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Abstract: 10 

Viral infection is usually studied at the level of cell populations, averaging over hundreds of 11 

thousands of individual cells. Moreover, measurements are typically done by analyzing a few 12 

time points along the infection process. While informative, such measurements are limited in 13 

addressing how cell variability affects infection outcome. Here we employ dynamic proteomics to 14 

study virus-host interactions, using the human pathogen Herpes Simplex virus 1 as a model. We 15 

tracked >50,000 individual cells as they respond to HSV1 infection, allowing us to model 16 

infection kinetics and link infection outcome (productive or not) with the cell state at the time of 17 

initial infection. We find that single cells differ in their preexisting susceptibility to HSV1, and 18 

that this is partially mediated by their cell-cycle position. We also identify specific changes in 19 

protein levels and localization in infected cells, attesting to the power of the dynamic proteomics 20 

approach for studying virus-host interactions.  21 
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INTRODUCTION 28 

Viral infection is a heterogeneous process. One example is the variation in the number of viral 29 

progeny produced by individual cells, which spans several orders of magnitude, as first described 30 

for bacteriophages in the 1940’s (Delbrück, 1945). Several recent studies found similar variability 31 

in mammalian viruses (Zhu et al., 2009; Timm and Yin, 2012; Schulte and Andino, 2014; Combe 32 

et al., 2015; Heldt et al., 2015). 33 

Viral infection course can also vary, between a lytic and a lysogenic (or latent) cycle. For HIV1, 34 

this decision is stochastic and governed by the initial fluctuations in the number of viral Tat 35 

proteins, leading to a bi-stable decision (Weinberger et al., 2005; Singh and Weinberger, 2009; 36 

Razooky et al., 2015). In contrast, the decision between lysogeny and lytic infection of phage 37 

Lambda seems to be more dependent on the host cell, with smaller bacteria more likely to 38 

undergo lytic infection (St-Pierre and Endy, 2008). 39 

Variability also exists in infection outcome, when some cells in a population become successfully 40 

infected, while others resist the infection. One known source of this variability is cell-extrinsic, 41 

emanating from the random distribution of the number of viruses that individual cells encounter. 42 

This distribution explains why, on the population level, the percentage of infected cells is 43 

governed by Poisson's law according to the number of infectious units per cell - the multiplicity 44 

of infection (moi) (Parker, 1938; Smith, 1968). 45 

In addition, infection outcome might also be influenced from the host cellular state at the time of 46 

virus adsorption. Such cell-intrinsic differences include the cell-cycle stage and cell-to-cell 47 

variability in protein levels and activities that have been studied in other contexts (Elowitz et al., 48 

2002; Cohen et al., 2008; Tay et al., 2010; Loewer and Lahav, 2011; Kellogg and Tay, 2015).  49 

Supporting a possible role for the host cellular state in determining infection outcome, Pelkmans 50 

et al. performed studies in which cells were infected with different viruses, fixed several hours 51 

later and immuno-stained for viral proteins. Using a machine learning approach, they found that 52 

infected cells differ from non-infected cells (Snijder et al., 2009, 2012). However, as cells were 53 

not imaged at the time of virus adsorption, it is unclear whether the observed differences between 54 

the cells are the cause or the consequence of viral infection success. 55 

There is a lack of experiments that directly address the question of determinism in viral infection, 56 

which requires a system that follows individual cells from the time of virus adsorption to the 57 

onset of viral gene expression (distinguishing successful from failed infections). 58 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2016. ; https://doi.org/10.1101/081653doi: bioRxiv preprint 

https://doi.org/10.1101/081653


3 
 

To address this question, we use the dynamic proteomics approach (Sigal et al., 2006a, 2006b, 59 

2007; Geva-Zatorsky et al., 2010; Eden et al., 2011; Farkash-Amar et al., 2014) that relies on a 60 

library of human cell-line clones, each expressing a unique YFP-tagged host protein from its 61 

native chromosomal location. All the clones also express mCherry-tagged markers that are used 62 

for automated segmentation and tracking of the cells. We follow tens of thousands of individual 63 

cells from ~400 clones throughout the process of infection by the human pathogen Herpes 64 

Simplex virus 1 (HSV1). The virus expresses mTurquoise2, a bright variant of CFP (Goedhart et 65 

al., 2012), allowing the monitoring of successful infection in real-time. We start imaging at the 66 

time of viral adsorption, monitoring infection kinetics, cellular proteins level and localization as 67 

well as the cellular environment through time-lapse fluorescence microscopy (Fig. 1A).  68 

This dataset allows us to probe multiple aspects of the virus-host interaction at the single cell 69 

level (Fig. 1B-D). By measuring and modeling the distribution of lag-times between virus 70 

adsorption and viral gene expression in the population (Fig. 1B), we discover that infection 71 

kinetics are well described by a Gamma distribution. We next ask if there is a role for the host 72 

cellular state in determining infection outcome. We find that 20 image-analysis features extracted 73 

from cells at the time of adsorption can be used to predict the outcome of viral infections nine 74 

hours later (Fig. 1C). These features include the cell’s velocity, cell-cycle stage and nuclear area, 75 

among others. We further find that this cell-intrinsic difference in susceptibility to HSV1 76 

infection is pre-existing in the population, as infection outcome can be determined even when 77 

using cell images taken 24 hours prior to the cells encountering the virus. Finally, we analyze the 78 

effect of HSV1 infection on the host proteins (Fig. 1D). Of the ~400 host proteins studied, two 79 

(Geminin and RFX7) showed a significant difference in their concentration at the time of virus 80 

adsorption between cells that will become successfully infected and those that will not. Two 81 

others (SUMO2 and RPAP3) were degraded specifically in infected cells, and another two 82 

(SLTM and YTHDC1) changed their localization upon infection. 83 

 84 

RESULTS 85 

Dynamic proteomics of human cells following HSV1 infection  86 

We infected ~400 clones from our library with a CFP-expressing HSV1 at a multiplicity of 87 

infection (moi) of 0.5. CFP expression correlates with expression of the viral immediate-early 88 

protein ICP4 (Supplementary Fig. 1), which is required for the progression of successful 89 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2016. ; https://doi.org/10.1101/081653doi: bioRxiv preprint 

https://doi.org/10.1101/081653


4 
 

infection. This design allowed us to compare successfully-infected and non-infected cells side by 90 

side. Note that in this cell line, the moi used is equivalent to ~50 virus particles per cell, such that 91 

all cells in the culture have likely encountered viruses. H1299 cells are fully permissive for HSV1 92 

infection, as evident by the spread of infection from primary infected cells to produce secondary 93 

infections (Fig. 1A, Supplementary Movie 1).   94 

Using custom software we tracked tens of thousands of individual cells for 12 hours after HSV1 95 

adsorption at a time resolution of 20 minutes, extracting features such as the cell’s position, shape 96 

and size, as well as the level and sub-cellular localization of the different fluorescent proteins. 97 

Since we continuously monitored the cells we could identify the point at which each infected cell 98 

began to express CFP. We refer to this time delay between viral adsorption and initial expression 99 

of viral encoded proteins as infection lag time. We found that the lag time is variable among 100 

individual cells with a mean time of 5.9±2.6 hours and a CV of 44% (Fig. 1B).    101 

Since HSV1 undergoes productive infection in the cells, the distribution of lag times captures 102 

both primary infections and subsequent secondary infections (Fig. 1A,B). To determine the 103 

kinetics of infections we modeled infection kinetics as the sum of primary and secondary 104 

infections (Fig. 1B and Supplementary Fig. 2). We fitted our model with two-parameter 105 

distributions (Normal, Log-normal, Weibull and Gamma), estimating for each distribution the 106 

best fitted parameters. We found that the lag-time distribution is best described by a Gamma 107 

distribution with a shape factor of 6 and a rate parameter of 1.25 (Supplementary Fig. 2 and 108 

