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Abstract

A decade after it was shown that the orientation of visual grating stimuli can be
decoded from human visual cortex activity by means of multivariate pattern classifica-
tion of BOLD fMRI data, numerous studies have investigated which aspects of neuronal
activity are reflected in BOLD response patterns and are accessible for decoding. How-
ever, it remains inconclusive what the effect of acquisition resolution on BOLD fMRI
decoding analyses is. The present study is the first to provide empirical ultra high-
field fMRI data recorded at four spatial resolutions (0.8 mm, 1.4 mm, 2mm, and 3 mm
isotropic voxel size) on this topic — in order to test hypotheses on the strength and
spatial scale of orientation discriminating signals. We present detailed analysis, in line
with predictions from previous simulation studies, about how the performance of orien-
tation decoding varies with different acquisition resolutions. Moreover, we also examine
different spatial filtering procedures and its effects on orientation decoding. Here we
show that higher-resolution scans with subsequent down-sampling or low-pass filtering
yield no benefit over scans natively recorded in the corresponding lower resolution re-
garding decoding accuracy. The orientation-related signal in the BOLD fMRI data is
spatially broadband in nature, includes both high spatial frequency components, as well
as large-scale biases previously proposed in the literature. Moreover, we found above
chance-level contribution from large draining veins to orientation decoding. Acquired
raw data were publicly released to facilitate further investigation.
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1 Introduction

2 The term multivariate pattern (MVP) analysis summarizes a range of data analysis
3 strategies that are highly suitable for studying neural representations encoded in dis-
+ tributed patterns of brain activity (see, for example, Haxby, 2012; Haynes, 2009; Zhang
s et al., 2015; Bonte et al., 2014). While there is an ever increasing number of publications
s that demonstrate the power of MVP analysis for functional magnetic resonance imaging
7 (fMRI) data (Op de Beeck, 2010; Freeman et al., 2011; Alink et al., 2013; Freeman et al.,
s 2013) with standard resolution (a voxel size of about 2-3 mm isotropic), MVP analysis
o is especially promising in the context of high-resolution fMRI. Ongoing technological
10 improvements, such as ultra high-field MRI scanners (7 Tesla or higher) have pushed
1 the resolution for fMRI to a level that is approaching the spatial scale of the columnar
1> organization of the brain (Yacoub et al., 2008; Heidemann et al., 2012). Being able to
13 use fMRI to sample brain activity patterns at a near-columnar level makes it feasible
1« to employ MVP analysis with the aim to decode distributed neural representations of
15 an entire cortical field at a level of detail that is presently only accessible to invasive
16 recording techniques with limited spatial coverage. However, at this point, it is un-
17 clear which spatial resolution is most suitable for decoding neural representation from
18 TMRI data with MVP analysis. While higher resolutions can improve the fidelity of the
1w BOLD signal by, for example, reducing the partial volume effect (Weibull et al., 2008),
20 the benefits can be counteracted by physiological noise (such as inevitable motion) and
2 lower temporal signal-to-noise ratio (tSNR). This raises the question: does the decoding
» of neural representations continuously improve with increasing spatial resolution, or is
3 there an optimal resolution for a given type of representation?

2 In this study, we aim to address this question for the most frequently employed
s MVP analysis technique: a cross-validated classification analysis, where a classifier
2 18 repeatedly trained to distinguish patterns of brain activation from fMRI data of a
27 set of stimulus conditions, and its prediction accuracy is evaluated against a left-out
2 data portion (Pereira et al., 2009). We selected oriented visual gratings in primary
20 visual cortex as decoding subject, because it is likely to be the most extensively studied
s paradigm regarding the application of MVP analysis on fMRI data, starting with the
n classic studies of Kamitani and Tong (2005) and Haynes and Rees (2005). It was
» shown that orientation can be decoded reliably at resolutions ranging from standard
13 3mm isotropic voxels in the aforementioned studies, to 1 mm (Swisher et al., 2010), and
s that it is possible to directly measure orientation columns in V1 with 7 Tesla fMRI of
55 0.5x0.5mm (in-plane) resolution (Yacoub et al., 2008; Ugurbil, 2012). These findings
3 led to a discussion on the origin and the spatial scale of the signals that classifiers can
w use to learn to discriminate different orientations (e.g., Op de Beeck, 2010; Swisher
1 et al.,, 2010; Alink et al., 2013; Freeman et al., 2013). To investigate these questions,
3 the authors typically acquired high-resolution fMRI and simulated a lower-resolution
w0 acquisition by applying spatial filters to the original data (see Swisher et al., 2010), or
s reconstruction of k-space data to different resolutions (Gardumi et al., 2016), in order
»2 to compare metrics, such as prediction accuracy, across a range of spatial frequencies.
s However, these approaches have not gone unchallenged as it is unclear to what degree
s particular filtering strategies (e.g., Gaussian filtering vs. low-pass filtering in the spatial
s frequency domain, see Misaki et al., 2013) can effectively simulate the properties of
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s fMRI recorded at a lower physical resolution, where a change in slice thickness alone
«r can significantly alter image contrast. Despite this criticism, we are not aware of any
s study that has compared the performance of orientation decoding in visual cortex across
s a range of physical acquisition resolutions.

50 In this study, we provide empirical data on the effect of spatial acquisition resolution
51 on the decoding of visual orientation from high field (7 Tesla) fMRI. We recorded BOLD
2 fMRI data at 0.8 mm, 1.4mm, 2mm and 3 mm voxel size while participants were vi-
3 sually stimulated with oriented phase-flickering gratings using a uniform event-related
s« paradigm. Chaimow et al. (2011) investigated the effect of acquisition resolution on
s decoding of the stimulated eye using simulated 3 Tesla fMRI data based on a model
ss  of ocular dominance columns. They found that a resolution of 3 mm was optimal for
s decoding and performance decreased with higher or lower resolution. It is known that
s the organization of orientation columns is characterized by higher spatial frequencies
5o than ocular dominance columns (Obermayer and Blasdel, 1993) and the BOLD point-
o spread function (PSF) is considerably smaller than that at 3 Tesla (~2.3mm FWHM
o vs. ~3.5mm FWHM Shmuel et al., 2007; Engel et al., 1997). Considering that, we ex-
62 pect the maximum orientation decoding accuracy to be observed at a resolution higher
63 than 3mm

64 The primary purpose of this study is to explore how spatial resolution as an ac-
6 quisition parameter, or as a preprocessing outcome impacts decoding. These multi-
e resolution data allow for evaluating filtering strategies used in previous studies in terms
¢ of their validity regarding the simulation of lower-resolution fMRI acquisitions from
¢ high-resolution data. These data also enable the investigation of the contributions
s of discriminating signal from individual spatial frequency bands for each resolution.
70 Moreover, we collected high-resolution susceptibility weighted imaging data for blood-
n vessel localization in order to investigate the role of large draining veins that may
7 carry orientation-discriminating signals reflected in low spatial frequency components
7z when sampled by millimeter range voxels (Kamitani and Tong, 2005; Kriegeskorte and
7+ Bandettini, 2007; Shmuel et al., 2010; Gardner, 2010). In combination with the multi-
7 resolution fMRI data, we can investigate the effect of this potential signal source on the
7 orientation decoding at a range of of spatial scales.

