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Abstract

A decade after it was shown that the orientation of visual grating stimuli can be
decoded from human visual cortex activity by means of multivariate pattern classifica-
tion of BOLD fMRI data, numerous studies have investigated which aspects of neuronal
activity are reflected in BOLD response patterns and are accessible for decoding. How-
ever, it remains inconclusive what the effect of acquisition resolution on BOLD fMRI
decoding analyses is. The present study is the first to provide empirical ultra high-
field fMRI data recorded at four spatial resolutions (0.8 mm, 1.4 mm, 2 mm, and 3 mm
isotropic voxel size) on this topic — in order to test hypotheses on the strength and
spatial scale of orientation discriminating signals. We present detailed analysis, in line
with predictions from previous simulation studies, about how the performance of orien-
tation decoding varies with different acquisition resolutions. Moreover, we also examine
different spatial filtering procedures and its effects on orientation decoding. Here we
show that higher-resolution scans with subsequent down-sampling or low-pass filtering
yield no benefit over scans natively recorded in the corresponding lower resolution re-
garding decoding accuracy. The orientation-related signal in the BOLD fMRI data is
spatially broadband in nature, includes both high spatial frequency components, as well
as large-scale biases previously proposed in the literature. Moreover, we found above
chance-level contribution from large draining veins to orientation decoding. Acquired
raw data were publicly released to facilitate further investigation.
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Introduction1

The term multivariate pattern (MVP) analysis summarizes a range of data analysis2

strategies that are highly suitable for studying neural representations encoded in dis-3

tributed patterns of brain activity (see, for example, Haxby, 2012; Haynes, 2009; Zhang4

et al., 2015; Bonte et al., 2014). While there is an ever increasing number of publications5

that demonstrate the power of MVP analysis for functional magnetic resonance imaging6

(fMRI) data (Op de Beeck, 2010; Freeman et al., 2011; Alink et al., 2013; Freeman et al.,7

2013) with standard resolution (a voxel size of about 2-3 mm isotropic), MVP analysis8

is especially promising in the context of high-resolution fMRI. Ongoing technological9

improvements, such as ultra high-field MRI scanners (7 Tesla or higher) have pushed10

the resolution for fMRI to a level that is approaching the spatial scale of the columnar11

organization of the brain (Yacoub et al., 2008; Heidemann et al., 2012). Being able to12

use fMRI to sample brain activity patterns at a near-columnar level makes it feasible13

to employ MVP analysis with the aim to decode distributed neural representations of14

an entire cortical field at a level of detail that is presently only accessible to invasive15

recording techniques with limited spatial coverage. However, at this point, it is un-16

clear which spatial resolution is most suitable for decoding neural representation from17

fMRI data with MVP analysis. While higher resolutions can improve the fidelity of the18

BOLD signal by, for example, reducing the partial volume effect (Weibull et al., 2008),19

the benefits can be counteracted by physiological noise (such as inevitable motion) and20

lower temporal signal-to-noise ratio (tSNR). This raises the question: does the decoding21

of neural representations continuously improve with increasing spatial resolution, or is22

there an optimal resolution for a given type of representation?23

In this study, we aim to address this question for the most frequently employed24

MVP analysis technique: a cross-validated classification analysis, where a classifier25

is repeatedly trained to distinguish patterns of brain activation from fMRI data of a26

set of stimulus conditions, and its prediction accuracy is evaluated against a left-out27

data portion (Pereira et al., 2009). We selected oriented visual gratings in primary28

visual cortex as decoding subject, because it is likely to be the most extensively studied29

paradigm regarding the application of MVP analysis on fMRI data, starting with the30

classic studies of Kamitani and Tong (2005) and Haynes and Rees (2005). It was31

shown that orientation can be decoded reliably at resolutions ranging from standard32

3 mm isotropic voxels in the aforementioned studies, to 1 mm (Swisher et al., 2010), and33

that it is possible to directly measure orientation columns in V1 with 7 Tesla fMRI of34

0.5×0.5 mm (in-plane) resolution (Yacoub et al., 2008; Uğurbil, 2012). These findings35

led to a discussion on the origin and the spatial scale of the signals that classifiers can36

use to learn to discriminate different orientations (e.g., Op de Beeck, 2010; Swisher37

et al., 2010; Alink et al., 2013; Freeman et al., 2013). To investigate these questions,38

the authors typically acquired high-resolution fMRI and simulated a lower-resolution39

acquisition by applying spatial filters to the original data (see Swisher et al., 2010), or40

reconstruction of k-space data to different resolutions (Gardumi et al., 2016), in order41

to compare metrics, such as prediction accuracy, across a range of spatial frequencies.42

However, these approaches have not gone unchallenged as it is unclear to what degree43

particular filtering strategies (e.g., Gaussian filtering vs. low-pass filtering in the spatial44

frequency domain, see Misaki et al., 2013) can effectively simulate the properties of45
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fMRI recorded at a lower physical resolution, where a change in slice thickness alone46

can significantly alter image contrast. Despite this criticism, we are not aware of any47

study that has compared the performance of orientation decoding in visual cortex across48

a range of physical acquisition resolutions.49

In this study, we provide empirical data on the effect of spatial acquisition resolution50

on the decoding of visual orientation from high field (7 Tesla) fMRI. We recorded BOLD51

fMRI data at 0.8 mm, 1.4 mm, 2 mm and 3 mm voxel size while participants were vi-52

sually stimulated with oriented phase-flickering gratings using a uniform event-related53

paradigm. Chaimow et al. (2011) investigated the effect of acquisition resolution on54

decoding of the stimulated eye using simulated 3 Tesla fMRI data based on a model55

of ocular dominance columns. They found that a resolution of 3 mm was optimal for56

decoding and performance decreased with higher or lower resolution. It is known that57

the organization of orientation columns is characterized by higher spatial frequencies58

than ocular dominance columns (Obermayer and Blasdel, 1993) and the BOLD point-59

spread function (PSF) is considerably smaller than that at 3 Tesla (≈2.3 mm FWHM60

vs. ≈3.5 mm FWHM Shmuel et al., 2007; Engel et al., 1997). Considering that, we ex-61

pect the maximum orientation decoding accuracy to be observed at a resolution higher62

than 3 mm63

The primary purpose of this study is to explore how spatial resolution as an ac-64

quisition parameter, or as a preprocessing outcome impacts decoding. These multi-65

resolution data allow for evaluating filtering strategies used in previous studies in terms66

of their validity regarding the simulation of lower-resolution fMRI acquisitions from67

high-resolution data. These data also enable the investigation of the contributions68

of discriminating signal from individual spatial frequency bands for each resolution.69

Moreover, we collected high-resolution susceptibility weighted imaging data for blood-70

vessel localization in order to investigate the role of large draining veins that may71

carry orientation-discriminating signals reflected in low spatial frequency components72

when sampled by millimeter range voxels (Kamitani and Tong, 2005; Kriegeskorte and73

Bandettini, 2007; Shmuel et al., 2010; Gardner, 2010). In combination with the multi-74

resolution fMRI data, we can investigate the effect of this potential signal source on the75

orientation decoding at a range of of spatial scales.76

While our primary focus is on the technical aspect of acquisition resolution for77

decoding information from BOLD signal patterns using the representation of visual78

orientations as a well-researched example, we acknowledge that these data can be used79

to investigate a number of additional questions, such as the specific nature of the en-80

coding of visual orientation in the BOLD signal pattern. It can also be a valuable81

resource in further optimization of the decoding procedure (classification algorithm,82

hyper-parameter optimization, etc.). In order to facilitate the required future anal-83

yses we have publicly released the data. It has been uploaded to OpenFMRI (ac-84

cession number: ds000113c) and is also available without restrictions from GitHub85

https://github.com/psychoinformatics-de/studyforrest-data-multires7t and86

a description is available in DATA IN BRIEF CITATION. We are hoping that this87

dataset and manuscript serve as starting point to a series of additional analysis that88

explore aspects beyond acquisition resolution.89
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Materials and methods90

Participants91

Seven healthy right-handed volunteers (age 21-38 years, 5 males) with normal or cor-92

rected to normal vision were paid for their participation. Before every scanning session,93

they were provided with instructions for the experiment and signed an informed con-94

sent form. The study was approved by the Ethics Committee of the Otto-von-Guericke95

University.96

Stimuli97

Following Swisher et al. (2010), a stimulus comprised two semi-annular patches of flick-98

ering sine-wave gratings left and right of a central fixation point on a medium gray99

background (0.8°-7.6° eccentricity, 160° width on each side with a 20° gap along the100

vertical meridian, above and below the fixation point, to aid separation of gratings be-101

tween hemifields). Gratings on each side of the stimulus were independently oriented at102

either 0°, 45°, 90°, or 135°, with a constant spatial frequency of 1.4 cycles per degree of103

visual angle corresponding to the center of the screen, a contrast of 100%, and a flick-104

ering frequency of 4 Hz with 50% duty cycle. The phase of the gratings was changed105

at a frequency of 4 Hz and was chosen randomly from 0, π
2
, π, or 3π

2
degrees of phase106

angle (Figure 1).107

Stimulus presentation and response logging were implemented using PsychoPy (v1.79;108