Methods).  109 

In addition to the theoretical interest in modeling infection kinetics, this model also allowed us to 110 

determine a cut-off point between primary and secondary infections, which is 9 hours post virus 111 

adsorption. Here we are only interested in the analysis of the primary infections, which more 112 

closely resembles the initial infection of a human host. In all subsequent analyses, we considered 113 

cells as successfully infected if their initial CFP expression time was below 9 hours and as non-114 

infected if they remained CFP negative for the entire 12 hours. Cells whose CFP expression time 115 

was between 9-12 hours were removed from the analyses. 116 

As we started our time-lapse recording from viral adsorption, we could not directly observe the 117 

cell’s position along the cell-cycle (based on its previous mitosis). To circumvent this, we 118 

determined the cell-cycle stage from still images, similarly to what was previously done by others 119 

(Kafri et al., 2013; Gut et al., 2015; Blasi et al., 2016) (See Methods and Supplementary Fig. 3 for 120 

more information).  121 
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HSV1 infection outcome is largely determined by the host cellular state at the time of 122 

adsorption 123 

Overall, we tracked >52,000 single cells from ~400 different clones for 12 hours after HSV1 124 

adsorption. We determined primary infection outcome (successful or not) based on the cell’s CFP 125 

levels at nine hours post adsorption. Of these cells, 22,182 were successfully infected (CFP 126 

positive) and 29,993 were not (CFP negative). The percentage of infected cells varied among 127 

different clones and was 35±13% CFP positive cells.  128 

To test whether infection outcome is dependent on the cellular state at the time of virus 129 

adsorption (time zero) we employed a supervised machine learning approach. If infection 130 

outcome depends on the cellular state, then features extracted from the cell image should contain 131 

information regarding the future outcome of the virus-host encounter. We therefore trained a 132 

decision-tree based classifier to predict infection outcome from features extracted from the cell 133 

image at the first two frames of the movie (Fig. 2A and Methods). We extracted standard image-134 

analysis features (listed in Supplementary Table 1) of cell morphology (53 features such as cell 135 

size and roundness), texture (320 features such as homogeneity, contrast and dissimilarity), 136 

velocity, local cell density and cell-cycle stage. 137 

We trained the classifier on 23,780 cells, using the 20 most explanatory features (Fig. 2B, 138 

Supplementary Table 1). The features used include textural features as well as the cell’s velocity, 139 

mCherry concentration, cell-cycle stage, nuclear area and cell morphology. The classifier outputs 140 

the probability of a cell to become infected, ranging from 0-1, and we refer to this output 141 

hereafter as the classifier score. We classified cells based on the classifier score, using a threshold 142 

of 0.5 to assign cells to the infected or non-infected groups. We tested the classifier performance 143 

on a dataset of 8,108 cells from clones not used in the training step and found that it correctly 144 

predicted infection outcome in 75% of these cells with an area under the curve (AUC) of 0.82 145 

(Fig. 2C). 146 

We next analyzed the contribution of the different features in predicting infection outcome. The 147 

most predictive feature was the nuclear cluster prominence, a measurement of textural asymmetry 148 

(Unser, 1986). Cells with low cluster prominence were more likely to become successfully 149 

infected, and the probability for infection decreased as the cluster prominence increased (Fig. 150 

2D).  151 
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The second most predictive feature was the cell’s velocity at the time of virus adsorption (Fig. 152 

2E). While infection probability continues to increase as the cell movement increases, the most 153 

pronounced effect was seen in cells with low velocity (z-score<0) which were more resistant to 154 

viral infection. Infection probability dependence on the top 10 features can be found in 155 

Supplementary Fig. 4.   156 

The cell-cycle stage was ranked ninth among these features (Fig. 2B). Infection probability 157 

showed a non-monotonic relation to the cell-cycle stage, peaking around six hours after mitosis 158 

and then decreasing as the cells progress through the cell cycle (Fig. 2F). We tested whether the 159 

cell-cycle effect is independent from that of other features by comparing the mean classifier score 160 

of cells that will become infected and those that will not over 24 hours, after aligning them to the 161 

same stage of the cell cycle (Fig. 2E). We observed that the classifier score is higher in cells that 162 

will become infected throughout the cell-cycle, implying that the cell-cycle effect is at least 163 

partially independent from that of other features, such as the cell velocity and texture that were 164 

described above.  165 

The success of a machine learning algorithm in predicting the success of viral infection in 166 

individual cells suggests that the outcome of infection is not intrinsically stochastic but rather 167 

depends on the cellular state at the time of infection.  168 

Cellular susceptibility is pre-existing in the population prior to encountering the virus 169 

Since our time-lapse recordings started approximately 45 minutes after HSV1 adsorption to the 170 

cells, we wanted to verify that the classifier was not influenced by a rapid response of the cells to 171 

the infection. To address this, we performed longer time-lapse movies in which we first imaged 172 

the cells unperturbed for 24 hours before adding the virus. We tracked 124 infected cells and 99 173 

non-infected cells. 174 

We analyzed the classifier’s performance when using cell images up to 24 hours prior to the 175 

addition of the virus. We did so by using either the raw score given by the classifier (Fig. 2H 176 

,purple line), or after normalizing according to the cell-cycle effect, as the cells move along the 177 

cell-cycle phases during these 24 hours (Fig. 2H ,orange line). Both analyses showed that 178 

susceptibility to HSV1 infection is long-lasting, with 61-63% correct classification achieved even 179 

when using images from 24 hours prior to the cells encountering the virus. This is especially 180 

apparent when controlling for the cell-cycle effect, with cell images taken 17 hours prior to virus 181 

adsorption resulting in ~70% correct classification (Fig. 2H). 182 
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To quantify the life time of infection susceptibility we calculated the mixing time of the predictor 183 

output (Sigal et al., 2006b). This is done by computing the auto-correlation of the predictor output 184 

over time. We found that the mixing time (the time it takes for the auto-correlation to decay to 185 

0.5) is around 6 hours when using the raw data and 10 hours when controlling for the cell-cycle 186 

effect (Supplementary Fig. 5).  187 

Taken together, our findings suggest that the cellular state that underlies susceptibility to HSV1 188 

infection is composed of: (1) a faster changing, cell-cycle dependent component and (2) a more 189 

stable, cell-cycle independent component.  190 

Cells in the early part of the cell-cycle are more susceptible to HSV1 infection 191 

To better understand the molecular mechanism that underlies the variability in infection outcome 192 

among individual cells, we looked for proteins whose concentration significantly differ between 193 

cells that will become infected and those that will not at time zero. Of the ~400 proteins screened, 194 

we identified two such proteins - Geminin and RFX7 (Fig. 3A). On average, Geminin 195 

concertation was 40% lower in cells that will become infected and RFX7 concentration was 37% 196 

lower (Fig. 3B). The difference in their concentration was mainly observed at time zero, and 197 

disappeared later in the infection (Fig. 3C,D). 198 

Geminin levels are known to be correlated with the cell-cycle stage, as Geminin is a substrate of 199 

the Anaphase Promoting Complex (McGarry and Kirschner, 1998). RFX7  is a member of a 200 

transcription factor family that binds the X-box motif, which are important for the regulation of 201 

immune genes such as MHC class II (Fontes et al., 1997). We found that both Geminin and RFX7 202 

show a similar cell-cycle related concentration profile (Fig 3E). Both are rapidly degraded 203 

following mitosis, with their concentration rising slowly towards the next mitosis (Fig. 3F). 204 