7 While our primary focus is on the technical aspect of acquisition resolution for
7 decoding information from BOLD signal patterns using the representation of visual
7o orientations as a well-researched example, we acknowledge that these data can be used
s to investigate a number of additional questions, such as the specific nature of the en-
a1 coding of visual orientation in the BOLD signal pattern. It can also be a valuable
&2 resource in further optimization of the decoding procedure (classification algorithm,
3 hyper-parameter optimization, etc.). In order to facilitate the required future anal-
s« yses we have publicly released the data. It has been uploaded to OpenFMRI (ac-
s cession number: ds000113c) and is also available without restrictions from GitHub
s https://github.com/psychoinformatics-de/studyforrest-data-multires7t and
&7 a description is available in DATA IN BRIEF CITATION. We are hoping that this
s dataset and manuscript serve as starting point to a series of additional analysis that
s explore aspects beyond acquisition resolution.
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o Materials and methods

o Participants

e Seven healthy right-handed volunteers (age 21-38 years, 5 males) with normal or cor-
o3 rected to normal vision were paid for their participation. Before every scanning session,
o they were provided with instructions for the experiment and signed an informed con-
os sent form. The study was approved by the Ethics Committee of the Otto-von-Guericke
o University.

o7 Stimuli

e Following Swisher et al. (2010), a stimulus comprised two semi-annular patches of flick-
% ering sine-wave gratings left and right of a central fixation point on a medium gray
w0 background (0.8°-7.6° eccentricity, 160° width on each side with a 20° gap along the
11 vertical meridian, above and below the fixation point, to aid separation of gratings be-
102 tween hemifields). Gratings on each side of the stimulus were independently oriented at
w3 either 0°, 45°, 90°, or 135°, with a constant spatial frequency of 1.4 cycles per degree of
04 visual angle corresponding to the center of the screen, a contrast of 100%, and a flick-
s ering frequency of 4 Hz with 50% duty cycle. The phase of the gratings was changed
s at a frequency of 4 Hz and was chosen randomly from 0, 7, m, or 37“ degrees of phase
w7 angle (Figure 1).

108 Stimulus presentation and response logging were implemented using PsychoPy (v1.79;
o Peirce, 2008) running on a computer with the (Neuro)Debian operating system (Halchenko
o and Hanke, 2012). Stimuli were displayed on a rear-projection screen (1280x1024 pix-
u els resolution; 60 Hz video refresh rate; 25.5cm wide) located behind the head coil.
2 Participants viewed the screen via a mirror placed at a distance of ~4 cm from their
us eyes. The total viewing distance was 100 cm.

s Behavioral task

us In order to keep the participants’ attention focused and to minimize eye-movements,
us they performed a reading task that was unrelated to the stimulation with oriented
u7  gratings. A black circle (radius 0.25°) was presented as a fixation point at the center
us of the screen. Within this circle, a randomly selected excerpt of song lyrics was shown
o as a stream of single letters (0.3° height, letter frequency 2 Hz) throughout the entire
120 length of a run. Each trial started with 3s of stimulation with oriented gratings and
21 continued for another 5s of a task-only period (Figure 1). During task-only periods, a
122 medium gray background was displayed in both hemifields. At the end of each run, the
123 participant was asked a question related to the previously read text.

124 In a pilot experiment with in-scanner eye-movement recordings, the letter read-
s ing task was found to minimize eye-movements effectively; however, it was unsuitable
s to verify fixation accuracy on a trial-by-trial basis. In order to evaluate a potential
127 impact of the reading task on the orientation decoding performance, the task was re-
s placed for one participant with a visual detection task. One participant was repeatedly
1o presented with a Landolt C stimulus (radius 0.12°, left or right opening (0.048°) at
1o random intervals in each run. The participants had to respond to the direction of the
11 opening of the probe by pressing one of two buttons corresponding to a left or right
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Run start

Figure 1: Stimulation paradigm. Independently oriented flickering grating stimuli on a medium gray
background were presented in both hemifields for 3s at the beginning of each trial. Stimulation was
followed by a 5s inter-trial interval. Throughout an entire experiment run, participants performed
a continuous central letter reading task to maintain fixation. Interspersed trials where the previous
stimulus was repeated in only one of the hemifields were used to decouple stimulation sequences.

12 opening. Discrimination accuracy for this participant was 98.6%, while orientation de-
113 coding performance did not qualitatively differ from mean decoding accuracy of other
14 participants. The performance of the subject with the Landolt C task was compared
135 relative to the 95% binomial proportion confidence interval computed from the number
s of correct predictions (BOLD pattern classification), concatenated across hemispheres
17 and cross-validation fold, and all subjects performing the reading task. For all reso-
133 lutions (except 3mm data) the performance of the subject performing the Landolt C
10 task was within the confidence interval (for 3mm the decoding accuracy was close to,
1o but higher, than the upper boundary of the confidence interval). This suggests that
w1 the employed reading task was generally effective in keeping participants focused on
12 the fixation point.

13 Procedures

s Participants were scanned in five different sessions, one experiment session for each of
s the four acquisition resolutions (0.8 mm, 1.4mm, 2.0mm and 3.0 mm isotropic) and
us one session for retinotopic mapping. These sessions took place on different days over
w7 the course of five weeks. The order of acquisition resolutions was randomized for each
us participant. In every experiment session, participants completed ten runs with short
1o breaks in-between, without leaving the scanner. Each run comprised 30 trials (8 s dura-
150 tion; 4 min total run duration). In 20 of these trials, a combination of oriented gratings,
151 one in each hemifield, was presented simultaneously so that each of the four orienta-
12 tions occurred exactly five times in each hemifield. The sequence of orientations was
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153 independently randomized for each hemifield, resulting in random pairings of orienta-
15« tions within trials. In order to decouple stimulation sequences between hemifields, ten
155 NULL events were inserted into the trial sequence at pseudo-random positions (a run
156 could not start with a NULL event and no two NULL events could occur in immediate
157 succession). NULL events were identical to regular trials, except for the fact that in
158 one hemifield the same oriented grating as in the previous trial was repeated while the
159 other hemifield remained empty. The side of the blank hemifield was chosen at random
1o for each NULL event. For all participants, the actual generated trial sequences show a
11 roughly equal count of NULL events for each hemifield and frequency of unique com-
12 binations of grating orientations (refer to supplementary material section Experimental
163 Design for more details).

16a  Functional imaging

s The objective for functional data acquisition was to obtain BOLD fMRI data from
16 the V1 ROI at four different resolutions with an identical stimulation paradigm. MR
17 acquisition parameters were chosen to be maximally similar across resolutions given
s two a priori constraints: 1) sufficient spatial coverage of the V1 ROI and 2) identical
160 sampling frequency (TR) across resolutions.