Peirce, 2008) running on a computer with the (Neuro)Debian operating system (Halchenko109

and Hanke, 2012). Stimuli were displayed on a rear-projection screen (1280×1024 pix-110

els resolution; 60 Hz video refresh rate; 25.5 cm wide) located behind the head coil.111

Participants viewed the screen via a mirror placed at a distance of ≈4 cm from their112

eyes. The total viewing distance was 100 cm.113

Behavioral task114

In order to keep the participants’ attention focused and to minimize eye-movements,115

they performed a reading task that was unrelated to the stimulation with oriented116

gratings. A black circle (radius 0.25°) was presented as a fixation point at the center117

of the screen. Within this circle, a randomly selected excerpt of song lyrics was shown118

as a stream of single letters (0.3° height, letter frequency 2 Hz) throughout the entire119

length of a run. Each trial started with 3 s of stimulation with oriented gratings and120

continued for another 5 s of a task-only period (Figure 1). During task-only periods, a121

medium gray background was displayed in both hemifields. At the end of each run, the122

participant was asked a question related to the previously read text.123

In a pilot experiment with in-scanner eye-movement recordings, the letter read-124

ing task was found to minimize eye-movements effectively; however, it was unsuitable125

to verify fixation accuracy on a trial-by-trial basis. In order to evaluate a potential126

impact of the reading task on the orientation decoding performance, the task was re-127

placed for one participant with a visual detection task. One participant was repeatedly128

presented with a Landolt C stimulus (radius 0.12°, left or right opening (0.048°) at129

random intervals in each run. The participants had to respond to the direction of the130

opening of the probe by pressing one of two buttons corresponding to a left or right131
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Figure 1: Stimulation paradigm. Independently oriented flickering grating stimuli on a medium gray
background were presented in both hemifields for 3 s at the beginning of each trial. Stimulation was
followed by a 5 s inter-trial interval. Throughout an entire experiment run, participants performed
a continuous central letter reading task to maintain fixation. Interspersed trials where the previous
stimulus was repeated in only one of the hemifields were used to decouple stimulation sequences.

opening. Discrimination accuracy for this participant was 98.6%, while orientation de-132

coding performance did not qualitatively differ from mean decoding accuracy of other133

participants. The performance of the subject with the Landolt C task was compared134

relative to the 95% binomial proportion confidence interval computed from the number135

of correct predictions (BOLD pattern classification), concatenated across hemispheres136

and cross-validation fold, and all subjects performing the reading task. For all reso-137

lutions (except 3 mm data) the performance of the subject performing the Landolt C138

task was within the confidence interval (for 3 mm the decoding accuracy was close to,139

but higher, than the upper boundary of the confidence interval). This suggests that140

the employed reading task was generally effective in keeping participants focused on141

the fixation point.142

Procedures143

Participants were scanned in five different sessions, one experiment session for each of144

the four acquisition resolutions (0.8 mm, 1.4 mm, 2.0 mm and 3.0 mm isotropic) and145

one session for retinotopic mapping. These sessions took place on different days over146

the course of five weeks. The order of acquisition resolutions was randomized for each147

participant. In every experiment session, participants completed ten runs with short148

breaks in-between, without leaving the scanner. Each run comprised 30 trials (8 s dura-149

tion; 4 min total run duration). In 20 of these trials, a combination of oriented gratings,150

one in each hemifield, was presented simultaneously so that each of the four orienta-151

tions occurred exactly five times in each hemifield. The sequence of orientations was152
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independently randomized for each hemifield, resulting in random pairings of orienta-153

tions within trials. In order to decouple stimulation sequences between hemifields, ten154

NULL events were inserted into the trial sequence at pseudo-random positions (a run155

could not start with a NULL event and no two NULL events could occur in immediate156

succession). NULL events were identical to regular trials, except for the fact that in157

one hemifield the same oriented grating as in the previous trial was repeated while the158

other hemifield remained empty. The side of the blank hemifield was chosen at random159

for each NULL event. For all participants, the actual generated trial sequences show a160

roughly equal count of NULL events for each hemifield and frequency of unique com-161

binations of grating orientations (refer to supplementary material section Experimental162

Design for more details).163

Functional imaging164

The objective for functional data acquisition was to obtain BOLD fMRI data from165

the V1 ROI at four different resolutions with an identical stimulation paradigm. MR166

acquisition parameters were chosen to be maximally similar across resolutions given167

two a priori constraints: 1) sufficient spatial coverage of the V1 ROI and 2) identical168

sampling frequency (TR) across resolutions.169

T2*-weighted echo planar images (EPI) (TR/TE=2000/22 ms, FA=90°) of the oc-170

cipital lobe were acquired during visual stimulation using a 7 Tesla whole body scanner171

(Siemens, Erlangen, Germany) and a 32 receive channel head coil (Nova Medical, Wilm-172

ington, MA). Slices, oriented parallel to the calcarine sulcus (on a tilted axial plane),173

were acquired for 4 different spatial resolutions: 3 mm isotropic (FoV=198 mm, matrix174

size 66×66, 37 slices, GRAPPA accel. factor 2), 2 mm isotropic (FoV=200 mm, matrix175

size 100×100, 37 slices, GRAPPA accel. factor 3), 1.4 mm isotropic (FoV=196 mm, ma-176

trix size 140×140, 32 slices, GRAPPA accel. factor 3) and 0.8 mm isotropic (FoV=128×166.4 mm177

(AP×LR), matrix size 160×208, 32 slices, GRAPPA accel. factor 4). All EPI scans im-178

plemented ascending slice acquisition order and used a 10% inter-slice gap to minimize179

cross-slice excitation. For example, for a 3 mm acquisition, the acquired voxel dimension180

was 3×3×3 mm, plus a 0.3 mm interslice gap. The sequence for 0.8 mm resolution used181

a left-right phase encoding direction in order to avoid wrap-around artifacts, while all182

other sequences used anterior-posterior phase encoding. 121 volumes were acquired for183

each experiment run and 10 separate scans (one for each experimental run) were per-184

formed for each subject. An automatic positioning system (Siemens AutoAlign Head185

LS) was used to aid positioning of the field-of-view to the same volume in each scan for186

each subject similar to the procedure described in Dou et al. (2014). Online distortion187

correction (In and Speck, 2012) was applied to data from all the scans.188

As a result of the technical constraints the scan volume of the 0.8 mm acquisitions189

was substantially smaller than that of the other resolutions and did not cover all of the190

V1 ROI. In order to aid co-registration of the small scan volume with the structural191

image, an additional EPI acquisition was performed that used the same auto-alignment192

procedure, but with a 250×250 in-plane matrix and 57 slices (4 s TR). This setup193

increased the FoV in the axial plane to cover the full extent of the brain, while the194

20 additional slices further increased the coverage along the inferior-superior direction.195

60 volumes were acquired to improve image signal-to-noise ratio (SNR) by averaging196

across volumes. The resulting volume was used as an intermediate alignment target.197
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Figure S7 illustrates the effect of distortion correction and the alignment quality of198

BOLD images to the respective structural images for two participants.199

Structural imaging200

Structural images and susceptibility weighted images were acquired for all participants201

in a 3 Tesla Philips Achieva equipped with a 32 channel head coil using standard clin-202

ical acquisition protocols. T1-weighted image consisted of 274 sagittal slices (FoV203

191.8×256×256 mm) and an acquisition voxel size of 0.7 mm with a 384×384 in-plane204

reconstruction matrix (0.67 mm isotropic resolution). It was recorded using a 3D turbo205

field echo (TFE) sequence (TR 2500 ms, inversion time (TI) 900 ms, flip angle 8°, echo206

time (TE) 5.7 ms, bandwidth 144.4 Hz/px, SENSE reduction AP 1.2, RL 2.0). A 3D207

turbo spin-echo (TSE) sequence (TR 2500 ms, TE eff 230 ms, strong SPIR fat suppres-208

sion, TSE factor 105, bandwidth 744.8 Hz/px, SENSE reduction AP 2.0, RL 2.0, scan209

duration 7:40 min) was used to acquire a T2-weighted image whose geometric prop-210

erties otherwise match the T1-weighted image. A susceptibility weighted image with211

500 axial slices (thickness 0.35 mm, FoV 181×202×175 mm) and an in-plane acquisition212

voxel size of 0.7 mm reconstructed at 0.43 mm (512×512 matrix) was recorded using a213