The lower concentrations of Geminin and RFX7 in cells that will become infected is an 205 

independent indication that cells in the earlier part of the cell-cycle are more susceptible to HSV1 206 

infection, in agreement with the results obtained from the machine learning approach described 207 

above. 208 

To further experimentally test the effect of the cell cycle on infection outcome we used the double 209 

thymidine block protocol, which synchronizes cells to the G1/S checkpoint (Bootsma et al., 210 

1964). We infected cells either 15 minutes after releasing from the block (Fig. 3G) or 8 hours 211 

after release, where the majority of cells are in the G2/M stages (Fig. 3H). We found that cells 212 
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infected during the G1 and early S phases were 2-3 fold more susceptible to HSV1 infection than 213 

cells infected as the G2 and M phases, in two multiplicities of infection (Fig. 3I,J). 214 

Taken together, our results clearly demonstrate a deterministic role for the cell-cycle stage in 215 

determining HSV1 infection outcome among individual cells. 216 

Infection kinetics are affected by position along the cell cycle 217 

After considering the effect of the cell cycle on infection outcome, we next considered its effect 218 

on infection kinetics. We divided the cells in our dataset into early (G1 and early S) and late (late 219 

S, G2 and M) stages and measured their distribution of infection lag times (Fig. 4A). We 220 

observed a clear effect of the cell-cycle on infection kinetics with cells at the early cell cycle 221 

stages infected 20% faster than cells at the late stages (Fig. 4A,B).  222 

We compared the effect of the cell-cycle stage (a cell-intrinsic variability source) to that of the 223 

effective moi (a cell-extrinsic variability source). As explained above, although all experiments 224 

were conducted in the same moi of 0.5, a large variation in the percentage of infected cells was 225 

observed. We used this experimental variation to bin different time-lapse movies into four 226 

equally-spaced categories of effective moi, from low (15-29% CFP positive cells) to high (56-227 

70% CPF positive). The distributions of lag times and the fitted models for different effective moi 228 

are shown in Fig. 4C,D. 229 

We found that cells infected during G1 and early S stages show similar kinetics to cells in the 230 

highest effective moi. Cells infected during late S and G2/M stages showed kinetics similar to 231 

those in the lowest effective moi. Thus, the cell-cycle stage at the time of virus adsorption has an 232 

effect of similar magnitude to that of changing the effective moi by a factor of ~3. Furthermore, 233 

both the cell-cycle stage and the moi scale the kinetics of the infection by changing the rate 234 

parameter of the Gamma distribution (β) without affecting the shape parameter (α).  235 

We conclude that HSV1 infection kinetics is affected by the cell-cycle stage of the host cell at the 236 

time of viral adsorption. 237 

HSV1 infection causes a sharp decline in SUMO2 and RPAP3 concentrations 238 

Having considered the effect of the cellular state on infection outcome, we next turned to study 239 

the effect of viral infection on the host cell. To our surprise, the majority of the ~400 host proteins 240 

studied did not show significant differences in concentration between infected and non-infected 241 

cells (Fig. 3A). 242 
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However two proteins, SUMO2 and RPAP3, showed reduced protein concentrations following 243 

adsorption in cells that eventually became infected (Fig. 3A). SUMO2 is a ubiquitin homolog that 244 

can be covalently attached to cellular proteins. Indeed, a decrease in SUMO2 levels upon HSV1 245 

infection has been previously reported (Sahin et al., 2014; Sloan et al., 2015). SUMO2 246 

concentration began dropping approximately two hours after HSV1 infection and continued so for 247 

the next nine hours (Fig. 5A,C and Supplementary Movie 2). 248 

RPAP3 (RNA polymerase II-associated protein 3) has not been previously characterized in the 249 

context of viral infection. In non-infected cells it showed distinct foci in the nucleus, which may 250 

represent transcriptional complexes on the cellular DNA (Fig. 5B). In HSV1 infected cells 251 

RPAP3 levels rapidly dropped, beginning at time zero and preceding CFP expression (Fig. 5B,D 252 

and Supplementary Movie 3). The degradation of RPAP3 might relate to the previously observed 253 

changes in RNA-polymerase II dependent transcription following HSV1 infection (Wagner and 254 

Roizman, 1969; Rice et al., 1994; Spencer et al., 1997; Jenkins and Spencer, 2001; Abrisch et al., 255 

2015). 256 

As the degradation of SUMO2 and RPAP3 seem to be very rapid, it is probably mediated by one 257 

of HSV1 immediate-early proteins. The most likely candidate for this is the virus encoded E3-258 

ubiquitin ligase - ICP0. We tested this by infecting the cells with a mutant virus that does not 259 

express ICP0 and expresses a CFP reporter. Indeed, cells successfully infected by the ICP0 null 260 

mutant did not show degradation of either SUMO2 or RPAP3 (Fig. 5E,F and Supplementary 261 

Movies 4,5).   262 

HSV1 infection causes re-distribution of SLTM and YTHDC1 263 

One unique feature of live cell microscopy is the ability to observe changes in the localization of 264 

tagged proteins. We studied these changes by looking at the nuclear/cytoplasm ratio of the 265 

proteins, and on their coefficient of variance (CV) in the nucleus and cytoplasm (which indicate 266 

how dispersed is the protein in these compartments). We did not observe any nucleus/cytoplasm 267 

trafficking nor changes in cytoplasmic proteins CV. We found that the CV of two nuclear 268 

proteins (SLTM and YTHDC1) increased specifically in successfully infected cells (Fig. 269 

6A,B,C). Both SLTM and YTHDC1 participate in splicing of mRNA (Nayler et al., 1998; Xiao et 270 

al., 2016). The increase in the nuclear CV is a result of re-distribution of these proteins upon 271 

infection, from being equally diffused around the nucleus to forming large foci (Fig. 6 D,E and 272 

Supplementary Movies 6,7).  273 
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The re-distribution of YTHDC1 and SLTM could be a result of their recruitment to viral 274 

replication centers. To test this we fixed infected cells six hours after infection and stained them 275 

for either ICP4 (an immediate early protein that is required for HSV1 gene expression) or ICP8 276 

(an early protein required for HSV1 genomic replication) and found that the nuclear foci of 277 

SLTM and YTHDC1 do not co-localize with them (Fig. 6F). In fact, in agreement with the fast 278 

kinetics of the appearance of these foci, we occasionally observed cells that contained such foci 279 

but were negative for ICP8, suggesting that the re-distribution happens before viral DNA 280 

replication and is mediated by one of the immediate-early proteins of the virus. 281 

As ICP0 is known to interact with many of the host proteins, we tested whether it is also involved 282 

in the re-distribution of SLTM and YTHDC1. Indeed, cells successfully infected with the mutant 283 

virus that does not express ICP0 did not show re-distribution of both proteins (Fig. 6G,H and 284 

Supplementary Movies 8,9). 285 

Our results suggest that the re-distribution of SLTM and YTHDC1 into nuclear foci is an active, 286 

virus-induced process, which is facilitated by the immediate-early protein ICP0. 287 

   288 

DISCUSSION 289 

Following tens of thousands of individual cells throughout the infection process we find that the 290 

outcome of HSV1 infection is largely determined by the cellular state at the time of infection. The 291 

cell’s texture, morphology and cell-cycle stage at the time of adsorption enabled a supervised 292 

machine learning algorithm to predict which of the cells will become successfully infected during 293 

the next 9 hours. This variability in susceptibility among single cells is present in the population 294 

prior to meeting the virus. We find that the cellular state that makes cells susceptible to infection 295 

is composed of a fast, cell-cycle dependent component and a more stable, cell-cycle independent 296 

component. We conclude that HSV1 infection outcome is not an intrinsically stochastic event. 297 

Rather, it seems that individual cells have specific prior tendencies to become successfully-298 

infected, showing that cellular heterogeneity of the host can have a profound impact on its 299 

survival.  300 

We found that cell velocity is correlated with the probability of successful infection. Cell 301 

movement requires the generation of membrane extensions called filopodia (Gupton and Gertler, 302 