170 T2*-weighted echo planar images (EPI) (TR/TE=2000/22ms, FA=90°) of the oc-
i cipital lobe were acquired during visual stimulation using a 7 Tesla whole body scanner
w2 (Siemens, Erlangen, Germany) and a 32 receive channel head coil (Nova Medical, Wilm-
s ington, MA). Slices, oriented parallel to the calcarine sulcus (on a tilted axial plane),
s were acquired for 4 different spatial resolutions: 3 mm isotropic (FoV=198 mm, matrix
s size 66x66, 37 slices; GRAPPA accel. factor 2), 2mm isotropic (FoV=200 mm, matrix
e size 100x 100, 37 slices, GRAPPA accel. factor 3), 1.4 mm isotropic (FoV=196 mm, ma-
wr trix size 140x 140, 32 slices, GRAPPA accel. factor 3) and 0.8 mm isotropic (FoV=128x166.4 mm
s (APxLR), matrix size 160x208, 32 slices, GRAPPA accel. factor 4). All EPI scans im-
179 plemented ascending slice acquisition order and used a 10% inter-slice gap to minimize
180 cross-slice excitation. For example, for a 3 mm acquisition, the acquired voxel dimension
11 was 3xX3x3mm, plus a 0.3 mm interslice gap. The sequence for 0.8 mm resolution used
12 a left-right phase encoding direction in order to avoid wrap-around artifacts, while all
13 other sequences used anterior-posterior phase encoding. 121 volumes were acquired for
e each experiment run and 10 separate scans (one for each experimental run) were per-
185 formed for each subject. An automatic positioning system (Siemens AutoAlign Head
s LS) was used to aid positioning of the field-of-view to the same volume in each scan for
7 each subject similar to the procedure described in Dou et al. (2014). Online distortion
s correction (In and Speck, 2012) was applied to data from all the scans.

189 As a result of the technical constraints the scan volume of the 0.8 mm acquisitions
190 was substantially smaller than that of the other resolutions and did not cover all of the
11 V1 ROL In order to aid co-registration of the small scan volume with the structural
12 image, an additional EPI acquisition was performed that used the same auto-alignment
3 procedure, but with a 250x250 in-plane matrix and 57 slices (4s TR). This setup
104 increased the FoV in the axial plane to cover the full extent of the brain, while the
15 20 additional slices further increased the coverage along the inferior-superior direction.
s 60 volumes were acquired to improve image signal-to-noise ratio (SNR) by averaging
17 across volumes. The resulting volume was used as an intermediate alignment target.
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108 Figure S7 illustrates the effect of distortion correction and the alignment quality of
19 BOLD images to the respective structural images for two participants.

20 Structural imaging

21 Structural images and susceptibility weighted images were acquired for all participants
22 in a 3 Tesla Philips Achieva equipped with a 32 channel head coil using standard clin-
203 ical acquisition protocols. T1l-weighted image consisted of 274 sagittal slices (FoV
20 191.8x256x256 mm) and an acquisition voxel size of 0.7mm with a 384x384 in-plane
205 reconstruction matrix (0.67 mm isotropic resolution). It was recorded using a 3D turbo
26 fleld echo (TFE) sequence (TR 2500 ms, inversion time (TI) 900 ms, flip angle 8°, echo
20 time (TE) 5.7ms, bandwidth 144.4 Hz/px, SENSE reduction AP 1.2, RL 2.0). A 3D
208 turbo spin-echo (TSE) sequence (TR 2500 ms, TE eff 230 ms, strong SPIR fat suppres-
200 sion, TSE factor 105, bandwidth 744.8 Hz/px, SENSE reduction AP 2.0, RL 2.0, scan
20 duration 7:40min) was used to acquire a T2-weighted image whose geometric prop-
o erties otherwise match the T1-weighted image. A susceptibility weighted image with
22 500 axial slices (thickness 0.35 mm, FoV 181x202x 175 mm) and an in-plane acquisition
23 voxel size of 0.7 mm reconstructed at 0.43mm (512x512 matrix) was recorded using a
2. 3D Presto fast field echo (FFE) sequence (TR 19ms, TE shifted 26 ms, flip angle 10°,
25 bandwidth 217.2 Hz/px, NSA 2, SENSE reduction AP 2.5, FH 2.0). All the acquisition
216 protocols used for recording anatomical images and susceptibility images were identical
a7 to those used in Hanke et al. (2014).

zs  Region of interest localization

219 Standard retinotopic measurements were performed using four runs of stimulation with
20 flickering checkerboard patterns (Warnking et al., 2002), one run each for contract-
21 ing/expanding rings and clockwise/counter-clockwise wedges. During stimulation, par-
2 ticipants fixated the center of the screen while performing the letter reading task de-
23 scribed above. Each run comprised five stimulus cycles, plus 4s and 12s of task-only
2¢ periods (no checkerboard stimulus) at the start and at the end of a run respectively.
2»s  fMRI acquisition took place in the same 3 Tesla scanner as the structural imaging.
26 Full brain acquisition was performed with T2*-weighted gradient echo, single-shot echo
27 planar imaging (EPI) sequence (TR/TE=2000/30ms, FA=90°, SENSE reduction AP
28 2) with 3mm isotropic voxel size, and 10% inter-slice gap (FoV=240 mm, matrix size
20 80x80, 35 slices, ascending order, anterior-to-posterior phase encoding direction). 90
230 volumes were acquired in each run.

231 Retinotopic phase maps (polar angle and eccentricity) were generated using the
22 3DRetinophase tool in the AFNI software package (Cox, 1996). The V1 region was man-
23 ually delineated on the cortical surface (following the procedure described in Warnk-
24 ing et al., 2002). Surface reconstruction was performed using the default Freesurfer
25 recon-all pipeline (Dale et al., 1999), using T1 and T2-weighted images as input. V1
235 delineations on the surface were projected back into a subject’s individual volumetric
237 space to generate a participant specific V1 ROI mask for the classification analyses.
28 Figure S7 demonstrates the alignment of the 7T BOLD fMRI with the reconstructed
230 cortical surface.

240 The associated raw data are available is part of dataset ds000113d on OpenFMRI
21 and are further described in Sengupta et al. (2016).
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22 Blood vessel localization

23 A volumetric mask of V1 voxels with venous contributions was generated for each
24 subject using the following procedure. First, the phase component of the SWI scan was
25 masked (using a brain masked derived from the magnitude component), and 3D phase
26 unwrapped with PRELUDE (default settings; Jenkinson, 2003) from FSL (v5.0.8;
27 Smith et al., 2004). Following the procedure outlined in Haacke et al. (2004), the
xs  unwrapped phase image was spatially high-pass filtered using a mean ’box’ filter kernel
20 (65x65x65 voxels, as implemented in fslmaths; Smith et al., 2004). The high pass
20 filtered phase component p(z) was then transformed to a score g(z) (value interval
1 [0, 1]) using g(z) = (7 — ¢(x))/m for 0 < p(z) < 7 and 1 otherwise. These scores were
s multiplied 4 times with the original magnitude image, as suggested by Haacke et al.
253 (2004), in order to enhance the contrast between venous and non-venous voxels. Blood
s vessel masks computed from the thresholded enhanced magnitude image were resliced
»s  into different acquisition resolutions using trilinear interpolation and were constrained
6 to individual V1 masks for each participant.

257 Separate MVP analyses were performed inside and outside the venous voxels (with
258 variable mask intensity threshold) in V1 to investigate their individual contributions at
0 different acquisition resolutions across different threshold levels.

260 The associated raw data are available is part of dataset ds000113 on OpenFMRI
2 and are further described in Hanke et al. (2014).

%2 Orientation decoding analysis

23 MVP analysis for orientation decoding was performed with PyMVPA (v2.4.1; Hanke
26 et al., 2009) on a compute cluster running (Neuro)Debian (v8.0; Halchenko and Hanke,
25 2012). For feature extraction, BOLD fMRI time series from an individual experimental
266 run were voxel-wise fitted to hemodynamic response (HR) regressors (boxcar function
27 convolved with the canonical Glover HRF kernel (Glover, 1999) for each experimental
268 condition using a general linear model (GLM). Additionally, the GLM design matrix in-
20 cluded temporal derivatives of HR regressors, six nuisance regressors for motion (trans-
2o lation and rotation), and polynomial regressors (up to 2nd-order) modeling temporal
on signal drift as regressors of no-interest. GLM [ weights were computed using the GLM
o2 implementation in NiPy (v0.3; Millman and Brett, 2007) while accounting for serial
23 correlation with an autoregressive term (AR1). Lastly, separately for every run g scores
o were Z-scored per voxel. The resulting dataset for MVP analysis contained 40 samples
s (one normalized [ score per condition per run) for each participant.