3D Presto fast field echo (FFE) sequence (TR 19 ms, TE shifted 26 ms, flip angle 10°,214

bandwidth 217.2 Hz/px, NSA 2, SENSE reduction AP 2.5, FH 2.0). All the acquisition215

protocols used for recording anatomical images and susceptibility images were identical216

to those used in Hanke et al. (2014).217

Region of interest localization218

Standard retinotopic measurements were performed using four runs of stimulation with219

flickering checkerboard patterns (Warnking et al., 2002), one run each for contract-220

ing/expanding rings and clockwise/counter-clockwise wedges. During stimulation, par-221

ticipants fixated the center of the screen while performing the letter reading task de-222

scribed above. Each run comprised five stimulus cycles, plus 4 s and 12 s of task-only223

periods (no checkerboard stimulus) at the start and at the end of a run respectively.224

fMRI acquisition took place in the same 3 Tesla scanner as the structural imaging.225

Full brain acquisition was performed with T2*-weighted gradient echo, single-shot echo226

planar imaging (EPI) sequence (TR/TE=2000/30 ms, FA=90°, SENSE reduction AP227

2) with 3 mm isotropic voxel size, and 10% inter-slice gap (FoV=240 mm, matrix size228

80×80, 35 slices, ascending order, anterior-to-posterior phase encoding direction). 90229

volumes were acquired in each run.230

Retinotopic phase maps (polar angle and eccentricity) were generated using the231

3DRetinophase tool in the AFNI software package (Cox, 1996). The V1 region was man-232

ually delineated on the cortical surface (following the procedure described in Warnk-233

ing et al., 2002). Surface reconstruction was performed using the default Freesurfer234

recon-all pipeline (Dale et al., 1999), using T1 and T2-weighted images as input. V1235

delineations on the surface were projected back into a subject’s individual volumetric236

space to generate a participant specific V1 ROI mask for the classification analyses.237

Figure S7 demonstrates the alignment of the 7T BOLD fMRI with the reconstructed238

cortical surface.239

The associated raw data are available is part of dataset ds000113d on OpenFMRI240

and are further described in Sengupta et al. (2016).241
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Blood vessel localization242

A volumetric mask of V1 voxels with venous contributions was generated for each243

subject using the following procedure. First, the phase component of the SWI scan was244

masked (using a brain masked derived from the magnitude component), and 3D phase245

unwrapped with PRELUDE (default settings; Jenkinson, 2003) from FSL (v5.0.8;246

Smith et al., 2004). Following the procedure outlined in Haacke et al. (2004), the247

unwrapped phase image was spatially high-pass filtered using a mean ’box’ filter kernel248

(65x65x65 voxels, as implemented in fslmaths; Smith et al., 2004). The high pass249

filtered phase component ϕ(x) was then transformed to a score g(x) (value interval250

[0, 1]) using g(x) = (π − ϕ(x))/π for 0 < ϕ(x) ≤ π and 1 otherwise. These scores were251

multiplied 4 times with the original magnitude image, as suggested by Haacke et al.252

(2004), in order to enhance the contrast between venous and non-venous voxels. Blood253

vessel masks computed from the thresholded enhanced magnitude image were resliced254

into different acquisition resolutions using trilinear interpolation and were constrained255

to individual V1 masks for each participant.256

Separate MVP analyses were performed inside and outside the venous voxels (with257

variable mask intensity threshold) in V1 to investigate their individual contributions at258

different acquisition resolutions across different threshold levels.259

The associated raw data are available is part of dataset ds000113 on OpenFMRI260

and are further described in Hanke et al. (2014).261

Orientation decoding analysis262

MVP analysis for orientation decoding was performed with PyMVPA (v2.4.1; Hanke263

et al., 2009) on a compute cluster running (Neuro)Debian (v8.0; Halchenko and Hanke,264

2012). For feature extraction, BOLD fMRI time series from an individual experimental265

run were voxel-wise fitted to hemodynamic response (HR) regressors (boxcar function266

convolved with the canonical Glover HRF kernel (Glover, 1999) for each experimental267

condition using a general linear model (GLM). Additionally, the GLM design matrix in-268

cluded temporal derivatives of HR regressors, six nuisance regressors for motion (trans-269

lation and rotation), and polynomial regressors (up to 2nd-order) modeling temporal270

signal drift as regressors of no-interest. GLM β weights were computed using the GLM271

implementation in NiPy (v0.3; Millman and Brett, 2007) while accounting for serial272

correlation with an autoregressive term (AR1). Lastly, separately for every run β scores273

were Z-scored per voxel. The resulting dataset for MVP analysis contained 40 samples274

(one normalized β score per condition per run) for each participant.275

Linear support vector machines (SVM; PyMVPA’s LinearCSVMC implementation of276

the LIBSVM classification algorithm; Chang and Lin, 2011) were used to perform a277

within-subject leave-one-run-out cross-validation of 4-way multi-class orientation clas-278

sification. This method was selected based on its prevalence in the literature, not279

because of an assumed optimal performance in this context. This linear SVM algo-280

rithm has one critical hyper-parameter C that indicates the trade-off between width281

of the margin of the classifying hyperplane and number of correctly classified training282

data points. While it seems uncommon for neuroimaging studies to optimize this pa-283

rameter for a particular application, we observed substantial variability in performance284

with varying number of input features. Consequently, we decided to tune this param-285

eter using a nested cross-validation approach, where the training portion within each286
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cross-validation fold was subjected to a series of leave-another-run-out cross-validation287

analyses in order to perform a grid search for the optimal C value (search interval [10−5,288

5× 10−2] in 200 equal steps). The “optimal” C value was then used to train a classifier289

on the full training dataset, which was subsequently evaluated on the data from the290

left out run. Reported accuracies always refer to the performance on the test dataset291

using the tuned C setting. Tuning of the C parameter was performed independently292

for each participant, resolution, and hemisphere. The ranges of tuned C parameters for293

all resolutions are illustrated in Figure S6.294

Spatial filtering strategies295

In order to investigate how signal for orientation decoding is distributed across the296

spatial frequency spectrum, two different strategies for volumetric spatial filtering of297

the functional imaging data were implemented.298

Gaussian smoothing. Similar to Swisher et al. (2010), we used Gaussian filtering prior299

feature extraction for MVP analysis to estimate the spatial scale of the orientation300

specific signal. In the following, the size of the Gaussian filter kernel is described by its301

full width at half maximum (FWHM) in mm. Individual filters were implemented using302

the following procedure: Low-pass (LP) 3D Gaussian spatial filtering was performed303

with the image smooth() function in the nilearn package (Pedregosa et al., 2011). High-304

pass (HP) filtered images for a particular filter size were computed by subtracting the305

respective LP filtered image from the original, unfiltered image. Bandpass (BP) filtering306

was implemented by a Difference-of-Gaussians (DoG) filter (Alink et al., 2013). Filtered307

images were computed by subtracting the LP filtered images for two filter sizes from308

each other. For example, an image for the “4-5 mm” band was computed by subtracting309

the 5 mm LP filtered image from the 4 mm LP filtered image. It is important to note310

that, due to the nature of the filter, the pass-band of a DoG filter is not as narrow311

as the filter-size label might suggest. Figure S5 illustrates the attenuation profile of312

an exemplary 4-5 mm DoG filter. However, for compactness and compatibility with313

previous studies (e.g., Alink et al., 2013) we are characterizing DoG BP filters by the314

FWHM size of the underlying LP filters. The respective band-stop (BS) filtered image315

were computed by subtracting the corresponding BP filtered image from the original,316

unfiltered image.317

Because of its prevalence in standard fMRI analysis pipelines, spatial filtering was318

always applied to the whole volume, prior to any masking. However, as this procedure319

leads to leakage of information from outside the ROI into the ROI due to smoothing,320

particularly with large-sized LP filters, we also performed a supplementary analysis321

where filtering was restricted to the V1 ROIs in each hemisphere to prevent information322

propagation by smoothing (see supplementary material).323

Spatial resampling to other resolutions, with and without Gaussian filtering. A fre-324

quently expressed concern in the literature with respect to Gaussian smoothing is that325

a linear transformation does not actually remove high spatial frequency information326

(Alink et al., 2013; Kamitani and Sawahata, 2010); instead, it merely implements a327

relative scaling of frequency components (see Misaki et al., 2013). In order to explore328

any potential impact of an irreversible frequency-domain transformation, we performed329
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V1 Region of Interest Venous voxels in V1 for two thresholds

Left hemisphere Right hemisphere >60th percentile >90th percentile
Resolution #voxels std #voxels std #voxels std #voxels std

0.8 mm 7312 1912 7683 2556 1148 446 287 111
1.4 mm 2084 626 2169 710 518 186 130 47
2.0 mm 883 273 898 311 231 84 58 21
3.0 mm 324 94 327 104 105 36 26 9

Table 1: V1 ROI size. Average number of voxels for both hemispheres with standard deviation across
participants. The four rightmost columns indicate the number of voxels within the ROI that are
considered to be intersecting veins for two different thresholds (the 40% of voxels with the highest
volume fraction of blood vessels; and the same for the top 10% voxels; see Figure 6 for an illustration).