2007), which several viruses have been reported to “surf” as a mechanism to enter their host cells 303 

(reviewed in (Taylor et al., 2011)). Thus, increased cell movement might be linked to a higher 304 
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chance of a virus to catch a filopodia and enter the cell. An alternative explanation might be that 305 

motile cells sample more of their environment during the 30 minutes of virus adsorption, thus 306 

increasing the chances of a virus-cell meeting taking place. 307 

Contrary to our findings, previous work done on HSV1 infection in cell populations concluded 308 

that the cell-cycle position does not affect infection outcome (Cai and Schaffer, 1991; Cohen et 309 

al., 1971). One possible explanation for this discrepancy is our enhanced sensitivity in identifying 310 

infected cells. Previous work relied on the traditional plaque-assay to measure infectivity. In this 311 

assay, 10-fold serial dilutions from a viral stock are applied to cell monolayers, which are then 312 

overlaid with agarose and infectivity is monitored several days later by manual counting of the 313 

resulting plaques in the monolayer. The noise in such measurements is often on the scale of the 314 

effect which we have measured here, of 2-3 fold change in infectivity.   315 

In addition to its role in determining infection outcome, the cell-cycle stage also affects the speed 316 

in which infection proceeds. Cells at the earlier part of the cell cycle (G1 and early S) had, on 317 

average, a shorter lag time between viral adsorption and CFP expression than cells infected in the 318 

later part of the cell-cycle (late S and G2/M). The fact that cells at the G1/S phase are infected 319 

faster than cells in later stages might explain why HSV1 infection interferes with the natural 320 

progress of the cell-cycle, arresting cells at either the G1/S or G2/M checkpoints (Hobbs and 321 

DeLuca, 1999; Lomonte and Everett, 1999; Ehmann et al., 2000; Song et al., 2000; Paladino et 322 

al., 2014). 323 

This finding is interesting in the context of development of new anti-viral drugs. In most cases 324 

libraries of potential compounds are assessed based on their ability to decrease the percentage of 325 

infected cells at a given time point (what we refer to as infection outcome). Such screens are 326 

likely to miss potential drugs that target infection kinetics. Infection kinetics may have a dramatic 327 

effect in vivo, where viral replication and dissemination is in a race against the host’s mounting 328 

anti-viral response. In this context, identifying the cellular determinates of infection outcome as 329 

well as its kinetics are likely to offer new targets for drug design. 330 

We find that the distribution of primary infection kinetics is well-described by a Gamma 331 

distribution. The Gamma distribution is defined by two parameters - rate (β) and shape (α). We 332 

find that the rate parameter varied by up to 22% between cell-cycle stages and when changing the 333 

effective moi, reflecting a scaling of the infection kinetics by these features. The shape parameter, 334 

in contrast, remained almost constant at a value of α=6 (changing by less than 5%). A Gamma 335 

distribution may arise as a result of a sequence of rate-limiting exponential processes. When this 336 
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is the case, the shape parameter is the number of processes and the rate parameter is their rate 337 

(Floyd et al., 2008; Gardner et al., 2011). In the case of HSV1 infection, this may relate to a series 338 

of processes that are required for successful infection. A possible list of six of the slowest 339 

processes (as faster ones are not rate limiting) is: (1) adsorption to the cell membrane, (2) 340 

internalization, (3) binding to microtubuli, (4) binding to the nuclear pore complex, (5) mRNA 341 

synthesis and (6) protein synthesis. The measured timescale of these processes is quite similar, in 342 

the range of 15-60 minutes (Koyama and Uchida, 1987; Sodeik et al., 1997; Willis et al., 1998; 343 

Lee et al., 2016), possibly leading to the observed Gamma distribution of infection lag times, with 344 

a mean delay time of several hours. 345 

Looking at the individual proteins in our screen, we find two proteins whose concentration at time 346 

zero is indicative of infection outcome. The concentration of one of these proteins, Geminin, is 347 

well-known to be cell-cycle regulated. In fact, the Geminin protein is part of the widely-used 348 

FUCCI system to monitor cell-cycle progression in time-lapse microscopy (Sakaue-Sawano et al., 349 

2008). The other protein, RFX7, was not previously known to be cell-cycle regulated, but our 350 

results clearly show that its dynamics through the cell-cycle is identical to that of Geminin. Thus, 351 

the lower concentration of Geminin and RFX7 in cells that will become infected reflects the 352 

higher susceptibility of cells in the early part of the cell cycle to become successfully infected. 353 

We did not find any other protein whose concentration or cellular localization at time zero are 354 

indicative of infection outcome. However, this should not be interpreted to suggest that such 355 

proteins do not exist. Specifically, our library does not include known anti-viral effectors, such as 356 

proteins in the NFkB and interferon pathways, because these have low expression under the basal 357 

conditions in which the library was established. Future studies looking into the effect of 358 

heterogeneity in such proteins on viral infection outcome are likely to better shape our 359 

understanding of the interplay between host and virus. 360 

Four proteins responded specifically in successfully infected cells. The degradation of one of 361 

these proteins, SUMO2, has been previously observed and reported by others (Sahin et al., 2014; 362 

Sloan et al., 2015). The three other proteins; RPAP3, YTHDC1 and SLTM have not been 363 

previously described in the context of HSV1 infection. Interestingly, all three of these proteins 364 

seem to be related to the life-cycle of mRNA. 365 

RPAP3 (RNA polymerase II associated protein 3) is one of the four components of the R2TP 366 

complex (von Morgen et al., 2015), a complex responsible for the assembly of several cellular 367 

machineries, including the RNA polymerase II complex. The rapid degradation of RPAP3 is in 368 
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line with the previous reported alterations in RNA polymerase II upon HSV1 infection (Rice et 369 

al., 1994; Spencer et al., 1997; Jenkins and Spencer, 2001; Abrisch et al., 2015) and the known 370 

function of the virus host shutoff protein (vhs) that arrests the host’s translation by degrading 371 

mRNA. The rapid block of cellular transcription and translation is likely to be important for 372 

hampering the innate-immune response in the infected cells, as the vhs protein has been shown to 373 

attenuate the host’s anti-viral response (Pasieka et al., 2008; Zenner et al., 2013). 374 

SLTM (SAFB-like Transcription modulator) is a scarcely studied homolog of SAF-B (Scaffold 375 

Attachment Factor B). Overexpression of SLTM in HeLa cells resulted in transcriptional 376 

repression and cell death (Chan et al., 2007). SAF-B is involved in the spatial arrangement of 377 

chromatin loops, poising them for transcription (Nayler et al., 1998).  It can also directly bind to 378 

RNA and was shown to participate in the alternative splicing of different genes (Rivers et al., 379 

2015). YTHDC1 is also a regulator of alternative splicing, which specifically recognizes and 380 

binds N
6
-methyladenosine (m

6
A)-containing RNAs (Xiao et al., 2016). YTHDC1 was shown to 381 

physically interact with SAF-B (Nayler et al., 1998) and all three proteins (YTHDC1, SLTM and 382 

