses224

(Cunningham and Yu, 2014; Archer et al., 2014; Kobak et al., 2016). Our predictions in the context of225

the probabilistic inference framework suggest that at least some of these latent variables can usefully be226

characterized as internal beliefs. Importantly, our framework suggests that the coefficients with which each227

latent variable influences each of the recorded sensory neurons can be interpreted in the stimulus space using228

knowledge of the stimulus-dependence of each neuron’s tuning function (Figure 4c).229

Discussion230

In sum, we have derived task-specific, neurophysiologically testable, predictions from the mathematical231

framework of probabilistic inference (reviewed in (Ma and Jazayeri, 2014; Pouget et al., 2013; Fiser et al.,232

2010; Knill and Pouget, 2004; Kersten et al., 2004)). Our assumption that sensory neurons represent posterior233

beliefs, not likelihoods, means that sensory responses do not just represent information about the external234

stimulus but also include information about the brain’s expectations about this stimulus. By treating task-235

training as an experimenter-controlled perturbation of the brain’s expectations (part of the internal model),236
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we have derived predictions for how neural responses should change as a result of this perturbation. This237

approach has allowed us to sidestep two major challenges: that the brain’s full internal model is currently238

unknown, and that there is currently no consensus on how neural responses represent probabilities(Pouget239

et al., 2013; Fiser et al., 2010). While the presented theoretical predictions are novel, they are in agreement240

with a range of previously published empirical findings(Cohen and Newsome, 2008; Law and Gold, 2008; Gu241

et al., 2011; Rabinowitz et al., 2015; Bondy and Cumming, 2013).242

The nature of our predictions directly addresses several debates in the field. First, they provide a243

rationale for the apparent ‘contamination’ of sensory responses by top-down decision signals(Nienborg and244

Cumming, 2009; Wimmer et al., 2015; Ecker et al., 2016; Rabinowitz et al., 2015). In the context of our245

framework, top-down signals allow sensory responses to incorporate stimulus information from earlier in the246

trial, not reflecting the decision per se but integrating information about the outside world(Nienborg and247

Cumming, 2014). Second, this dynamic feedback of feedforward stimulus information from earlier in the trial248

induces choice probabilities that are the result of both feedforward and feedback components (Nienborg and249

Cumming, 2009, 2014; Haefner et al., 2016). Third, the same process introduces correlated sensory variability250

that appears to be information-limiting(Moreno-Bote et al., 2014) but is not. Whether f 1f 1´covariability251

increases or decreases information depends on its source: if the latent variable driving it contains information252

about the stimulus, as in our case, it adds information; if it is due to noise (Kanitscheider et al., 2015), then253

it reduces it. Furthermore, the assumption that sensory responses represent posterior beliefs formalizes254

previous ideas and agrees with empirical findings about the top-down influence of experience and beliefs255

on sensory responses(von der Heydt et al., 1984; Lee and Mumford, 2003; Nienborg and Cumming, 2014).256

In contrast, our predictions are at odds with traditional implementations of ‘predictive coding’(Rao and257

Ballard, 1999) which postulate that sensory responses represent a prediction error and should decrease258

rather than increase when bottom-up and top-down information agree. During probabilistic inference, prior259

and likelihood ‘reinforce’ each other, which can lead to either an increase or decrease in activity.260

It seems plausible that only a subset of sensory neurons actually represent the output of the hypothe-261

sized probabilistic computations (posterior), while others represent information about necessary ‘ingredients’262

(likelihood, prior), or carry out other auxiliary functions. Since our work also shows how to generate task-263

dependent predictions for those ingredients, it can serve as a tool for a hypothesis-driven exploration of the264

functional and anatomical diversity of sensory neurons.265

Finally, we have shown how aspects of the low-dimensional structure in the observed covariability can266

be interpreted as internal beliefs that vary on a trial-by-trial basis. These variable beliefs represent the267

main sensory hypotheses entertained by the internal model when interpreting the sensory inputs. The detail268

with which these hypotheses can be recovered from neurophysiological recordings is primarily limited by269
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experimental techniques. Much current research is aimed developing those techniques and at extracting the270

latent structure in the resulting recordings. Our work suggests a way to interpret this structure, and makes271

predictions about how it should change with learning and attention.272

Methods273

Predictions274

The central assumption needed to derive our predictions is that sensory responses represent posterior beliefs275

(’posterior coding’), such that pprq, the response distribution of sensory neurons under consideration, is a276

function of the brain’s posterior over the variables, x, that those neurons represent: pprq “ R rppxqs (Figure277

S1). Here, try to make as little assumptions about the nature of R staying compatible with previous proposals278

from sampling-based to parametric (Hoyer and Hyvärinen, 2003; Ma et al., 2006; Fiser et al., 2010; Buesing279

et al., 2011; Savin and Denève, 2014; Tajima et al., 2016; ?). From trial to trial, the brain’s approximation280

to the posterior ppxq ” ppx|Eq9
ş

ppE|xqppx|IqppIqdI will vary since each of the terms under the integral281

varies due to noise and erroneously assumed serial dependencies between the trials.282

We define the tuning function of neuron i as the neuron’s mean response across many trials within283

a specific task context, corresponding to taking the integral above across all trials as E is changed with284

s: fipsq ” xRirppx|Epsqqsy. If the subject has completely learnt the task, their prior will correspond to285

the average likelihood in the task,
ş

ppx|IqppIqdI “
ş

ppEpsq|xqppsqds (Berkes et al., 2011), concentrating286

its probability mass along the same xpsq line as defined by the external inputs Epsq As a result, prior287

expectations about the upcoming stimulus s, encoded by I, shift the posterior over x in the same way that288

changes in the externally presented Epsq do. For sufficiently small deviations, the implied changes in neural289

responses can be approximated linearly as ri “ fip0q ` f 1ip0qsI ` νi where f 1i ” dfi{ds is the derivative of290

the tuning curve with respect to s, and sI denotes the difference between the internal estimate of s and291

the externally presented s due to prior expectations about it. (For specific example illustrations see Figure292