276 Linear support vector machines (SVM; PyMVPA’s LinearCSVMC implementation of
o the LIBSVM classification algorithm; Chang and Lin, 2011) were used to perform a
s within-subject leave-one-run-out cross-validation of 4-way multi-class orientation clas-
a0 sification.  This method was selected based on its prevalence in the literature, not
20 because of an assumed optimal performance in this context. This linear SVM algo-
51 rithm has one critical hyper-parameter C' that indicates the trade-off between width
2 of the margin of the classifying hyperplane and number of correctly classified training
23 data points. While it seems uncommon for neuroimaging studies to optimize this pa-
s rameter for a particular application, we observed substantial variability in performance
s with varying number of input features. Consequently, we decided to tune this param-
26 eter using a nested cross-validation approach, where the training portion within each


https://doi.org/10.1101/081604

bioRxiv preprint doi: https://doi.org/10.1101/081604; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

7 cross-validation fold was subjected to a series of leave-another-run-out cross-validation
s analyses in order to perform a grid search for the optimal C value (search interval [107°,
s 5 x 1072] in 200 equal steps). The “optimal” C value was then used to train a classifier
20 on the full training dataset, which was subsequently evaluated on the data from the
201 left out run. Reported accuracies always refer to the performance on the test dataset
22 using the tuned C' setting. Tuning of the C parameter was performed independently
203 for each participant, resolution, and hemisphere. The ranges of tuned C' parameters for
204 all resolutions are illustrated in Figure S6.

205 Spatial filtering strategies

26 In order to investigate how signal for orientation decoding is distributed across the
27 spatial frequency spectrum, two different strategies for volumetric spatial filtering of
208 the functional imaging data were implemented.

20 Gaussian smoothing. Similar to Swisher et al. (2010), we used Gaussian filtering prior
w0 feature extraction for MVP analysis to estimate the spatial scale of the orientation
;o1 specific signal. In the following, the size of the Gaussian filter kernel is described by its
2 full width at half maximum (FWHM) in mm. Individual filters were implemented using
33 the following procedure: Low-pass (LP) 3D Gaussian spatial filtering was performed
3¢ with the image smooth() function in the nilearn package (Pedregosa et al., 2011). High-
w05 pass (HP) filtered images for a particular filter size were computed by subtracting the
w5 respective LP filtered image from the original, unfiltered image. Bandpass (BP) filtering
57 was implemented by a Difference-of-Gaussians (DoG) filter (Alink et al., 2013). Filtered
;s images were computed by subtracting the LP filtered images for two filter sizes from
s00 each other. For example, an image for the “4-5 mm” band was computed by subtracting
si0 the 5mm LP filtered image from the 4 mm LP filtered image. It is important to note
su that, due to the nature of the filter, the pass-band of a DoG filter is not as narrow
sz as the filter-size label might suggest. Figure S5 illustrates the attenuation profile of
sz an exemplary 4-5mm DoG filter. However, for compactness and compatibility with
s previous studies (e.g., Alink et al., 2013) we are characterizing DoG BP filters by the
a5 FWHM size of the underlying LP filters. The respective band-stop (BS) filtered image
sis were computed by subtracting the corresponding BP filtered image from the original,
si7 - unfiltered image.

318 Because of its prevalence in standard fMRI analysis pipelines, spatial filtering was
a0 always applied to the whole volume, prior to any masking. However, as this procedure
20 leads to leakage of information from outside the ROI into the ROI due to smoothing,
s particularly with large-sized LP filters, we also performed a supplementary analysis
12 where filtering was restricted to the V1 ROIs in each hemisphere to prevent information
23 propagation by smoothing (see supplementary material).

a4 Spatial resampling to other resolutions, with and without Gaussian filtering. A fre-
25 quently expressed concern in the literature with respect to Gaussian smoothing is that
26 a linear transformation does not actually remove high spatial frequency information
w2 (Alink et al., 2013; Kamitani and Sawahata, 2010); instead, it merely implements a
»s relative scaling of frequency components (see Misaki et al., 2013). In order to explore
»9 any potential impact of an irreversible frequency-domain transformation, we performed
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V1 Region of Interest Venous voxels in V1 for two thresholds

Left hemisphere Right hemisphere >60"" percentile >90'" percentile

Resolution #voxels std  #voxels std  #voxels std  #voxels std
0.8 mm 7312 1912 7683 2556 1148 446 287 111
1.4mm 2084 626 2169 710 518 186 130 47
2.0 mm 883 273 898 311 231 84 58 21
3.0mm 324 94 327 104 105 36 26 9

Table 1: V1 ROI size. Average number of voxels for both hemispheres with standard deviation across
participants. The four rightmost columns indicate the number of voxels within the ROI that are
considered to be intersecting veins for two different thresholds (the 40% of voxels with the highest
volume fraction of blood vessels; and the same for the top 10% voxels; see Figure 6 for an illustration).

a0 a Fourier (FFT) based spatial frequency resampling, which destructively removes high-
s frequency components, using the scipy function signal.resample() (Jones et al.,
s 2001). For details on the procedure see the supplementary material. The V1 ROI masks
;3 were linearly interpolated into the resampled space with the ndimage . interpolation.zoom()
s function in scipy. FFT resampling was also combined with subsequent Gaussian low-
15 pass filtering in order to evaluate a suggestion by Freeman et al. (2013) that one way
16 of testing the contribution of fine scale signals to orientation decoding is to compare
;37 high-resolution BOLD fMRI data down-sampled to conventional resolutions, with or
;s without first removing high spatial frequency signals. For all spatial resampling analy-
330 sis, with or without Gaussian filtering, all voxels in the respective V1 ROI masks were
a0 considered for multivariate decoding.

1 Results

sz Decoding performance on native acquisition resolution

sz Effect of acquisition resolution and number of input vozels. In order to determine the
aa  effect of acquisition resolution, we performed orientation decoding at all resolutions.
us  Figure 2A shows the mean classification accuracy across participants and hemispheres
us  as a function of acquisition resolution in the V1 ROI. In the set of tested acquisition
.7 resolutions, we found the peak classification performance of 40.89% at 2 mm isotropic
us  Tresolution.