SAF-B) were found to bind to the Xist long-non coding RNA that is required for X-chromosome 383 

inactivation (Chu et al., 2015). We find that upon HSV1 infection, SLTM and YTHDC1 change 384 

localization, forming several nuclear foci. A similar observation was made for SAF-B upon heat-385 

shock treatment (Weighardt et al., 1999). However, in the context of HSV1 infection, the re-386 

distribution of YTHDC1 and SLTM to nuclear foci seems to be actively controlled by the virus, 387 

as it requires the expression of the immediate-early protein ICP0.  388 

One possible role for the sequestration of these proteins by HSV1 could be the repression of gene 389 

splicing. Unlike the majority of viruses that replicate in the nucleus, HSV1 genome contains very 390 

few introns (only 5 genes out of the ~80 encoded by the virus) and thus requires very little 391 

splicing activity. Indeed, several works have indicated that HSV1 actively represses splicing in 392 

the host (Hardy and Sandri-Goldin, 1994; Lindberg and Kreivi, 2002; Sciabica et al., 2003). This 393 

however has been called into question by a recent study that found that HSV1 causes widespread 394 

disruption of host transcription termination and that ensuing read-in into neighboring genes is 395 

responsible for the apparent inhibition of splicing (Rutkowski et al., 2015). In this regard it is 396 

interesting to note that m
6
A modification of mRNA (which is recognized by YTHDC1) is most 397 

abundant near transcriptional termination sites (Dominissini et al., 2012; Meyer et al., 2012). 398 

Whether the re-distribution of YTHDC1 and SLTM is linked to changes in the host alternative 399 

splicing or aberrant transcription termination is an intriguing question that requires further 400 

exploration.  401 
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In conclusion, this first application of the dynamic proteomics approach to study virus-host 402 

interaction at the single cell level has provided several novel insights. It allowed us to measure 403 

and model the kinetics of viral infection, to uncover the role of the host cell state in determining 404 

infection outcome and to identify new proteins that participate in the infection process. Future 405 

studies should focus on identifying the underlying molecular mechanisms that determine 406 

infection outcome and kinetics, thus opening the door to designing new and better anti-viral 407 

interventions.    408 

 409 

METHODS 410 

Library of annotated clones 411 

The generation of the library of annotated clones (LARC) was described elsewhere (Sigal et al., 412 

2007). The library consists of over 1,000 clones of the non-small cell lung carcinoma cell-line, 413 

H1299. All clones share the constitutively expressed mCherry-tagged proteins. The mCherry 414 

signal is bright in the nucleus and dim in the cytoplasm and is used for the automated 415 

segmentation and tracking of the cells during the analysis of time-lapse movies. Each of the 416 

clones in the library also expresses a unique YFP-tagged, full length protein. Tagging was done 417 

by the CD-tagging scheme, such that one copy of the gene is tagged in its native chromosomal 418 

location, and is thus under the control of its endogenous promoter. For all the clones in the 419 

library, the YFP-tagged protein shows a correct sub-cellular localization (clones that did not show 420 

correct localization were discarded).  Cells were grown in RPMI supplemented with penicillin, 421 

streptomycin and 10% fetal bovine serum at 37C and 8% CO2.  Cells were regularly tested for 422 

mycoplasma. 423 

CFP expressing HSV1  424 

HSV-1 Strain 17 was genetically modified to express mTurq2 (a brighter derivative of CFP) from 425 

the CMV immediate early promoter by homologous recombination. The reporter gene was 426 

inserted between UL37 and UL38 genes in the viral genome, a site known to tolerate insertions 427 

with minimal effect on the viral replication. Co-transfection of purified viral DNA (Szpara et al., 428 

2011) and plasmid pMPT06 (a kind gift from Matthew Taylor, Montana State University) was 429 

followed by several rounds of plaque purification, as described in Criddle et al. (Criddle et al., 430 

2016). 431 
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The ICP0 mutant express mTurq2 is based was constructed using the HSV-1 dl1403 (Stow and 432 

Stow, 1986), an HSV-1 strain 17 with a 2kb deletion in both copies of the ICP0 gene (a kind gift 433 

from Roger Everett, University of Glasgow Centre for Virus Research). A viral construct 434 

originating from the mTurq2 expressing virus described above was crossed with the HSV-1 435 

dl1403 and viral progeny where purified to obtain an ICP0 mutant express mTurq2. The progeny 436 

virus was plaque purified and tested by phenotype and by PCR to contain both the mTurq2 gene 437 

and the ICP0 deletion. 438 

HSV1 titration and infection 439 

CFP expressing HSV1 was titrated in Vero cells using the Plaque assay. We assessed the 440 

infectivity of HSV1 on H1299 cells by determining the percentage of CFP positive cells at 9 441 

hours post adsorption when infecting with serial dilutions starting at an moi of 10. We compared 442 

the observed percentage of CFP positive cells to that expected from the moi, and found that 443 

H1299 cells are approximately 10-fold less susceptible to infection than Vero cells. We used this 444 

to determine the moi for all experiments. Thus, an moi of 0.5 when infecting H1299 cells is 445 

equivalent to an moi of 5 when infecting Vero cells. 446 

Cells plating, infection and imaging 447 

Cells were plated and imaged in 12-well, glass-bottom plates (MatTek, MA, US). One hour 448 

before plating the cells, plates were coated with 200µl of 10 µg/ml fibronectin from bovine serum 449 

(Sigma, Israel). Plates were washed once with 1 ml PBS and 10
5
 cells were plated in each well. 450 

Cells were allowed to grow for 24 hours. The following day, medium was replaced to an imaging 451 

medium (transparent RPMI without phenol red and riboflavin from Biological Industries, Israel, 452 

supplemented with penicillin, streptomycin and 5% fetal bovine serum) approximately one hour 453 

before infection. Medium was then aspirated and 300 µl of imaging medium containing HSV1 at 454 

an moi of 0.5 was added. Virus was allowed to adsorb to the cells for 30 minutes at 37C. During 455 

this time, the imaging set-up was performed - calibrating the microscopes, choosing four fields of 456 

view for each well and setting the acquisition times for the fluorescent channels. After 30 minutes 457 

the virus-containing medium was aspirated and 2 ml of imaging medium added to each well. 458 

Plates were placed in a temperature, CO2 and humidity control chambers in the microscopes, 459 

focus adjusted and imaging started. Imaging was done using two inverted epi-fluorescent Leica 460 

microscopes (DMIRE2 and DMI6000b), controled by macro scripts developed in house. 461 

Image and data analysis 462 
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Flat field correction and background subtraction were done for all images prior to starting the 463 

analysis. Cell segmentation and tracking was done using the PhenoTrack package for Matlab, 464 

previously developed in our lab (Sigal et al., 2006a), with some additions and modifications. All 465 

codes used in this work are available upon request. The package was extended to extract 466 

morphological and textural features. The Harlick texture features (Haralick RM, Shanmuga K, 467 

Dinstein I, 1973) were calculated using the GLCM_features1 function 468 

(http://www.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features). Features 469 

were extracted for each segmented cell and nucleus, once from the phase channel and once from 470 

the mCherry channel. We retained the original features and also calculated the z-scored features 471 

(normalizing for all the cells in a specific clone). We also calculated the change in these features 472 

between two consecutive frames.  473 

The CFP concentration was calculated as the median value of CFP in the cell nucleus. A 474 

threshold was calculated for each clone, based on the median level of CFP in all cells of that 475 

clone in the first five frames of the movie (less than two hours post HSV1 adsorption).  476 

To ensure correct tracking of the cells we employed several filters, eliminating trajectories of 477 

cells that did not meet certain criteria. Such criteria included, for example, more than one mitosis 478 

event in 12 hours and a rapid, non-physiological, change in the mCherry levels. Overall we 479 

eliminated ~2/3 of the data, remaining with ~52,000 reliably tracked cells out of ~190,000 cells 480 

imaged in total. 481 

Supervised machine learning for predicting infection outcome 482 

We divided our dataset of ~52,000 cells into two group - infected (CFP positive at 9 hours post 483 

HSV1 adsorption) and non-infected (CFP negative for the entire 12 hours). Next we divided the 484 

data into train and test sets. To avoid any biases due to differences between the clones, we made 485 

sure that each clone is similarly represented in the infected and non-infected groups. We 486 

additionally made sure that no particular clone will be over represented in the dataset. 75% of the 487 

data was used for training the classifier and 25% (from clones not used in the training step) for 488 

testing its performance. The training set included 23,780 cells and the test set 8,108. 489 