a Fourier (FFT) based spatial frequency resampling, which destructively removes high-330

frequency components, using the scipy function signal.resample() (Jones et al.,331

2001). For details on the procedure see the supplementary material. The V1 ROI masks332

were linearly interpolated into the resampled space with the ndimage.interpolation.zoom()333

function in scipy. FFT resampling was also combined with subsequent Gaussian low-334

pass filtering in order to evaluate a suggestion by Freeman et al. (2013) that one way335

of testing the contribution of fine scale signals to orientation decoding is to compare336

high-resolution BOLD fMRI data down-sampled to conventional resolutions, with or337

without first removing high spatial frequency signals. For all spatial resampling analy-338

sis, with or without Gaussian filtering, all voxels in the respective V1 ROI masks were339

considered for multivariate decoding.340

Results341

Decoding performance on native acquisition resolution342

Effect of acquisition resolution and number of input voxels. In order to determine the343

effect of acquisition resolution, we performed orientation decoding at all resolutions.344

Figure 2A shows the mean classification accuracy across participants and hemispheres345

as a function of acquisition resolution in the V1 ROI. In the set of tested acquisition346

resolutions, we found the peak classification performance of 40.89% at 2 mm isotropic347

resolution.348

For the above analysis, all voxels in the respective V1 ROIs were used. As the349

number of voxels in a 0.8 mm V1 mask was substantially higher than those in a 3.0 mm350

V1 mask (Table 1) and the number of input features/voxels can impact the classification351

performance, we repeated the analysis, but held the number of voxels constant across352

participants and resolutions (50, 100, 125, and 150 voxels). Voxel sub-selection was353

done randomly, and the analysis was repeated 100 times with a new random selection354

of voxels. Figure 2B shows that a constant and smaller number of input voxels had355

a negative effect on classification performance. Classification performance was better356

with 2.0 mm and 3.0 mm data as compared to 0.8 mm and 1.4 mm data.357
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Figure 2: (A) Orientation decoding accuracy on spatially unfiltered data as a function of acquisition
resolution in the whole contralateral V1 ROI. Error bars show the standard error of the mean (SEM)
across 7 participants averaged across hemispheres. Chance level accuracy (25%) is indicated as a
horizontal dashed line. Classification performance is detailed in confusion matrices for each resolution
depicting the frequency of correct classification for each combination of prediction and target values.
(B) Analog to (A), but with a constant number of input voxels across resolutions. 50, 100, 125, or 150
voxels were selected at random from the the whole contralateral V1 ROI for the classification analysis.
Selection was repeated 100 times. Error bars show SEM across repetitions. Upper range limit of 150
voxels was determined by the ROI with the least number of voxels at 3 mm resolution.

Time-series signal-to-noise ratio (tSNR). It has been shown that overall contrast-to-358

noise ratio (OCNR) is a factor that impacts classification performance (Chaimow et al.,359

2011). According to Chaimow et al. (2011) OCNR is proportional to contrast range360

and the square root of the number of voxels and is inversely proportional to the noise361

level. The noise level was calculated as the inverse of time course signal-to-noise ratio,362

which in turn depends on voxel size (Triantafyllou et al., 2005). In this study, tSNR is363

modulated across acquisition resolutions due to differential impact of technical/thermal364

and physiological noise components. In order to characterize this impact, we computed365

tSNR for each voxel as the ratio of mean signal intensity across all time points after366

polynomial detrending (1st and 2nd order; analog to preprocessing for MVP analysis)367

of scanner drift noise and the corresponding standard deviation. Voxel-wise tSNR was368

averaged across all experiment runs. For a tSNR estimate of the whole ROI, we averaged369

this score across all voxels. The relationship of voxel volume and tSNR in the empirical370

data can be well explained by the following model (Triantafyllou et al., 2005):371

tSNR = κV/
√

1 + λ2κ2V 2

where V is the voxel volume, κ is the proportionality constant, and λ is the magnetic372

field strength independent constant parameter with λ=0.0117, κ=22.74 (R2=0.95) The373

estimated asymptotic tSNR limit of ≈85 ( 1
λ
) is similar to the report of Triantafyllou374

et al. (2005) for 7 Tesla acquisitions and is reached around 2.5 mm acquisition resolution375

(see supplementary Figure S8).376

Figure 3A illustrates the non-linear relation of tSNR and orientation decoding ac-377
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A B

Figure 3: (A) Orientation decoding accuracy vs. temporal signal-to-noise ratio (tSNR) for the four
measurements (resolutions). Error bars show the SEM for tSNR and accuracy across subjects and
hemispheres. (B) Estimated BOLD signal change by orientation for all resolutions. Maximum pairwise
signal change difference is observed for the cardinal directions 0°and 90°. This pattern is congruent
with the confusion plots in Figure 2A.

curacy. We observe a substantial drop in accuracy when decreasing resolution from378

2 mm to 3 mm, despite a further increase in tSNR. This non-linearity was not observed379

by Gardumi et al. (2016), who only reported a positive trend for the correlation be-380

tween decoding accuracy and tSNR, based on a single acquisition (1.1 mm resolution381

with comparable tSNR of ≈32, and other resolutions being generated by reconstructing382

k-space data to lower resolutions).383

BOLD signal change. Another potential source of differences in orientation decoding384

accuracy across resolutions are BOLD signal amplitude differences due to, for example,385

differential impact of a partial voluming effect (see Tong et al., 2012; Alink et al., 2013).386

In order to quantify this effect, we calculated mean percentage BOLD signal change387

in response to any flickering orientation stimulus across resolutions using FeatQuery in388

FSL (v5.0.8; Smith et al., 2004). Similar to preprocessing in MVP analysis, no spatial389

smoothing was performed before calculating the percentage signal change. In order to390

obtain comparable percentage signal change across resolutions, we obtained a mask of391

all responsive V1 voxels (z > 2.3 with p < 0.05 default parameters of FSL FEAT)392

in 0.8 mm data for every subjects (Swisher et al., 2010, similar to Figure 3). The393

responsive V1 voxel mask obtained at 0.8 mm was resliced into 1.4 mm, 2.0 mm and394

3.0 mm resolutions. Percentage signal change was calculated with FeatQuery within395

these masks. We found that the mean percentage BOLD signal change was the highest396

for 0.8 mm resolution: 4.51% (0.8 mm), 3.92% (1.4 mm), 3.73% (2.0 mm), and 2.05%397

(3.0 mm).398

Previous studies found differential BOLD response magnitudes to different visual399

orientations. Furmanski and Engel (2000) reported stronger responses to cardinal400

orientations. In contrast, Swisher et al. (2010) found greater responses to oblique401

orientations. In order to test for a differential effect and a possible interaction be-402

tween orientation and acquisition resolution, we computed a 2-factor (orientation and403
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resolution) within-subject ANOVA for the estimated BOLD signal change from all404

7 subjects (Figure 3B). There was a significant main effect of acquisition resolution405

(F (3, 18) = 32.99, p < 0.001). We found no statistically significant main effect of orien-406

tation (F (1.22, 7.319) = 4.678, p = 0.061; using Greenhouse-Geisser correction due to407

violation of sphericity assumption, Mauchly’s test p = 0.002). There was a non signifi-408

cant interaction between the factors, resolution, and orientation (F (2.947, 17.68)=1.96,409

p=0.158 after Greenhouse-Geisser correction).410

Impact of head motion on decoding accuracy. Head motion is a likely factor to impact411

decoding accuracy. In order to evaluate this effect, we calculated a head motion index412

suggested by Alink et al. (2013) for every participant and acquisition resolution. Inline413

with the findings of Gardumi et al. (2016), we found a consistent, but non-significant414

trend towards a negative correlation between head motion and decoding accuracy across415

acquisition resolutions 0.8 mm: r=-0.45, p=0.30; 1.4 mm:r=-0.64, p=0.11; 2.0 mm: r=-416

0.68, p=0.09; 3.0 mm: r=-0.23, p=0.60).417

Decoding performance on spatially filtered data418

Impact of Gaussian smoothing. Figure 4 A-D show the impact of Gaussian filtering419

on the classification performance for data from all four acquisition resolutions. LP420

spatial filtering is most commonly performed as a noise reduction step in fMRI data421

pre-processing. The classification performance achieved on HP filtered data of the same422

filter size is an indication of the amount of usable information removed by LP filtering.423

Classification performance on BP filtered data indicates whether usable information is424

present in a particular band of spatial frequencies. Likewise, band-stop performance425

indicates the presence of usable information anywhere, except in a particular band.426

Except for 0.8 mm and 1.4 mm data, we observed no increase in mean decoding for427

LP filtering, compared to performance on unfiltered data. For all resolutions, except for428