349 For the above analysis, all voxels in the respective V1 ROIs were used. As the
0 number of voxels in a 0.8 mm V1 mask was substantially higher than those in a 3.0 mm
351 V1 mask (Table 1) and the number of input features/voxels can impact the classification
32 performance, we repeated the analysis, but held the number of voxels constant across
353 participants and resolutions (50, 100, 125, and 150 voxels). Voxel sub-selection was
s« done randomly, and the analysis was repeated 100 times with a new random selection
5 of voxels. Figure 2B shows that a constant and smaller number of input voxels had
6 a negative effect on classification performance. Classification performance was better
357 with 2.0mm and 3.0 mm data as compared to 0.8 mm and 1.4 mm data.
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Figure 2: (A) Orientation decoding accuracy on spatially unfiltered data as a function of acquisition
resolution in the whole contralateral V1 ROI. Error bars show the standard error of the mean (SEM)
across 7 participants averaged across hemispheres. Chance level accuracy (25%) is indicated as a
horizontal dashed line. Classification performance is detailed in confusion matrices for each resolution
depicting the frequency of correct classification for each combination of prediction and target values.
(B) Analog to (A), but with a constant number of input voxels across resolutions. 50, 100, 125, or 150
voxels were selected at random from the the whole contralateral V1 ROI for the classification analysis.
Selection was repeated 100 times. Error bars show SEM across repetitions. Upper range limit of 150
voxels was determined by the ROI with the least number of voxels at 3 mm resolution.

s Time-series signal-to-noise ratio (tSNR). It has been shown that overall contrast-to-
30 noise ratio (OCNR) is a factor that impacts classification performance (Chaimow et al.,
30 2011). According to Chaimow et al. (2011) OCNR is proportional to contrast range
1 and the square root of the number of voxels and is inversely proportional to the noise
2 level. The noise level was calculated as the inverse of time course signal-to-noise ratio,
33 which in turn depends on voxel size (Triantafyllou et al., 2005). In this study, tSNR is
s« modulated across acquisition resolutions due to differential impact of technical /thermal
s and physiological noise components. In order to characterize this impact, we computed
w6 tSNR for each voxel as the ratio of mean signal intensity across all time points after
%7 polynomial detrending (1%* and 2"¢ order; analog to preprocessing for MVP analysis)
w8 of scanner drift noise and the corresponding standard deviation. Voxel-wise tSNR was
w0 averaged across all experiment runs. For a tSNR estimate of the whole ROI, we averaged
s this score across all voxels. The relationship of voxel volume and tSNR in the empirical
s data can be well explained by the following model (Triantafyllou et al., 2005):

tSNR = kV/V1 + A\2k2V?2

sz where V' is the voxel volume, « is the proportionality constant, and A is the magnetic
7 field strength independent constant parameter with A=0.0117, k=22.74 (R*=0.95) The
7 estimated asymptotic tSNR limit of ~85 () is similar to the report of Triantafyllou
ws et al. (2005) for 7 Tesla acquisitions and is reached around 2.5 mm acquisition resolution
w6 (see supplementary Figure S8).

377 Figure 3A illustrates the non-linear relation of tSNR and orientation decoding ac-
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hemispheres. (B) Estimated BOLD signal change by orientation for all resolutions. Maximum pairwise
signal change difference is observed for the cardinal directions 0°and 90°. This pattern is congruent
with the confusion plots in Figure 2A.

srs curacy. We observe a substantial drop in accuracy when decreasing resolution from
so 2mm to 3mm, despite a further increase in tSNR. This non-linearity was not observed
30 by Gardumi et al. (2016), who only reported a positive trend for the correlation be-
s tween decoding accuracy and tSNR, based on a single acquisition (1.1 mm resolution
;2 with comparable tSNR of ~32, and other resolutions being generated by reconstructing
33 k-space data to lower resolutions).

s BOLD signal change. Another potential source of differences in orientation decoding
s accuracy across resolutions are BOLD signal amplitude differences due to, for example,
s differential impact of a partial voluming effect (see Tong et al., 2012; Alink et al., 2013).
s7 In order to quantify this effect, we calculated mean percentage BOLD signal change
s in response to any flickering orientation stimulus across resolutions using FeatQuery in
30 FSL (v5.0.8; Smith et al., 2004). Similar to preprocessing in MVP analysis, no spatial
30 smoothing was performed before calculating the percentage signal change. In order to
s obtain comparable percentage signal change across resolutions, we obtained a mask of
32 all responsive V1 voxels (z > 2.3 with p < 0.05 default parameters of FSL FEAT)
33 in 0.8mm data for every subjects (Swisher et al., 2010, similar to Figure 3). The
s responsive V1 voxel mask obtained at 0.8 mm was resliced into 1.4 mm, 2.0 mm and
35 3.0mm resolutions. Percentage signal change was calculated with FeatQuery within
36 these masks. We found that the mean percentage BOLD signal change was the highest
97 for 0.8 mm resolution: 4.51% (0.8 mm), 3.92% (1.4mm), 3.73% (2.0mm), and 2.05%
38 (3.0mm).

399 Previous studies found differential BOLD response magnitudes to different visual
w0 orientations. Furmanski and Engel (2000) reported stronger responses to cardinal
w1 orientations. In contrast, Swisher et al. (2010) found greater responses to oblique
w2 orientations. In order to test for a differential effect and a possible interaction be-
w3 tween orientation and acquisition resolution, we computed a 2-factor (orientation and
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ws resolution) within-subject ANOVA for the estimated BOLD signal change from all
ws 7 subjects (Figure 3B). There was a significant main effect of acquisition resolution
ws  (F(3,18) = 32.99, p < 0.001). We found no statistically significant main effect of orien-
wr tation (F(1.22,7.319) = 4.678,p = 0.061; using Greenhouse-Geisser correction due to
ws violation of sphericity assumption, Mauchly’s test p = 0.002). There was a non signifi-
w0 cant interaction between the factors, resolution, and orientation (F'(2.947, 17.68)=1.96,
no p=0.158 after Greenhouse-Geisser correction).

am Impact of head motion on decoding accuracy. Head motion is a likely factor to impact
a2 decoding accuracy. In order to evaluate this effect, we calculated a head motion index
a3 suggested by Alink et al. (2013) for every participant and acquisition resolution. Inline
aa with the findings of Gardumi et al. (2016), we found a consistent, but non-significant
a5 trend towards a negative correlation between head motion and decoding accuracy across
a6 acquisition resolutions 0.8 mm: r=-0.45, p=0.30; 1.4 mm:r=-0.64, p=0.11; 2.0 mm: r=-
ar 0.68, p=0.09; 3.0mm: r=-0.23, p=0.60).

ss  Decoding performance on spatially filtered data

no  Impact of Gaussian smoothing. Figure 4 A-D show the impact of Gaussian filtering
20 on the classification performance for data from all four acquisition resolutions. LP
a1 spatial filtering is most commonly performed as a noise reduction step in fMRI data
222 pre-processing. The classification performance achieved on HP filtered data of the same
w3 filter size is an indication of the amount of usable information removed by LP filtering.
224 Classification performance on BP filtered data indicates whether usable information is
w5 present in a particular band of spatial frequencies. Likewise, band-stop performance
w6 indicates the presence of usable information anywhere, except in a particular band.

427 Except for 0.8 mm and 1.4 mm data, we observed no increase in mean decoding for
28 LP filtering, compared to performance on unfiltered data. For all resolutions, except for
w29 0.8 mm, we see observe the best performance after LP filtering with kernel sizes no larger
10 than 3mm FWHM. Peak performance on HP filtered data was achieved for filter sizes
s larger than 9 mm FWHM, except for the 0.8 mm acquisition resolution. We investigated
12 via BP filtering which frequency bands were most informative for orientation decoding
i3 across all acquisition resolutions, using DoG BP filters with a 1 mm difference in the
s FWHM size of the underlying Gaussian filters (Figure 4 A-D; black curves). The results
135 show peak performance of BP filtering yielded for all acquisition resolutions in the range
16 of ~5-8mm (highlighted range).