We used Matlab version R2015b for all supervised machine learning procedures. We used 490 

Matlab’s fitensemble function to construct decision trees for classification using the RobustBoost 491 

algorithm. We performed feature selection by identifying the 20 features with highest predictive 492 
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power using the predictorImportance function. The final classifier included 2,000 decision trees 493 

based on the top 20 features.       494 

Extracting cell-cycle data from still images 495 

We employed a supervised machine learning approach, similar to that used by others (Kafri et al., 496 

2013; Gut et al., 2015; Blasi et al., 2016), which infers the cell-cycle position of a cell from a still 497 

image using a random forest regression predictor. The performance of this predictor is shown in 498 

Supplementary Fig. 3. We trained and tested the predictor using independent datasets of non-499 

infected cells that divided during the movies, so that we could determine the time after mitosis for 500 

each cell in each frame. We aligned the cells trajectories to an imaginary cell-cycle length of 24 501 

hours. This gave the best results, but using other cell-cycle lengths did not significantly alter our 502 

findings. We selected the top 30 features to use in the predictor.  503 

Infection kinetics modeling 504 

We fitted the distribution of infection lag times with a three-parameter mixture model for the 505 

primary and secondary infections (Supplementary Fig. 2). The model assumes that the lag time 506 

between adsorption and infection can be captured by a two-parameter distribution, and that this 507 

distribution also captures the lag between primary and secondary infections.  Specifically, the 508 

number of secondary infection at a given time-point depends on the number of infections in all 509 

previous time-points with appropriate delays that are given by the two-parameter distribution. 510 

The relative number of secondary infections is also fitted as a third parameter. Overall we fitted 511 

three parameters - two for the distribution (𝛼, 𝛽) and one for the relative number of secondary 512 

infections (𝛿). 513 

We fitted the following two parameter distributions: Normal, Log-Normal, Weibull and Gamma. 514 

For each distribution we scanned each parameter with a resolution of 0.05. Each parameter was 515 

scanned in the range of ±1 of the best fit value and 𝛿 was scanned in the range of 0-2.  For each 516 

set of parameters we generated a distribution from the mixture model and estimated the log-517 

likelihood of the data given this distribution. 518 

To statistically assess which distribution fits the data best we performed a bootstrapping 519 

procedure. We generated a distribution of log-likelihoods for each fit by resampling our data 520 

1,000 times with replacements. We then performed a one-sided t-test to compute the significance 521 

of the difference between these distributions. The Gamma distribution fitted our data significantly 522 

better than the other three (maximal p-value<10
-15

).  523 
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Confidence intervals for each parameter were computed by fixing other parameters and fitting a 524 

third order polynomial to the distribution of log-likelihoods around the fitted parameter. We then 525 

computed the 95% confidence interval using the second derivative of this polynomial at this 526 

parameter. For all the parameters assessed, confidence intervals were at least one order of 527 

magnitude lower than the estimated parameter.      528 

Cell-cycle synchronization  529 

5X10
4
 cells were plated in 12-well glass bottom plates as described above. At 5pm the medium 530 

was replaced with a full medium containing 2 mM thymidine (Sigma-Aldrich, Israel). At 8am the 531 

next morning cells were washed twice with PBS and normal growth medium was added. At 5pm 532 

of the same day the medium was again replaced with a thymidine containing medium. At 8am the 533 

next morning half of the wells were released from blocking (washed twice and given normal 534 

growth medium) and half were maintained in the blocking medium. At 4pm, eight hours later, the 535 

blocked cells were released. Cells were washed and infected with HSV1 at an moi of 0.25 or 0.5 536 

and imaged as described above. 537 

One well from each condition (15 minutes or 8 hours post-release) was harvested and fixed with 538 

70% ethanol at the time of HSV1 infection. Samples were rehydrated, treated with RNAse A and 539 

stained with propidium iodide to analyze the cell-cycle stage by FACS. 540 

 541 
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 547 

FIGURE LEGENDS 548 

Figure 1. Dynamic proteomics to study virus-host interactions in single cells over time. A. 549 

Schematic representation of the screen. A CFP-expressing HSV1 was allowed to adsorb to clones 550 

seeded in 12-well plates for 30 minutes, washed out and cells subsequently imaged every 20 551 

minutes for 12 hour. Overall, more than 50,000 single cells were followed, from ~400 different 552 
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YFP-expressing clones B. Model for de-mixing primary and secondary infections. Shown are the 553 

measured lag-times between virus adsorption and CFP expression (gray bars), the fitted model 554 

(blue line) which is based on primary (red dashed line) and secondary (purple dashed line) 555 

infections. See Supplementary Fig. 2 for more information.  C. A supervised machine learning 556 

approach was used to predict infection outcome from the cell images at the time of virus 557 

adsorption. See Fig. 2 for more information. D. Specific changes in host proteins levels and 558 

localization upon HSV1 infection were studied. Shown is an example of a localization change in 559 

cells infected by HSV1. See figures 5 and 6 for more information.  560 

 561 

Figure 2. HSV1 infection outcome can be predicted from images of the cells at the time of 562 

adsorption. A. Schematic representation of the machine learning approach; First, image-analysis 563 

features were extracted for each cell from the phase and mCherry channels. Second, of the 418 564 

features calculated for each cell, we chose the top 20 most explanatory features to continue with. 565 

The full list of features with their relative explanatory power is listed in Supplementary Table 1. 566 

We trained a supervised machine learning classifier to best discriminate cells that will becomes 567 

successfully infected from those that will not and tested its performance on a separate test set. B. 568 

The top 20 ranking image-analysis features that were used for predicting infection outcome. For 569 

convenience we color coded the features according to the next groups: Texture (gray) - all 570 

textural features, extracted from either the phase or mCherry channel. Velocity (green) - 571 

normalized (feature ranked #2) or raw (#18). mCherry (Purpule) - normalized mCherry 572 

concentration (#3), raw nuclear mCherry level (#15), normalized mCherry level (#20).  Cell-cycle 573 

position at the time of infection (yellow).  Cell size (red) - nuclear area (#10), change in 574 

normalized cell width (#17). Cell Shape (blue) – normalized cell roundness (#11), cell 575 

eccentricity (#16). C. ROC curves for the trained classifier (blue line) and a random prediction 576 

(dashed black line) The area under the curves are noted in corresponding colors. D,E,F. 577 

Probability for cells to become infected, based on three different cellular features at time zero. D - 578 

cluster prominence (textural feature), E - cell velocity and F - cell-cycle position. G. Them mean 579 

classifier score in cells that will become infected (blue) or nor-infected (red) over 24 hours, 580 

aligned by their cell-cycle position. The figure shows the clear cell-cycle dependency for 581 

infection outcome, as well as the cell-cycle independent component, as the two curves never cross 582 

each other.   H. Correct classification can also be done using images of cells prior to the addition 583 

of the virus. A second, smaller dataset was constructed in which cells were first imaged for 24 584 
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hours and then infected. Shown are the classifier performances based on the raw predictor score 585 

(purple line) or after normalizing by the cell-cycle stage (yellow line).  586 

 587 

Figure 3. Cells in the early part of the cell-cycle are more susceptible to HSV1 infection. A. 588 

The fraction difference in YFP concentration between infected and non-infected cells over the 589 

first nine hour after adsorption. The majority of the clones (grey lines) showed differences in the 590 

range of ±0.2 (20%), which are within experimental error. Four clones are highlighted. Geminin 591 