0.8 mm, we see observe the best performance after LP filtering with kernel sizes no larger429

than 3 mm FWHM. Peak performance on HP filtered data was achieved for filter sizes430

larger than 9 mm FWHM, except for the 0.8 mm acquisition resolution. We investigated431

via BP filtering which frequency bands were most informative for orientation decoding432

across all acquisition resolutions, using DoG BP filters with a 1 mm difference in the433

FWHM size of the underlying Gaussian filters (Figure 4 A-D; black curves). The results434

show peak performance of BP filtering yielded for all acquisition resolutions in the range435

of ≈5-8 mm (highlighted range).436

Average decoding accuracy of BS filtered data remained above-chance for all spatial437

frequency bands. The BS performance curve initially follows the LP performance for438

small filter sizes, but resembles the HP performance for larger filter sizes.439

Impact of spatial resampling to other resolutions, with and without Gaussian smooth-440

ing. As an alternative approach to Gaussian LP filtering for simulating a resolution441

reduction, data acquired in a particular resolution were resampled (FFT-based trans-442

formation) to all other resolutions and classification analysis was performed with and443

without additional prior Gaussian LP filtering, as suggested by Freeman et al. (2013).444

The results are depicted in Figure 5.445
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Figure 4: Orientation decoding accuracies for all acquisition resolutions (increasing acquisition voxel
size from top to bottom) and levels of spatial high-pass, low-pass, band-pass, and band-stop Gaussian
filtering. Panels on the right visualize the size of selected Gaussian filter kernels with respect to
the voxel size at each resolution. FWHM values for band-pass and band-stop filters refer to the
corresponding 1 mm band to the closest smaller filter size (e.g., 5 mm refers to the 4-5 mm band).
McNemar test (Edwards, 1948) was used to comparing the performance of the BP filtered data with the
unfiltered decoding performance. Star markers indicate a significant difference (Bonferroni-corrected,
see legend in (A) for criteria). 14
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We observed no general benefit of spatial down-sampling with respect to decoding446

accuracy. We also did not see systematically improved accuracies after LP filtering447

across resolutions.448

Data acquired at 2.0 mm or 3.0 mm showed a general trend towards higher decod-449

ing accuracy after resampling (up-sampling or down-sampling) compared to the corre-450

sponding native acquisition resolution, even with prior Gaussian LP filtering of different451

kernel sizes. 0.8 mm data consistently showed low decoding accuracy when resampled452

to any other resolution with or without Gaussian filtering.453

Vascular contribution to orientation decoding454

Orientation decoding again performed inside and outside the vein localizer mask in455

the V1 ROI in order to evaluate the availability of orientation discriminating signal in456

the vascular system. Two different, arbitrary thresholds were used to classify voxels457

as intersecting vs. non-intersecting with veins, based on the co-registered and re-sliced458

vein mask: the top 40% and top 10% of voxels with the highest value after realignment459

and reslicing to the target resolution with trilinear interpolation. The resulting number460

of voxels are presented in Table 1.461

Analyses outside the vein mask were performed twice: once for the entire region462

and again for a subset of voxels that was constrained to the number of voxels inside463

the vein mask for the corresponding resolution. In the latter case, the analysis was464

repeated with a new random voxel selection 100 times.465

Figure 6A (right panel) shows that voxels with the highest venous content in their466

volume still yield above chance decoding performance. The performance drop for the467

two lowest resolutions between the two vein mask thresholds may be explained by the468

low number of input features going into the classification at high threshold (compare469

Figure 6A, left panel). At 0.8 mm, the 10% most venous voxels yield the same decoding470

performance as the rest of the V1 ROI combined (Fig. 6, middle panel), and noticeably471

more than a corresponding number of randomly samples non-venous voxels (Fig. 6A,472

middle panel). Similar results can be observed for the 1.4 mm resolution.473

Discussion474

In order to explore the effect of acquisition resolution and spatial filtering on the de-475

coding of visual orientations from primary visual cortex, we measured ultra-high field476

7 Tesla fMRI data at four different resolutions from seven participants. Linear SVM477

classifiers were trained to classify voxel patterns of regression weights of hemodynamic478

response models for the visual stimulation with four different oriented gratings. Cross-479

validated classification accuracy was used as performance metric.480

The overall classification accuracies reported here are deceptively low (peaking at481

40-50% with a theoretical chance-level performance of 25% for the 4-way classification482

analyses employed in this study). Other decoding studies in the literature have often483

used binary classification paradigms (for example, Alink et al., 2013; Chaimow et al.,484

2011) or reported average pairwise accuracy for classification performance results like485

(e.g., Kamitani and Tong, 2005; Op de Beeck, 2010). Converted into average pairwise486

binary accuracies, the results reported here range from 55% to 70% (for 0.8 mm and487

2 mm respectively, each accuracy corresponding to an analysis of the full V1 ROI and488
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A B

C D

Figure 5: Orientation decoding performance on fMRI data resampled to other spatial resolutions,
with and without different levels of prior low-pass Gaussian spatial filtering. Each panel title indi-
cates the respective resolution after spatial resampling. The panel legends identify the corresponding
original native acquisition resolutions. The color coding consistently identifies the native resolution
across all four panels. The disconnected data points at 0 mm represent the decoding accuracy after
spatial resample without prior Gaussian LP filtering. Recording high-resolution data with subsequent
spatial down-sampling tends to yield lower classification accuracies compared to the native resolution
acquisition, with or without prior Gaussian low-pass filtering of any tested kernel size.
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Figure 6: (A) Decoding accuracy computed inside and outside the vein mask within the V1 ROI.
The vein masks obtained from susceptibility weighted imaging were thresholded at two different levels
i.e. 60 percentile and 90 percentile. The panel on the left shows the performance of the entire V1
ROI outside the vein mask (non-venous voxels) for the two different thresholds. Orientation decoding
accuracy on V1 voxels restricted to the veins mask (venous voxels) is shown on the right panel. The
middle panel depicts the average decoding performance of non-venous voxels that randomly sampled
and matched in number to the corresponding venous voxels. The dashed horizontal lines indicate
the chance performance. (B) Trilinear interpolation was used to reslice the vein mask to all four
target resolutions. The histogram shows the distribution of mask voxel intensities corresponding to
the volumetric fraction of “vein voxels” in the high-resolution vein mask (voxel count axis in log-scale).
(C) Axial maximum intensity projection of the vein mask of one participant resliced to the 0.8 mm
resolution; illustrates the two chosen thresholds. The color indicator correspond to the curves depicted
in panel A.
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with no additional smoothing; see Figure 2A; theoretical chance-performance: 50%),489

hence accuracies are of the same magnitude as in other studies (see, for example, Haynes490

and Rees, 2005; Alink et al., 2013). In addition, some studies like Swisher et al. (2010)491

also reported similar unfiltered accuracy results (≈50%) in a 4-way classification anal-492

ysis with 0°, 45°, 90°, and 135°gratings with much longer stimulation time (a block493

design of 18s of block duration and 8 blocks/run). Therefore, we conclude that the494

overall quality of the present data is comparable to that of previous studies, and that495

the results presented here can be used to address open questions regarding the impact496

of data acquisition and spatial filtering parameters on the decoding of orientation from497

the early visual cortex. Importantly, in this experiment we did not use a univariate498

feature selection approach to define the “visually responsive” voxels in V1 (for exam-499

ple a GLM contrast) in an attempt to improve the decoding accuracy. Studying the500

potential impact of such an approach is left to a future study.501

Given the uncertainty of how much a further optimization of the decoding procedure502

– e.g., the specific classification algorithm, hyper-parameter optimization strategy, and503

feature selection method – would impact the results, we consider the interpretation of504

the present results regarding the nature of the signal source as a starting point for a505

further exploration of their robustness respect to variations of analysis parameters not506

considered here.507

Optimal acquisition resolution508

Among the four tested acquisition resolutions, the highest decoding accuracy was509

observed with a 2 mm resolution (Figure 2A). This result is congruent with a simulation510

study by Chaimow et al. (2011) that analyzed the impact of anatomical and physio-511

logical properties of primary visual cortex, as well as technical parameters of BOLD512

fMRI acquisition on the accuracy of decoding the stimulated hemifield from signal sam-513

pled from ocular dominance columns. The aforementioned study included a number514

of predictions for choosing optimal voxel size and number of input voxels to maximize515

decoding accuracy for 3 Tesla fMRI (see Figure 6 in Chaimow et al., 2011) that show a516

striking similarity to the results presented here (Figure 2). For 3 Tesla fMRI, Chaimow517

et al. (2011) showed that peak decoding accuracy is achieved around 3 mm in-plane518

voxel size for ocular dominance. Given that the profile of orientation columns has519

higher spatial frequency compared to ocular dominance columns (Obermayer and Blas-520

del, 1993) and the BOLD PSF at 7 Tesla is considerably smaller compared to 3 Tesla521