437 Average decoding accuracy of BS filtered data remained above-chance for all spatial
s  frequency bands. The BS performance curve initially follows the LP performance for
s0 small filter sizes, but resembles the HP performance for larger filter sizes.

wmo  Impact of spatial resampling to other resolutions, with and without Gaussian smooth-
a1 ing. As an alternative approach to Gaussian LP filtering for simulating a resolution
s reduction, data acquired in a particular resolution were resampled (FFT-based trans-
a3 formation) to all other resolutions and classification analysis was performed with and
se  without additional prior Gaussian LP filtering, as suggested by Freeman et al. (2013).
ws  The results are depicted in Figure 5.
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Figure 4: Orientation decoding accuracies for all acquisition resolutions (increasing acquisition voxel
size from top to bottom) and levels of spatial high-pass, low-pass, band-pass, and band-stop Gaussian
filtering. Panels on the right visualize the size of selected Gaussian filter kernels with respect to
the voxel size at each resolution. FWHM values for band-pass and band-stop filters refer to the
corresponding 1 mm band to the closest smaller filter size (e.g., 5mm refers to the 4-5mm band).
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unfiltered decoding performance. Star markers indicate a significant difference (Bonferroni-corrected,
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a6 We observed no general benefit of spatial down-sampling with respect to decoding
w7 accuracy. We also did not see systematically improved accuracies after LP filtering
ms across resolutions.

449 Data acquired at 2.0 mm or 3.0 mm showed a general trend towards higher decod-
is0 ing accuracy after resampling (up-sampling or down-sampling) compared to the corre-
i1 sponding native acquisition resolution, even with prior Gaussian LP filtering of different
s2  kernel sizes. 0.8 mm data consistently showed low decoding accuracy when resampled
553 to any other resolution with or without Gaussian filtering.

s Vascular contribution to orientation decoding

»s5  Orientation decoding again performed inside and outside the vein localizer mask in
6 the V1 ROI in order to evaluate the availability of orientation discriminating signal in
s7  the vascular system. Two different, arbitrary thresholds were used to classify voxels
8 as intersecting vs. non-intersecting with veins, based on the co-registered and re-sliced
s0 vein mask: the top 40% and top 10% of voxels with the highest value after realignment
w0 and reslicing to the target resolution with trilinear interpolation. The resulting number
w1 of voxels are presented in Table 1.

a62 Analyses outside the vein mask were performed twice: once for the entire region
w3 and again for a subset of voxels that was constrained to the number of voxels inside
ss  the vein mask for the corresponding resolution. In the latter case, the analysis was
w5 repeated with a new random voxel selection 100 times.

466 Figure 6A (right panel) shows that voxels with the highest venous content in their
ss7 volume still yield above chance decoding performance. The performance drop for the
w8 two lowest resolutions between the two vein mask thresholds may be explained by the
w0 low number of input features going into the classification at high threshold (compare
wmo  Figure 6A, left panel). At 0.8 mm, the 10% most venous voxels yield the same decoding
m  performance as the rest of the V1 ROI combined (Fig. 6, middle panel), and noticeably
s more than a corresponding number of randomly samples non-venous voxels (Fig. 6A,
w3 middle panel). Similar results can be observed for the 1.4 mm resolution.

42 Discussion

a5 In order to explore the effect of acquisition resolution and spatial filtering on the de-
as  coding of visual orientations from primary visual cortex, we measured ultra-high field
sz 7Tesla fMRI data at four different resolutions from seven participants. Linear SVM
s classifiers were trained to classify voxel patterns of regression weights of hemodynamic
aro Tesponse models for the visual stimulation with four different oriented gratings. Cross-
w0 validated classification accuracy was used as performance metric.

481 The overall classification accuracies reported here are deceptively low (peaking at
sz 40-50% with a theoretical chance-level performance of 25% for the 4-way classification
w3 analyses employed in this study). Other decoding studies in the literature have often
s« used binary classification paradigms (for example, Alink et al., 2013; Chaimow et al.,
w5 2011) or reported average pairwise accuracy for classification performance results like
s6 (e.g., Kamitani and Tong, 2005; Op de Beeck, 2010). Converted into average pairwise
w7 binary accuracies, the results reported here range from 55% to 70% (for 0.8 mm and
s 2mm respectively, each accuracy corresponding to an analysis of the full V1 ROI and
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Figure 5: Orientation decoding performance on fMRI data resampled to other spatial resolutions,
with and without different levels of prior low-pass Gaussian spatial filtering. Each panel title indi-
cates the respective resolution after spatial resampling. The panel legends identify the corresponding
original native acquisition resolutions. The color coding consistently identifies the native resolution
across all four panels. The disconnected data points at 0 mm represent the decoding accuracy after
spatial resample without prior Gaussian LP filtering. Recording high-resolution data with subsequent
spatial down-sampling tends to yield lower classification accuracies compared to the native resolution
acquisition, with or without prior Gaussian low-pass filtering of any tested kernel size.
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Figure 6: (A) Decoding accuracy computed inside and outside the vein mask within the V1 ROL
The vein masks obtained from susceptibility weighted imaging were thresholded at two different levels
i.e. 60 percentile and 90 percentile. The panel on the left shows the performance of the entire V1
ROI outside the vein mask (non-venous voxels) for the two different thresholds. Orientation decoding
accuracy on V1 voxels restricted to the veins mask (venous voxels) is shown on the right panel. The
middle panel depicts the average decoding performance of non-venous voxels that randomly sampled
and matched in number to the corresponding venous voxels. The dashed horizontal lines indicate
the chance performance. (B) Trilinear interpolation was used to reslice the vein mask to all four
target resolutions. The histogram shows the distribution of mask voxel intensities corresponding to
the volumetric fraction of “vein voxels” in the high-resolution vein mask (voxel count axis in log-scale).
(C) Axial maximum intensity projection of the vein mask of one participant resliced to the 0.8 mm
resolution; illustrates the two chosen thresholds. The color indicator correspond to the curves depicted
in panel A.
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s0  with no additional smoothing; see Figure 2A; theoretical chance-performance: 50%),
w0 hence accuracies are of the same magnitude as in other studies (see, for example, Haynes
w1 and Rees, 2005; Alink et al., 2013). In addition, some studies like Swisher et al. (2010)
w2 also reported similar unfiltered accuracy results (=50%) in a 4-way classification anal-
w3 ysis with 0°, 45° 90°, and 135°gratings with much longer stimulation time (a block
ws design of 18s of block duration and 8 blocks/run). Therefore, we conclude that the
s overall quality of the present data is comparable to that of previous studies, and that
w6 the results presented here can be used to address open questions regarding the impact
w7 of data acquisition and spatial filtering parameters on the decoding of orientation from
ws the early visual cortex. Importantly, in this experiment we did not use a univariate
w0 feature selection approach to define the “visually responsive” voxels in V1 (for exam-
so ple a GLM contrast) in an attempt to improve the decoding accuracy. Studying the
so0 potential impact of such an approach is left to a future study.