(dashed green line) and RFX7 (dashed purple line) concentrations are lower in cells that will 592 

become infected at time zero. SUMO2 (red line) and RPAP3 (blue line) concertation decrease 593 

over time, specifically in cells that will become infected.  B. Geminin and RFX7 concentration 594 

(mean±s.e.m) in cells that will become infected (blue bars) or not-infected (red bars) at time zero. 595 

* p-value<0.05, ** p-value<0.01. Both were calculated based on a one-tailed t-test. C,D. Geminin 596 

(C) and RFX7 (D) concentration (mean±s.e.m) over time in cells that will become infected (blue 597 

lines) or not-infected (red lines).  E. Geminin (green line) and RFX7 (purple line) concentration 598 

are cell-cycle dependent. The gray line depicts the median behavior of all other clones in the 599 

screen. F. Representing images of cells expressing YFP-Geminin (top row) or YFP-RFX7 600 

(bottom row) at different times post-mitosis. G,H. Distribution of DNA content in cells 15 601 

minutes (G) and 8 hours (H) after release from double-thymidine block. I,J. Accumulation of 602 

infected cells (CFP
+
) as a function of time for cells enriched for the G1 and S (blue lines) or 603 

G2/M (red lines) stages, infected with HSV1 at an moi of 0.25 (I) or 0.5 (J). mean±s.e.m from six 604 

positions for each moi. 605 

 606 

Figure 4. The cell-cycle stage of the host cell impact HSV1 kinetics. A. Data points (circles) 607 

and models (lines) fitted to cells infected at the early part of the cell-cycle (G1 and early S) or the 608 

late part of the cell-cycle (late S and G2/M). Cells in the G1 and early S stages show a faster 609 

kinetics with shorter lag times. B. Best estimated parameters for the Gamma distributions of 610 

primary infection kinetics shown in A. Cells at the later stages of the cell-cycle (Late S and 611 

G2/M) showed a 21% decrease in the rate parameter β. The shape parameter α was largely 612 

unaffected, showing a 6% difference. C. Data points (circles) and models (lines) fitted to cells 613 

binned by their effective moi. Infection kinetics is faster as the effective moi increases. D. Best 614 

estimated parameters for the Gamma distributions of primary infection kinetics shown in C. The 615 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2016. ; https://doi.org/10.1101/081653doi: bioRxiv preprint 

https://doi.org/10.1101/081653


21 
 

rate parameter β increases as the effective moi increases, while the shape parameter α remains 616 

largely unaffected, with a slight increase (4%) at the lowest moi. 617 

 618 

Figure 5. SUMO2 and RPAP3 degradation upon HSV1 infection is facilitated by ICP0. A,B. 619 

Images of representing cells from time-lapse movies of SUMO2 (A) and RPAP3 (B). Shown are 620 

the YFP channel, CFP channel and a merged image including the phase channel at 0-9 hours post 621 

wild-type HSV1adsorption. C,D. mean±s.e.m of SUMO2 (C) and RPAP3 (D) concentrations in 622 

non-infected (red) and infected (blue) cells following wild-type HSV1 adsorption. E,F. 623 

mean±s.e.m of SUMO2 (E) and RPAP3 (F) concentrations in non-infected (red) and infected 624 

(blue) cells following infection by a mutant HSV1 that does not express ICP0 625 

Figure 6. SLTM and YTHDC1 localization change upon HSV1 infection is facilitated by 626 

ICP0. A. The fraction difference in YFP nuclear cv between infected and non-infected cells over 627 

the first nine hour after adsorption. The majority of the clones (grey lines) did not show 628 

significant changes. Three clones are highlighted; SLTM (red line) and YTHDCH1 (purple line) 629 

which show an increase in nuclear cv and RPAP3 (blue line) which shows a decrease in nuclear 630 

cv. B,C. Images of representing cells from time-lapse movies of SLTM (B) and YTHDC1 (D). 631 

Shown are the YFP channel, CFP channel and a merged image including the phase channel at 0-9 632 

hours post wild-type HSV1adsorption. D. Cells infected by wild-type HSV1 were fixed and 633 

stained for ICP4 or ICP8 at six hours post adsorption and imaged using a X100 magnification 634 

lens.  Shown are representative images of nuclear foci formed by SLTM (top two rows) or 635 

YTHDC1 (bottom two rows), which do not co-localize with ICP4 or ICP8. Cellular DNA was 636 

stained with DAPI (blue). E,F. SLTM (E) and YTHDC1 (F) nuclear cv (mean±s.e.m) in non-637 

infected (red) and infected (blue) cells following wild-type HSV1 adsorption. G,H. nuclear cv 638 

(mean±s.e.m) of SLTM (G) and YTHDC1 (H) in non-infected (red) and infected (blue) cells 639 

following infection by a mutant HSV1 that does not express ICP0.  640 
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Figure 1. Dynamic proteomics to study virus-host interactions in single cells over time. 

A. Schematic representation of the screen. A CFP-expressing HSV1 was allowed to adsorb to clones seeded in 12-well plates for 30 minutes, washed out and cells 

subsequently imaged every 20 minutes for 12 hour. Overall, more than 50,000 single cells were followed, from ~400 different YFP-expressing clones B. Model for de-

mixing primary and secondary infections. Shown are the measured lag-times between virus adsorption and CFP expression (gray bars), the fitted model (blue line) 

which is based on primary (red dashed line) and secondary (purple dashed line) infections. See Supplementary Fig. 2 for more information.  C. A supervised machine 

learning approach was used to predict infection outcome from the cell images at the time of virus adsorption. See Fig. 2 for more information. D. Specific changes in 

host proteins levels and localization upon HSV1 infection were studied. Shown is an example of a localization change in cells infected by HSV1. See figures 5 and 6 for 

more information. 
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Figure 2. HSV1 infection outcome can be predicted from images of the cells at the time of adsorption. 

 A. Schematic representation of the machine learning approach; First, image-analysis features were extracted for each cell from the phase and mCherry channels. 

Second, of the 418 features calculated for each cell, we chose the top 20 most explanatory features to continue with. The full list of features with their relative 

explanatory power is listed in Supplementary Table 1. We trained a supervised machine learning classifier to best discriminate cells that will becomes successfully 

infected from those that will not and tested its performance on a separate test set. B. The top 20 ranking image-analysis features that were used for predicting infection 

outcome. For convenience we color coded the features according to the next groups: Texture (gray) - all textural features, extracted from either the phase or mCherry 

channel. Velocity (green) - normalized (feature ranked #2) or raw (#18). mCherry (Purpule) - normalized mCherry concentration (#3), raw nuclear mCherry level (#15), 

normalized mCherry level (#20).  Cell-cycle position at the time of infection (yellow).  Cell size (red) - nuclear area (#10), change in normalized cell width (#17). Cell 

Shape (blue) – normalized cell roundness (#11), cell eccentricity (#16). C. ROC curves for the trained classifier (blue line) and a random prediction (dashed black line) 

The area under the curves are noted in corresponding colors. D,E,F. Probability for cells to become infected, based on three different cellular features at time zero. D - 

cluster prominence (textural feature), E - cell velocity and F - cell-cycle position. G. Them mean classifier score in cells that will become infected (blue) or nor-infected 

(red) over 24 hours, aligned by their cell-cycle position. The figure shows the clear cell-cycle dependency for infection outcome, as well as the cell-cycle independent 

component, as the two curves never cross each other.   H. Correct classification can also be done using images of cells prior to the addition of the virus. A second, 

smaller dataset was constructed in which cells were first imaged for 24 hours and then infected. Shown are the classifier performances based on the raw predictor 

score (purple line) or after normalizing by the cell-cycle stage (yellow line).  
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Figure 3. Cells in the early part of the cell-cycle are more susceptible to HSV1 infection. 