(Shmuel et al., 2007; Engel et al., 1997) a higher optimal resolution was to be expected522

for this study, and this hypothesis is supported by our results. This finding is also inline523

with a recent study by Gardumi et al. (2016) showing that optimal decoding accuracy of524

speaker identity, or phonemes, from auditory cortex BOLD patterns could be achieved525

with an effective voxel size of 2.2 mm (acquisition resolution was 1.1 mm and target526

resolution was achieved by reconstructing k-space data to a lower resolution), although527

the nature of the commonality between these findings remains to be investigated.528

Superior decoding performance at 2 mm was still observed even when the number529

of input voxels for classification was held constant across resolutions, although the per-530

formance differences between resolutions are reduced (Figure 2B). The ratio of input531

features (voxels) and the number of observations (fixed in this study) is a critical factor532

for the training of a classification model, as with increasing dimensionality the sampling533
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of the feature space becomes sparser, and, consequently, the estimated decision surface534

suffers from increased uncertainty (curse of dimensionality, Bellman, 1961, after Fried-535

man et al. 2001) In this study, the number of voxels in the ROI varies by a factor of536

>20 from the lowest to the highest resolution (Table 1) and the coverage volume also537

varies across resolutions. Despite full V1 coverage for the 1.4 mm (except for one sub-538

ject), 2 mm, and 3 mm acquisitions, peak decoding accuracy was observed with 2 mm539

data. There is no noticeable difference between accuracies for the lowest resolutions540

when the number of input voxels is held equal (Figure 2B). The pattern of decoding541

accuracy differences when using the full ROI vs. a constant number of voxels across all542

resolutions could indicate that ≈700 input voxels (size of the ROI at 2 mm) represents543

the optimal trade-off between the number of observations and input voxels, given the544

noise in the data and the fixed number of observations in this study.545

Moreover, the present data suggest, in line with Chaimow et al. (2011), that tem-546

poral signal-to-noise-ratio, an indicator of temporal signal stability, is a critical factor547

for optimal decoding accuracy (Figure 3A), whereas the magnitude of BOLD signal548

change was not found to be relevant. While the overall BOLD signal change amplitude549

at 0.8 mm (4.51%) was higher than that at 2.0 mm (3.73%), the decoding performance550

was superior for 2.0 mm data. In fact, 0.8 mm data showed the largest magnitude of551

BOLD signal change but, at the same time, showed the lowest decoding accuracy among552

all resolutions.553

Previous studies have reported BOLD response magnitude differences for different554

orientations. Furmanski and Engel (2000) reported that cardinal orientations elicited555

higher activation changes than oblique orientations of circular gratings. Swisher et al.556

(2010), who used the same kind of hemifield gratings as in the present study, reported557

higher activation for oblique than cardinal orientations. The pattern observed in this558

study diverges from both previous results showing a tendency for activation to be lowest559

for 0° and highest for 90° orientations, with oblique orientations in between. While we do560

not find statistically significant evidence for a differential average response magnitude561

across orientations at the ROI level, this does not rule out the presence of univariate562

orientation-discriminating signal in a subset of the input features/voxels.563

It has to be noted that the comparison of decoding performance on 0.8 mm data564

with other resolutions is compounded by several factors. First and most importantly,565

the V1 coverage at this resolution was limited for technical reasons (imposed by the566

requirement to keep the TR at a common 2 s interval across all resolutions). This likely567

leads to a general underestimation of the performance at this resolution, which affects568

both the analyses of the full ROI, as well as those sub-sampling a smaller number569

of voxels. Moreover, the small coverage, combined with the impact of any residual570

geometric distortions, and the additional intermediate alignment step make accurate571

BOLD-to-structural alignment more challenging at 0.8 mm than at any other resolution.572

Precise alignment is important, as the V1 ROI is initially defined on the reconstructed573

cortical surface. Any suboptimal alignment will therefore impact decoding accuracy at574

0.8 mm more than other resolutions. Lastly, the search range for C-value SVM hyper-575

parameter was insufficient for 0.8 mm scans, the C-value was predominantly set to the576

lower search range boundary (Fig. S6). The search range was determined on a pilot577

scan and held constant for all analyses to avoid circularities. A more suitable parameter578

optimization scheme could have led to different results.579
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Optimal low-pass spatial filtering580

Gaussian spatial LP filtering is one of the most common preprocessing steps for581

fMRI data analyses. However, the present findings indicate that explicit spatial LP582

filtering, in addition to the implicit spatial filtering due to inherent motion, and the583

effect of head movement correction algorithms is generally not beneficial for orientation584

decoding (Figure 4). Only for resolutions higher than 2 mm does additional spatial585

smoothing with 2-3 mm FWHM show a tendency for improved decoding accuracy. This586

suggests that, given a resolution, a spatial smoothness equivalent to a Gaussian kernel587

size of ≈2 mm FWHM is optimal. This is congruent with the observation of overall588

lower decoding accuracies for 3 mm scans and is in line with the prediction of optimal589

acquisition resolution between 2 mm and 3 mm as presented above.590

Moreover, spatial down-sampling is not beneficial for orientation decoding either.591

As shown in Figure 5 (0 mm data points, corresponding to no Gaussian smoothing),592

orientation decoding on down-sampled data does not outperform the decoding on data593

natively recorded in the corresponding resolution (as for example, in the 2.0 mm panel594

of Figure 5, the 0.8 mm and 1.4 mm downsampled data performed lower than native595

2.0 mm data).596

Spatial characteristics of orientation specific signals597

The analysis of individual spatial frequency bands via BP filtering (Fig. 4) revealed598

that orientation-related signal is present in a wide range of spatial frequencies as in-599

dicated by above-chance decoding performance for nearly all tested bands. However,600

a drop in decoding accuracy can be observed across all resolutions for bands with a601

12 mm FWHM (or larger) Gaussian kernel as the smaller kernel in the LP filter pair602

used for BP filtering.603

Freeman et al. (2013), states that it is still an open question whether fMRI can re-604

flect signals originating from sampling random irregularities in the fine-scale columnar605

architecture (spatial scale ≈1 mm). This study also suggests that given a columnar ar-606

chitecture in the human visual cortex (Adams et al., 2007), BOLD fMRI measurements607

at conventional resolution ≈2 mm might reflect a combination of fine-scale and coarse-608

scale (spatial scale ≈10 mm) contributions. Similarly, we can interpret the present re-609

sults such that the orientation-discriminating signal picked up from these BOLD fMRI610

data is spatially broadband in nature, includes both high spatial frequency components,611

as well as large-scale biases. On one hand the highest decoding accuracy was observed612

at 2 mm resolution, and low pass filtered components generated above chance accuracies613

beyond 10 mm FWHM Gaussian smoothing (similar to Op de Beeck, 2010). These ob-614

servations point to indicate that low frequency components provide orientation specific615

signals. On the other hand we found that for DoG BP filters Gaussian kernel sizes of616

4 and 5 mm FWHM and larger, decoding performance on BP filtered data was higher617

than the LP filtered components at all acquisition resolutions. This result pattern is an618

indication that low spatial frequency fMRI components also contribute to noise with619

respect to orientation discrimination.620

According to Freeman et al. (2013), a test for fine-scale signals (≈1 mm, according621

to the definition by Freeman et al.) underlying the ability to decode orientations would622

be a comparison between decoding accuracies after down-sampling high-resolution mea-623

surements to conventional scanning resolutions, with and without prior removal of the624
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columnar-scale contributions. To investigate this topic, we did FFT based resampling625

of the BOLD fMRI data from their native resolution into all three alternative reso-626

lutions with or without prior removal of low frequency components (Fig. 5). We did627

not observe an increase in decoding accuracy after down-sampling data from our two628

highest resolutions (0.8 mm and 1.4 mm), regardless of any prior LP Gaussian filtering629

(except for a single case of performance increase when resampling 0.8 mm to 1.4 mm630

data without prior LP filtering, at a comparatively low overall accuracy level). From631

these findings we conclude that the orientation-related signal used for decoding is un-632

likely to comprise of low-frequency components alone. This conclusion is in line with633

Swisher et al. (2010) who also reported that “majority of orientation information in634

high resolution fMRI activity patterns can be found at spatial scales ranging from the635

size of individual columns to about a centimeter”.636

Carlson (2014) identified neuronal activity patterns related to stimulus edges that637

mimic a radial bias as a potential source of a global signal bias. The stimuli employed638

in this study had clearly visible, unsmoothed edges, hence edge-related activity is a639

valid explanation for the observed orientation-related large-scale signals. It can be640

argued that the V1 ROI could be adjusted by a “safety margin” to the representation641

of the edge of the stimuli to reduce edge related signals. We have tested various criteria642

for ROI definition and sizes. We have found very little variation of the results with643

respect to the particular shape and size of the ROI. The reported results are based644

on a V1 ROI generated by retinotopic mapping that used a stimulus that was larger645

than our visual orientation stimulus, hence we have likely sampled voxels representing646

edge-related signals. In other words, our ROI should contain a maximum amount of647

stimulus-related information present in V1. We leave an analysis exploring aspects of648

the relationship of individual stimulus properties and ROI shapes with the BOLD signal649

and decoding to a future study.650

Overall, BP filtering yielded peak performances for all resolutions (except for the651