502 Given the uncertainty of how much a further optimization of the decoding procedure
ss — e.g., the specific classification algorithm, hyper-parameter optimization strategy, and
se  feature selection method — would impact the results, we consider the interpretation of
sos the present results regarding the nature of the signal source as a starting point for a
sos further exploration of their robustness respect to variations of analysis parameters not
sor considered here.

sos  Optimal acquisition resolution

500 Among the four tested acquisition resolutions, the highest decoding accuracy was
s.0 observed with a 2 mm resolution (Figure 2A). This result is congruent with a simulation
su study by Chaimow et al. (2011) that analyzed the impact of anatomical and physio-
si2 logical properties of primary visual cortex, as well as technical parameters of BOLD
si3 fMRI acquisition on the accuracy of decoding the stimulated hemifield from signal sam-
siu pled from ocular dominance columns. The aforementioned study included a number
si5 of predictions for choosing optimal voxel size and number of input voxels to maximize
sis decoding accuracy for 3 Tesla fMRI (see Figure 6 in Chaimow et al., 2011) that show a
sz striking similarity to the results presented here (Figure 2). For 3 Tesla fMRI, Chaimow
sis et al. (2011) showed that peak decoding accuracy is achieved around 3 mm in-plane
si0 voxel size for ocular dominance. Given that the profile of orientation columns has
0 higher spatial frequency compared to ocular dominance columns (Obermayer and Blas-
s del, 1993) and the BOLD PSF at 7Tesla is considerably smaller compared to 3 Tesla
s2  (Shmuel et al., 2007; Engel et al., 1997) a higher optimal resolution was to be expected
23 for this study, and this hypothesis is supported by our results. This finding is also inline
2« with a recent study by Gardumi et al. (2016) showing that optimal decoding accuracy of
s»s  speaker identity, or phonemes, from auditory cortex BOLD patterns could be achieved
6 with an effective voxel size of 2.2mm (acquisition resolution was 1.1 mm and target
s2r resolution was achieved by reconstructing k-space data to a lower resolution), although
s2s  the nature of the commonality between these findings remains to be investigated.

529 Superior decoding performance at 2mm was still observed even when the number
s of input voxels for classification was held constant across resolutions, although the per-
su formance differences between resolutions are reduced (Figure 2B). The ratio of input
s features (voxels) and the number of observations (fixed in this study) is a critical factor
s33 for the training of a classification model, as with increasing dimensionality the sampling
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s of the feature space becomes sparser, and, consequently, the estimated decision surface
s suffers from increased uncertainty (curse of dimensionality, Bellman, 1961, after Fried-
s man et al. 2001) In this study, the number of voxels in the ROI varies by a factor of
s >20 from the lowest to the highest resolution (Table 1) and the coverage volume also
s3  varies across resolutions. Despite full V1 coverage for the 1.4 mm (except for one sub-
s ject), 2mm, and 3 mm acquisitions, peak decoding accuracy was observed with 2mm
ss0 data. There is no noticeable difference between accuracies for the lowest resolutions
see - when the number of input voxels is held equal (Figure 2B). The pattern of decoding
sz accuracy differences when using the full ROI vs. a constant number of voxels across all
s3 resolutions could indicate that ~700 input voxels (size of the ROI at 2mm) represents
sse  the optimal trade-off between the number of observations and input voxels, given the
sss noise in the data and the fixed number of observations in this study.

546 Moreover, the present data suggest, in line with Chaimow et al. (2011), that tem-
se7  poral signal-to-noise-ratio, an indicator of temporal signal stability, is a critical factor
ses for optimal decoding accuracy (Figure 3A), whereas the magnitude of BOLD signal
ss0  change was not found to be relevant. While the overall BOLD signal change amplitude
ss0 at 0.8mm (4.51%) was higher than that at 2.0 mm (3.73%), the decoding performance
ss1 was superior for 2.0mm data. In fact, 0.8 mm data showed the largest magnitude of
ss2. BOLD signal change but, at the same time, showed the lowest decoding accuracy among
53 all resolutions.

554 Previous studies have reported BOLD response magnitude differences for different
ss5 orientations. Furmanski and Engel (2000) reported that cardinal orientations elicited
ss6  higher activation changes than oblique orientations of circular gratings. Swisher et al.
ss7. (2010), who used the same kind of hemifield gratings as in the present study, reported
sss  higher activation for oblique than cardinal orientations. The pattern observed in this
sso - study diverges from both previous results showing a tendency for activation to be lowest
ss0 for 0” and highest for 90° orientations, with oblique orientations in between. While we do
ss1 not find statistically significant evidence for a differential average response magnitude
ss2  across orientations at the ROI level, this does not rule out the presence of univariate
se3  orientation-discriminating signal in a subset of the input features/voxels.

564 It has to be noted that the comparison of decoding performance on 0.8 mm data
ses  with other resolutions is compounded by several factors. First and most importantly,
ss6 the V1 coverage at this resolution was limited for technical reasons (imposed by the
se7 requirement to keep the TR at a common 2s interval across all resolutions). This likely
sss  leads to a general underestimation of the performance at this resolution, which affects
sso  both the analyses of the full ROI, as well as those sub-sampling a smaller number
so of voxels. Moreover, the small coverage, combined with the impact of any residual
sn geometric distortions, and the additional intermediate alignment step make accurate
sz BOLD-to-structural alignment more challenging at 0.8 mm than at any other resolution.
s13 Precise alignment is important, as the V1 ROI is initially defined on the reconstructed
st cortical surface. Any suboptimal alignment will therefore impact decoding accuracy at
s5 0.8 mm more than other resolutions. Lastly, the search range for C-value SVM hyper-
s parameter was insufficient for 0.8 mm scans, the C-value was predominantly set to the
s lower search range boundary (Fig. S6). The search range was determined on a pilot
sts - scan and held constant for all analyses to avoid circularities. A more suitable parameter
so - optimization scheme could have led to different results.
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sso  Optimal low-pass spatial filtering

581 Gaussian spatial LP filtering is one of the most common preprocessing steps for
ss2 fMRI data analyses. However, the present findings indicate that explicit spatial LP
se3 filtering, in addition to the implicit spatial filtering due to inherent motion, and the
ssa  effect of head movement correction algorithms is generally not beneficial for orientation
ses decoding (Figure 4). Only for resolutions higher than 2mm does additional spatial
ss  smoothing with 2-3 mm FWHM show a tendency for improved decoding accuracy. This
se7  suggests that, given a resolution, a spatial smoothness equivalent to a Gaussian kernel
sss size of ~2mm FWHM is optimal. This is congruent with the observation of overall
ss0  lower decoding accuracies for 3mm scans and is in line with the prediction of optimal
so0 acquisition resolution between 2 mm and 3 mm as presented above.

501 Moreover, spatial down-sampling is not beneficial for orientation decoding either.
52 As shown in Figure 5 (0mm data points, corresponding to no Gaussian smoothing),
s03  orientation decoding on down-sampled data does not outperform the decoding on data
s« natively recorded in the corresponding resolution (as for example, in the 2.0 mm panel
sos  of Figure 5, the 0.8 mm and 1.4mm downsampled data performed lower than native
s 2.0mm data).

sov  Spatial characteristics of orientation specific signals

508 The analysis of individual spatial frequency bands via BP filtering (Fig. 4) revealed
so0 that orientation-related signal is present in a wide range of spatial frequencies as in-
so dicated by above-chance decoding performance for nearly all tested bands. However,
s1 a drop in decoding accuracy can be observed across all resolutions for bands with a
o2 12mm FWHM (or larger) Gaussian kernel as the smaller kernel in the LP filter pair
03 used for BP filtering.