S2 and S3.)c ν ” pν1, .., νnq represents task-independent response variability due to feedforward or intrinsic293

sources with covariance structure C0. Hence, trial-by-trial variability in the brain’s expectations about s,294

and hence, in sI, implies that response covariability is given by covpri, rjq “ C0
ij ` f

1
if
1
jvarsI. Our prediction295

concerns the last term in this equation and can be tested by comparing empirical covariances in two different296

tasks (e.g. (Cohen and Newsome, 2008)) or by inferring common variability (e.g. (Rabinowitz et al., 2015)).297
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Inferring internal model298

For the simple tasks considered above, complete learning implies top-down variability in only 1 direction.299

However, more complex tasks (e.g. those switching between different contexts), or incomplete learning (e.g.300

uncertainty about fixed task parameters), will generally induce variability along multiple dimensions. Making301

the assumption that neural responses to a fixed stimulus are locally well-approximated by a correlated Gaus-302

sian distribution, we can write the covariance between two neurons as: covpri, rjq “ C0
ij `

řn
k“1 λ

pkqe
pkq
i e

pkq
j .303

Each eigenvector, e “ pe1, ..enq, corresponds to the change in the population response in a particular di-304

rection which, by way of the tuning functions, fipsq, can be interpreted in stimulus space (e.g. change in305

orientation or, or increase in contrast of a particular pattern). The eigenvalues, λpkq, quantify the magnitude306

of the associated trial-to-trial variability which is shared between all neurons with non-zero entries in epkq.307

The model in our proof-of-concept simulations has been described previously(Haefner et al., 2016). In308

brief, it performs inference by neural sampling in a linear sparse-coding model of primary visual cortex309

(Olshausen and Field, 1996; Hoyer and Hyvärinen, 2003; Fiser et al., 2010). The prior is derived from an310

orientation discrimination task with 2 contexts – oblique orientations, and cardinal orientations – that is311

modeled on an analog direction discrimination task (Cohen and Newsome, 2008). The responses of 1024312

neurons in the lower level whose receptive fields uniformly tiled the orientation space. Each neuron’s response313

corresponds to a sample from the posterior distribution over the variable that it represents in accordance314

with the neural sampling hypothesis(Hoyer and Hyvärinen, 2003; Fiser et al., 2010). We simulated zero-315

signal trials by presenting uniform gray images to the model. The elements of the eigenvector corresponding316

to the 2nd largest eigenvalue are all approximately the same indicating that variability corresponding to317

the associated latent variable adds response variability that does not depend on the neurons’ orientations.318

Since the recovered eigenvectors are orthogonal to each other, the eigenvalue corresponding to a constant319

eigenvector determines the average correlations in the population. The eigenvectors not described in the320

main text correspond to stimulus-driven covariability, the eigenvectors of which are plotted in Figure S4 for321

comparison.322
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Supplemental Figures411
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Figure S1: Schematic of posterior coding for an early sensory area that shows tuning to a stimulus parameter
s. The experimenter defines ppE|sq (e.g. additive noise in an image), and the brain infers ppx|E, Iq for early
sensory variables x. Neurons representing this distribution through some encoding R will show ‘tuning’ to
s by way of the posterior over x changing as s is changed. Our primary goal is not to infer a model relating
stimulus, neural responses and behavior, but to infer the computations performed by the brain.
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Figure S2: Equivalence of posterior for coarse and fine discrimination models. Fine discrimination (a-b) is
modeled with a unimodal prior at the s “ 0 boundary and a unimodal likelihood that shifts along xs. 2AFC
coarse discrimination (i.e. categorical decisions) (c-d) is modeled as a bimodal prior symmetric around s “ 0
with bimodal likelihoods, where both prior expectations and evidence are modeled as a sharpening of one
of the category modes. (a) feedforward (informative likelihood) case for fine discrimination. (b) feedback
(informative prior) case for fine discrimination. Note equivalence of posterior with (a). (c) feedforward
(informative likelihood) case for coarse discrimination. (d) feedback (informative prior) case for coarse
discrimination. Note equivalence of posterior with (c).
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Figure S3: 2D illustration of the effect of an elongated/bimodal prior on the mean of the posterior. a: a bi-
modal prior, modeling the subject’s expectations about the stimulus in x-space during a coarse-discrimination
task. b: on ‘zero signal’ trials, the stimulus is drawn from a distribution around xps “ 0q, yielding likelihood
functions that are shifted in x-space uniformly around x “ 0, shown here for two example trials. c: the
resulting posteriors for each of these trial-by-trial likelihoods are themselves bimodal. d: the means of these
posteriors (triangles in c, dots here) tend to lie along the higher-probability region between the prior modes,
despite an isotropic distribution of likelihood means. e: displacement of the mean of the likelihood to the
mean of the posterior under the prior in a. Thus, even in the absence of serial dependencies, ‘uniform’
trial-to-trial variability in the stimulus yields variability in the posterior means primarily along the axis with
the most mass in the prior. f-j same as a-e but for a unimodal but elongated prior, as might be expected in
a fine discrimination task.
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Figure S4: Principal components of model neurons due to only stimulus-driven correlations. Note that the
sinusoidal eigenvectors at the same frequency have indistinguishable eigenvalues and hence form quadrature
pairs, implying circular symmetry with respect to neurons’ tuning. There is no more variance along the
vertical-horizontal preferred orientation axis than then oblique axis.
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