3 mm acquisition). Consistent with Alink et al. (2013), the present results suggest that652

a band matching a DoG BP filter consisting of a 5 mm and an 8 mm FWHM Gaus-653

sian LP filter) carries most (but not all) orientation-related signal. This band covers654

wavelength from about 4.5 mm to 1.6 cm (Fig. S5). The Nyquist-Shannon Sampling655

Theorem dictates that, in order to measure a particular signal appropriately, the sam-656

pling frequency has to be at least twice the critical frequency of that signal. Hence,657

a 3 mm acquisition can only sample frequencies with a wavelengths of 6 mm or larger,658

and consequently misses some part of this most informative band.659

This is consistent with our finding that optimal decoding accuracy required a reso-660

lution higher than 3 mm. The nearly identical peak performance on 1.4 mm and 2 mm661

data is also compatible with this minimum frequency rule. However, the markedly662

lower decoding performance on 0.8 mm could be considered evidence that a minimum663

sampling resolution is necessary but not sufficient for optimal decoding performance. In664

this study, an optimal balance of scanning resolution and temporal signal-to-noise-ratio665

is reached at 2 mm resolution. Higher resolution reduce tSNR and lower resolutions do666

not provide sufficient sampling of higher frequency signals.667

Within the limits of our analyses the presented results do not show evidence for a668

variation of informative spatial frequency bands across acquisition resolutions as one669

might observe when a high spatial frequency signal of orientation columns in early vi-670

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081604doi: bioRxiv preprint 

https://doi.org/10.1101/081604


sual cortex is reflected in (much larger) fMRI voxels by means of spatial aliasing. In671

the case of spatial frequency aliasing (Nyquist-Shannon Theorem) the frequency of the672

observed, aliased signal would vary depending on the actual sampling frequency (size673

of the voxel), due to an insufficient sampling frequency by the voxel grid. Here, the674

peak decoding performance (as found after BP filtering) is always located in the same675

band across all four resolutions. However, the DoG filters used here to investigate the676

importance of particular frequency bands feature a relatively large passband (Fig. S5)677

that does not allow to rule out spatial aliasing of orientation-discrimination signal. The678

absence of evidence for spatial aliasing is in line with Kamitani and Tong (2005) and679

Chaimow et al. (2011) which show that the spatial frequencies of columnar structures680

(0.5 cycles/mm) do not contribute signal for decoding, due to several technical limi-681

tations like inherent head motion and reduced SNR proportional to reduction in voxel682

volume. Moreover, Shmuel et al. (2007) state that the PSF — that captures blurring683

factors due to eye movements, neuronal response, BOLD response PSF in gray matter,684

as well as the PSF of the data acquisition process — makes fMRI data inherently LP685

filtered and, as such, poses a physical limitation on the spatial frequency scale from686

which fMRI signal can be obtained. Kamitani and Tong (2005) and Chaimow et al.687

(2011) identify contributions from random variations and irregularities in the columnar688

structures captured by larger voxels as the main source of information for decoding.689

These are of considerably lower frequency than the primary spatial frequency charac-690

teristics of the columnar organization and are lower than the Nyquist criterion of the691

BOLD fMRI sampling frequencies.692

It could be speculated that the spatial scale of the orientation signal as estimated693

by volumetric spatial filtering is, to some degree, determined by the representation694

of the cortical folding pattern in the scan volume. As volumetric filtering procedures695

using 3D Gaussian kernels inherently mixes signals from gray matter, white matter,696

and superficial vessels. It might be that a volumetric BP filter corresponding to the697

most informative spatial frequency band is beneficial because it is of sufficient size to698

average signal across the entire diameter of the folded calcarine sulcus, whereas a smaller699

filter is not, and a bigger filter includes a substantial fraction of the surrounding white700

matter and adjacent cortical fields. If the above speculation is correct, we could expect701

lower decoding accuracy in the most informative band when replacing the employed702

spatial filtering procedure with a cortical surface-based smoothing or a spatial filtering703

that is restricted to V1 ROIs in each hemisphere. We performed these two alternative704

analyses and found only minor differences in the results (see supplementary material705

Fig. S3). Similar to the report of Swisher et al. (2010), the band-pass, high-pass, low-706

pass components based on these alternative spatial smoothing schemes perform very707

similar, but are more evenly sloped with increasing filter size compared to unconstrained708

volumetric filtering. Except for the 0.8 mm data, where the insufficient signal is even709

more evident, the BP performance is extremely similar. We conclude that there is little710

evidence for an impact of standard, unmasked, volumetric spatial filtering for this type711

of decoding analysis, compared to alternative procedures.712

Veins contribute signal usable for orientation decoding713

Several studies have cited an orientation-related BOLD signal originating from the714

vascular system (draining veins) as a potential information source for decoding that715
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may introduce spatial biases in the representation of orientation as measured with716

fMRI (Kriegeskorte et al., 2010; Chaimow et al., 2011; Shmuel et al., 2010). The717

present results confirm the availability of such a signal. Particularly for the two highest718

resolutions tested here the decoding accuracy obtained from voxels sampling veins is719

equal to the performance obtained from the non-venous rest of the V1 ROI, or even720

outperforms it when controlling for the number of input voxels for the classification721

model (Fig. 6A).722

A BOLD signal originating in the blood vessels has the potential to introduce com-723

plex transformations of the spatial representation of orientation in the BOLD response724

patterns. Due to the structural properties of the vascular system this signal is likely725

to be of lower spatial frequency, compared to the underlying neuronal activation pat-726

tern, and is superimposed on a potential high-frequency pattern reflecting the columnar727

structure of V1. This explanation has been put forth by Kriegeskorte et al. (2010) who728

describe voxels as “complex spatio-temporal filters” and our results are compatible with729

this model. However, gradient echo BOLD fMRI is highly sensitive to large draining730

veins (Gardner, 2010; Shmuel et al., 2010; Chaimow et al., 2011), which might influence731

the BOLD signal also at a considerable distance from the blood vessel, rendering the732

interpretation of these findings even more difficult.733

It should also be mentioned that previous studies found a substantial reduction of734

intra-vascular BOLD signals at higher magnetic field strength (Yacoub et al., 2001),735

and enhanced signal contributions from microvascular structures at 7T (Shmuel et al.,736

2007). Consequently, the particular composition of the compound signal captured with737

BOLD fMRI will vary with the magnetic field strength. A future study should compare738

the present results with data acquisitions at a different field strength to shed more light739

on nature of the underlying signal and the implications for decoding analysis.740

Limitations. The focus of the present study was to investigate the effect of acquisition741

resolution and spatial filtering on the decoding of visual orientations from primary742

visual cortex. In order to yield comparable results, the acquisition parameters were743

constrained to guarantee a certain minimum coverage of the V1 ROI even at the highest744

resolutions and to have an identical temporal sampling frequency (TR) to yield the same745

number of observations across all resolutions. This choice implied that the GRAPPA746

acceleration factor had to be increased with increasing resolution, hence leading to an747

increased under-sampling of the k-space with higher resolutions. This could impact the748

sensitivity of the scan to high-frequency spatial signals. A future study will have to test749

whether the present findings hold when constraints on coverage and sampling frequency750

are relaxed. For example, a study by De Martino et al. (2013) using a 3D gradient and751

spin echo (GRASE) sequence suggests that such a sequence outperforms a gradient752

echo sequence, such as the one employed in this study, for high-resolution imaging at753

0.8 mm isotropic resolution — at the expense of a vastly reduced scan volume.754

The present study is exclusively based on 7 Tesla fMRI data, hence it remains unclear755

in which way the characteristics of the relation of decoding performance and acquisition756

resolution are dependent on MR field-strength. The differences in the sizes of the BOLD757

point-spread functions (Shmuel et al., 2007; Engel et al., 1997) suggest a lower resolution758

limit for 3 Tesla scans. However, the reported optimal resolution is within the range of759

conventional acquisition resolutions of today’s 3 Tesla scanners. A future study should760
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address the question of how the decoding performance varies with field-strength for761

identical resolutions.762

While this study focused on the optimal acquisition parameters for decoding of763

visual orientation from fMRI BOLD response patterns in early visual cortex, we ac-764

knowledge other possibilities of further optimization of the decoding procedure (clas-765

sification algorithm, hyper-parameter optimization, etc.) and their potential impacts766

on results and interpretations. To facilitate the required future analyses we have pub-767

licly released the data (available without restrictions from GitHub https://github.768

com/psychoinformatics-de/studyforrest-data-multires7t) and a “Data in brief”769

manuscript along with this. In this study we have found that given a neural signal with770

known fine-scale spatial characteristics, there are technical and physiological factors771

that place the acquisition resolution optimal for decoding at a substantially coarser772

scale. Future studies should investigate whether the optimal settings for other decod-773

ing paradigms and different cortical areas, beyond the findings for visual orientation774

in visual cortex presented here, and the congruent results for auditory representations775

reported by Gardumi et al. (2016), are similar in nature.776
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Uğurbil, K., 2012. The road to functional imaging and ultrahigh fields. Neuroimage933