A. The fraction difference in YFP concentration between infected and non-infected cells over the first nine hour after adsorption. The majority of the clones (grey lines) 

showed differences in the range of ±0.2 (20%), which are within experimental error. Four clones are highlighted. Geminin (dashed green line) and RFX7 (dashed purple 

line) concentrations are lower in cells that will become infected at time zero. SUMO2 (red line) and RPAP3 (blue line) concertation decrease over time, specifically in 

cells that will become infected.  B. Geminin and RFX7 concentration (mean±s.e.m) in cells that will become infected (blue bars) or not-infected (red bars) at time zero. * 

p-value<0.05, ** p-value<0.01. Both were calculated based on a one-tailed t-test. C,D. Geminin (C) and RFX7 (D) concentration (mean±s.e.m) over time in cells that will 

become infected (blue lines) or not-infected (red lines).  E. Geminin (green line) and RFX7 (purple line) concentration are cell-cycle dependent. The gray line depicts the 

median behavior of all other clones in the screen. F. Representing images of cells expressing YFP-Geminin (top row) or YFP-RFX7 (bottom row) at different times post-

mitosis. G,H. Distribution of DNA content in cells 15 minutes (G) and 8 hours (H) after release from double-thymidine block. I,J. Accumulation of infected cells (CFP+) as 

a function of time for cells enriched for the G1 and S (blue lines) or G2/M (red lines) stages, infected with HSV1 at an moi of 0.25 (I) or 0.5 (J). mean±s.e.m from six 

positions for each moi. 
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Figure 4. The cell-cycle stage of the host cell impact HSV1 kinetics. 

A. Data points (circles) and models (lines) fitted to cells infected at the early part of 

the cell-cycle (G1 and early S) or the late part of the cell-cycle (late S and G2/M). 

Cells in the G1 and early S stages show a faster kinetics with shorter lag times. B. 

Best estimated parameters for the Gamma distributions of primary infection kinetics 

shown in A. Cells at the later stages of the cell-cycle (Late S and G2/M) showed a 

21% decrease in the rate parameter β. The shape parameter α was largely 

unaffected, showing a 6% difference. C. Data points (circles) and models (lines) 

fitted to cells binned by their effective moi. Infection kinetics is faster as the 

effective moi increases. D. Best estimated parameters for the Gamma distributions 

of primary infection kinetics shown in C. The rate parameter β increases as the 

effective moi increases, while the shape parameter α remains largely unaffected, 

with a slight increase (4%) at the lowest moi. 
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Figure 5. SUMO2 and RPAP3 degradation upon HSV1 infection is facilitated by ICP0. 

A,B. Images of representing cells from time-lapse movies of SUMO2 (A) and RPAP3 (B). Shown are the YFP 

channel, CFP channel and a merged image including the phase channel at 0-9 hours post wild-type 

HSV1adsorption. C,D. mean±s.e.m of SUMO2 (C) and RPAP3 (D) concentrations in non-infected (red) and infected 

(blue) cells following wild-type HSV1 adsorption. E,F. mean±s.e.m of SUMO2 (E) and RPAP3 (F) concentrations in 

non-infected (red) and infected (blue) cells following infection by a mutant HSV1 that does not express ICP0.  
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Figure 6. SLTM and YTHDC1 localization change upon HSV1 infection is facilitated by ICP0. 

A. The fraction difference in YFP nuclear cv between infected and non-infected cells over the first nine hour after adsorption. The majority of the clones (grey lines) did 

not show significant changes. Three clones are highlighted; SLTM (red line) and YTHDCH1 (purple line) which show an increase in nuclear cv and RPAP3 (blue line) 

which shows a decrease in nuclear cv. B,C. Images of representing cells from time-lapse movies of SLTM (B) and YTHDC1 (D). Shown are the YFP channel, CFP 

channel and a merged image including the phase channel at 0-9 hours post wild-type HSV1adsorption. D. Cells infected by wild-type HSV1 were fixed and stained for 

ICP4 or ICP8 at six hours post adsorption and imaged using a X100 magnification lens.  Shown are representative images of nuclear foci formed by SLTM (top two 

rows) or YTHDC1 (bottom two rows), which do not co-localize with ICP4 or ICP8. Cellular DNA was stained with DAPI (blue) E,F. SLTM (E) and YTHDC1 (F) nuclear cv 

(mean±s.e.m) in non-infected (red) and infected (blue) cells following wild-type HSV1 adsorption. G,H. nuclear cv (mean±s.e.m) of SLTM (G) and YTHDC1 (H) in non-

infected (red) and infected (blue) cells following infection by a mutant HSV1 that does not express ICP0.  
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Supplementary Figure 1 – CFP expression correlates with HSV1 immediate-early protein expression.  

 

Cells infected with HSV1 expressing CFP were imaged at 7 hours post adsorption, fixed and stained with 

antibodies against different viral proteins. All the CFP positive cells are also positive for ICP4, an immediate-

early protein that is synthesized before viral DNA replication. Asterisks mark CFP positive cells and the 

corresponding cells after fixing and staining.    
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A 

Supplementary Figure 2 – kinetics of primary infection are best described by a Gamma distribution.  

 

A. Modeling infection kinetics as the sum of primary and secondary infections (top row). We assume that the 

secondary infections have the same delay kinetics as primary infections, and thus can be rewritten as a 

function of the primary infection distribution, Ip (bottom row). B,C,D,E. We estimated the fit for Ip using four 

distribution types – Normal (B), Log-normal (C), Weibull (D) and Gamma (E). These four distribution types 

are defined by two parameters. The best fitting parameters are presented in the figures. In addition we also 

fitted the scaling factor d. Of these four distribution, Gamma gave the best fit the observed data (black lines). 

The blue lines show the model with best parameters, which can be further divided into primary (dashed red 

lines) and secondary (dashed purple lines) infections.     
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Supplementary Figure 3 – Cell cycle prediction from still images and cell-cycle effect on HSV1  infection outcome.  

 

To asses the cell-cycle stage of the cells at the time of infection we trained a random forest predictor, using a dataset of non-

infected cells that divided during the time-lapse movies. We used the top 30 predictive features and trained an ensemble of 

500 decision trees. The figure shows the performance of the predictor on an independent test set. The predictor calculates 

the time from last mitosis with an rmse of 3.85. the Pearson correlation coefficient was 0.83. 
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Supplementary Figure 4 – Infection probability as a function of different features 

 

We analyzed the relation between infection probability and the top 10 features used by the 

supervised machine learning algorithm to predict infection outcome. Infection probability was 

calculated by binning the cells and calculating the percentage of infected cells in each bin. The 

features are: (A) normalized cluster prominence of the nucleus from the phase channel, (B) 

normalized cell velocity, (C) normalized mCherry concentration, (D), raw cluster prominence of the 

nucleus from the phase channel, (E) normalized information measure of correlation 1 of the nucleus 

from the mCherry channel, (F) raw information measure of correlation 1 of the nucleus from the 

mCherry channel, (G) normalized Inverse difference moment normalized of the nucleus from the 

mCherry channel, (H) normalized correlation of the nucleus from the mCherry channel, (I) cell-cycle 

stage and (J) nuclear area 
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Supplementary Figure 5 – Rank auto-correlation of predictor score in individual cells over time 

 

Predictor score were calculated for >200 cells that were tracked for 24 hours prior to infection. The cells 

were ranked according to their score in the first frame, and the rank auto-correlation was calculated. 

Shown are the auto-correlation for the raw predictor score (A) and after normalizing the score according 

to the cell-cycle position of the cell (B). The raw scores decays faster, with a t1/2 time of about 6 hours. It 

reaches zero around half a cell-cycle (12 hours) and then begins to raise again. After normalizing for the 

cell-cycle effect, the auto-correlation decay is slower, with a t1/2  around 10 hours.   
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