62, 726–35. doi:10.1016/j.neuroimage.2012.01.134.934
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Supplementary materials and methods950

Experimental Design951

This section describes how the display sequence of the oriented gratings in both the952

hemifields were generated per experimental run. Independent sequences were gener-953

ated per hemifield with equal number of occurrences of each orientation. There were954

4 different orientations (0°, 45°, 90°, or 135°) each occurring for 5 times in the se-955

quence, contributing to 20 trials in one run. The sequences were randomly shuffled956

per hemifield. In this analysis a single GLM was used to model the events in both the957

hemifields. This was done to account for potential inter-hemispheric cross-talk due to958

the simultaneous bilateral stimulation, and correlation in this stimulus sequence be-959

tween hemifields. Moreover, in order to minimize undesired attention shift effects, we960

opted for a simultaneous onsets of the stimulation in both hemifields. Combined with961

the further constraint of the same number of stimulation trials per orientation in both962

hemifields, this would unavoidably lead to a singularity of the GLM design matrix,963

unless a further source of temporal variability is introduced. In order to address this964

issue unilateral stimulation events (termed NULL events) were introduced and included965

in the GLM.966

For comparison, we additionally analyzed these data using two separate models for967

both hemifields, while excluding NULL events from the modeling. This resulted in an968

overall improved classification performance, but did not impact the structure of the969

relative performance differences between resolutions (0.8 mm: 32.32%, 1.4 mm:41.78%,970

2.0 mm: 46.42%, and 3.0 mm: 40.17%) Figure S1 illustrates the combined impact of971

potential interhemispheric cross-talk and random correlations of the stimulus sequence972

between hemispheres by comparing the decoding performance in the contralateral and973

ipsilateral V1 ROI.974

Alternative spatial filtering procedures975

In Figure 4 the performance of orientation decoding was quantified following low-976

pass, high-pass, band-pass, and band-stop spatial filtering in order to study the spatial977

frequency dependent orientation selective responses. All spatial filtering procedures978

were volumetric, using 3D Gaussian kernels and ROI voxel selection was performed after979

spatial filtering with different Gaussian kernel widths on the entire volume. Though980

this 3D filtering procedure was being extensively used in previous studies like (Op de981

Beeck, 2010; Swisher et al., 2010), this approach leads to information propagation982

from adjacent parts of the cortex, white matter and superficial vessels. Moreover,983

unconstrained 3D filtering does not respect the cortical folding pattern and, given a984

large enough filter, can smooth across sulcal boundaries, such as the two banks of the985

calcarine sulcus. This confounds filter width with the extent of the cortical region from986

which information is drawn. To avoid this problem, two additional spatial filtering987

approaches were implemented, namely volumetric filtering restricted to the V1 ROI,988

and surface-based smoothing.989

Volumetric filtering restricted to the V1 ROI. Similar to the spatial filtering procedure990

performed in Alink et al. (2013), the voxel values outside the V1 ROI were considered991

to be missing values (NaN) instead of applying spatial filtering on the whole volume,992
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Figure S1: Orientation decoding accuracy on spatially unfiltered data across acquisition resolutions
in both contralateral and ipsilateral V1 ROI. The ipsilateral accuracies show similar trend as the
contralateral accuracies. The ipsilateral accuracies for 1.4 mm and 2 mm resolution show low decoding
performance and the 0.8 mm and 3 mm decoding accuracies are at chance level.

prior to any masking. To eliminate a potential effect of smoothing across hemispheres993

with large Gaussian kernels, filtering was restricted to individual hemispheres. First,994

voxel values outside the left V1 ROI was considered to be NaNs and spatial smoothing995

was applied. The same procedure was applied to the right ROI, and then the smoothed996

left and right V1 ROI were combined to form the smoothed BOLD volume. The same997

nested cross validation approach was performed on the smoothed data. The results998

of this analysis are highly similar to the results for the unconstrained filtering prior999

masking (Fig. S3 A-D).1000

Surface-based smoothing. Freesurfer’s mri vol2surf function (Dale et al., 1999) was1001

used for smoothing gray matter BOLD data on the cortical surface, while specifying1002

the filter size with the surf-fwhm parameter. In the next step surface-projected data1003

were mapped back into the BOLD volume using Freesurfer’s mri surf2vol function1004

(tri-linear interpolation, fill-projfrac parameter with range 0-1 in steps of 0.01).1005

This procedure was performed for each hemisphere separately. Back projection into1006

the volume was performed to maintain an equal number of input features for the de-1007

coding analysis. To illustrate the effect of surface based filtering, Figure S2 shows the1008

reconstructed surface of one participant, with the average modeled response to cardinal1009

and oblique orientations, filtered with 3 different filter FWHMs.1010

Subsequently, the same nested cross validation approach was performed on the1011

smoothed data. The results of this analysis are shown in Figure S3 E-H. The re-1012

sults of surface based smoothing were similar to those of the 3D Gaussian filter, but1013

the decoding accuracy did not decrease as rapidly with larger kernels. The band pass1014

filtering peak was present at ≈5-8 mm but less pronounced and more evenly sloped than1015

what was obtained from volumetric filtering.1016
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Figure S2: Surface-rendering of BOLD response patterns for one participant (2 mm acquisition, sub-
21), after surface-based smoothing with three kernel sizes. Overlays indicate the modeled average
response to cardinal and oblique orientations (Z-score) in the manually delineated V1 region, thresh-
olded at p < 0.05 (voxelwise).

Resampling procedure to other resolutions1017

Resampling BOLD fMRI data from one resolution to the other was implemented1018

as a two-step procedure. In the following, we describe the procedure using resampling1019

from 0.8 mm to 3.0 mm resolution as an example, but the procedure was analogous for1020

all resolution pairs.1021

First FFT-based spatial filtering was performed on the distortion corrected 0.8 mm1022

data (see Figure S4A) using the scipy function signal.resample(). This removed1023

the higher frequency components, but the voxel grid remained unchanged (in-plane1024

matrix size (208, 160) with 32 slices). In the next step, linear resampling/reslicing was1025

performed with nilearn function resample img() to convert the FFT filtered image1026

to the corresponding 3.0 mm voxel grid (see Fig. S4B for an example). Importantly,1027

other than changing the voxel size, no further transformation, for example, to align1028

a resampled image to the orientation of the corresponding native acquisition, were1029

applied.1030
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Figure S3: Results of alternative spatial filtering procedures (analog to Fig. 4). Volumetric spatial
filtering restricted to V1 ROI (A-D), cortical surface-based smoothing (E-H).
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Figure S4: Illustration of resampling from 0.8 mm to 3.0 mm resolution. (A) Distortion corrected
0.8mm isotropic BOLD image with superimposed V1 ROI mask. (B) After removal of high-frequency
components using scipy function signal.resample() superimposed with resampled V1 ROI mask (linear
interpolation using scipy function ndimage.interpolation.zoom())
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Figure S5: Illustration of the attenuation profile of a Difference-of-Gaussian (DoG) band-pass filter.
The blue and green curve represent the profiles of Gaussian low-pass filters (4 mm and 5 mm respec-
tively) in the frequency domain. Horizontal lines represent the -3 db points of the Gaussians. Band-pass
filtering is implemented by subtracting the two low-pass filter outputs from each other. The profile of
the resulting DoG band-pass filter is shown in red. Vertical lines show the Nyquist-frequencies for the
three lowest resolutions in the study. The pass-band of this exemplary DoG filter (corresponding to
an axis label “5 mm” in Figure 4 contains frequencies higher than what can be adequately measured
with a 3 mm acquisition.
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Figure S6: Range of tuned Linear SVM C parameters in the orientation decoding analysis across
different resolutions.

CBA

Figure S7: Illustration of the alignment of distortion corrected BOLD images obtained at 7 Tesla
to the structural data obtained at 3 Tesla for 2 subjects. (A) Uncorrected image from Siemens 7T
Magnetom (B) Distortion-corrected image (In and Speck, 2012) (C) Alignment of the BOLD image
and the cortical surface, reconstructed from the corresponding structural scans. The white matter
segmentation is shown in yellow and the pial surface in red.
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Figure S8: Temporal signal-to-noise ratio (tSNR) as a function of voxel volume. The observed data
are represented by dots and the error bars represent the SEM across subjects. The dashed line shows
the fit to the following model tSNR = κV/

√
1 + λ2κ2V 2 similar to the report of Triantafyllou et al.

(2005)
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