604 Freeman et al. (2013), states that it is still an open question whether fMRI can re-
s flect signals originating from sampling random irregularities in the fine-scale columnar
s0s architecture (spatial scale ~1 mm). This study also suggests that given a columnar ar-
sor chitecture in the human visual cortex (Adams et al., 2007), BOLD fMRI measurements
ss at conventional resolution ~2mm might reflect a combination of fine-scale and coarse-
s00 scale (spatial scale ~10 mm) contributions. Similarly, we can interpret the present re-
s10 sults such that the orientation-discriminating signal picked up from these BOLD fMRI
su1  data is spatially broadband in nature, includes both high spatial frequency components,
s12  as well as large-scale biases. On one hand the highest decoding accuracy was observed
s13  at 2mm resolution, and low pass filtered components generated above chance accuracies
sie beyond 10 mm FWHM Gaussian smoothing (similar to Op de Beeck, 2010). These ob-
615 servations point to indicate that low frequency components provide orientation specific
16 signals. On the other hand we found that for DoG BP filters Gaussian kernel sizes of
sz 4 and 5mm FWHM and larger, decoding performance on BP filtered data was higher
s than the LP filtered components at all acquisition resolutions. This result pattern is an
s10 indication that low spatial frequency fMRI components also contribute to noise with
620 respect to orientation discrimination.

621 According to Freeman et al. (2013), a test for fine-scale signals (/=1 mm, according
622 to the definition by Freeman et al.) underlying the ability to decode orientations would
23 be a comparison between decoding accuracies after down-sampling high-resolution mea-
e24 surements to conventional scanning resolutions, with and without prior removal of the
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s columnar-scale contributions. To investigate this topic, we did FFT based resampling
s of the BOLD fMRI data from their native resolution into all three alternative reso-
o7 lutions with or without prior removal of low frequency components (Fig. 5). We did
e2s TNot observe an increase in decoding accuracy after down-sampling data from our two
s20 highest resolutions (0.8 mm and 1.4 mm), regardless of any prior LP Gaussian filtering
s (except for a single case of performance increase when resampling 0.8 mm to 1.4 mm
en data without prior LP filtering, at a comparatively low overall accuracy level). From
22 these findings we conclude that the orientation-related signal used for decoding is un-
e33 likely to comprise of low-frequency components alone. This conclusion is in line with
e Swisher et al. (2010) who also reported that “majority of orientation information in
635 high resolution fMRI activity patterns can be found at spatial scales ranging from the
e36 size of individual columns to about a centimeter”.

637 Carlson (2014) identified neuronal activity patterns related to stimulus edges that
e3¢ mimic a radial bias as a potential source of a global signal bias. The stimuli employed
630 in this study had clearly visible, unsmoothed edges, hence edge-related activity is a
a0 valid explanation for the observed orientation-related large-scale signals. It can be
sa1  argued that the V1 ROI could be adjusted by a “safety margin” to the representation
sz of the edge of the stimuli to reduce edge related signals. We have tested various criteria
s3 for ROI definition and sizes. We have found very little variation of the results with
saa  Tespect to the particular shape and size of the ROI. The reported results are based
es on a V1 ROI generated by retinotopic mapping that used a stimulus that was larger
s than our visual orientation stimulus, hence we have likely sampled voxels representing
sar  edge-related signals. In other words, our ROI should contain a maximum amount of
ss  stimulus-related information present in V1. We leave an analysis exploring aspects of
&0 the relationship of individual stimulus properties and ROI shapes with the BOLD signal
ss0 and decoding to a future study.

651 Overall, BP filtering yielded peak performances for all resolutions (except for the
2 3mm acquisition). Consistent with Alink et al. (2013), the present results suggest that
3 a band matching a DoG BP filter consisting of a 5mm and an 8 mm FWHM Gaus-
e sian LP filter) carries most (but not all) orientation-related signal. This band covers
s wavelength from about 4.5mm to 1.6cm (Fig. S5). The Nyquist-Shannon Sampling
6 Theorem dictates that, in order to measure a particular signal appropriately, the sam-
es7  pling frequency has to be at least twice the critical frequency of that signal. Hence,
68 a 3mm acquisition can only sample frequencies with a wavelengths of 6 mm or larger,
50 and consequently misses some part of this most informative band.

660 This is consistent with our finding that optimal decoding accuracy required a reso-
61 lution higher than 3 mm. The nearly identical peak performance on 1.4 mm and 2 mm
s2 data is also compatible with this minimum frequency rule. However, the markedly
663 lower decoding performance on 0.8 mm could be considered evidence that a minimum
s sampling resolution is necessary but not sufficient for optimal decoding performance. In
s this study, an optimal balance of scanning resolution and temporal signal-to-noise-ratio
e6 1S reached at 2 mm resolution. Higher resolution reduce tSNR and lower resolutions do
s7 not provide sufficient sampling of higher frequency signals.

668 Within the limits of our analyses the presented results do not show evidence for a
0 variation of informative spatial frequency bands across acquisition resolutions as one
e0  Mmight observe when a high spatial frequency signal of orientation columns in early vi-
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en sual cortex is reflected in (much larger) fMRI voxels by means of spatial aliasing. In
2 the case of spatial frequency aliasing (Nyquist-Shannon Theorem) the frequency of the
s observed, aliased signal would vary depending on the actual sampling frequency (size
s of the voxel), due to an insufficient sampling frequency by the voxel grid. Here, the
s peak decoding performance (as found after BP filtering) is always located in the same
e7s  band across all four resolutions. However, the DoG filters used here to investigate the
e importance of particular frequency bands feature a relatively large passband (Fig. S5)
es that does not allow to rule out spatial aliasing of orientation-discrimination signal. The
e absence of evidence for spatial aliasing is in line with Kamitani and Tong (2005) and
0 Chaimow et al. (2011) which show that the spatial frequencies of columnar structures
1 (0.5 cycles/mm) do not contribute signal for decoding, due to several technical limi-
2 tations like inherent head motion and reduced SNR proportional to reduction in voxel
ss3 volume. Moreover, Shmuel et al. (2007) state that the PSF — that captures blurring
sea factors due to eye movements, neuronal response, BOLD response PSF in gray matter,
ss as well as the PSF of the data acquisition process — makes fMRI data inherently LP
s filtered and, as such, poses a physical limitation on the spatial frequency scale from
ez which fMRI signal can be obtained. Kamitani and Tong (2005) and Chaimow et al.
sss  (2011) identify contributions from random variations and irregularities in the columnar
0 structures captured by larger voxels as the main source of information for decoding.
s These are of considerably lower frequency than the primary spatial frequency charac-
so1 teristics of the columnar organization and are lower than the Nyquist criterion of the
sz BOLD fMRI sampling frequencies.

693 It could be speculated that the spatial scale of the orientation signal as estimated
sa Dy volumetric spatial filtering is, to some degree, determined by the representation
s Of the cortical folding pattern in the scan volume. As volumetric filtering procedures
o6 using 3D Gaussian kernels inherently mixes signals from gray matter, white matter,
s7 and superficial vessels. It might be that a volumetric BP filter corresponding to the
ss  Mmost informative spatial frequency band is beneficial because it is of sufficient size to
0 average signal across the entire diameter of the folded calcarine sulcus, whereas a smaller
70 filter is not, and a bigger filter includes a substantial fraction of the surrounding white
1 matter and adjacent cortical fields. If the above speculation is correct, we could expect
72 lower decoding accuracy in the most informative band when replacing the employed
703 spatial filtering procedure with a cortical surface-based smoothing or a spatial filtering
70 that is restricted to V1 ROIs in each hemisphere. We performed these two alternative
705 analyses and found only minor differences in the results (see supplementary material
w06 Fig. S3). Similar to the report of Swisher et al. (2010), the band-pass, high-pass, low-
77 pass components based on these alternative spatial smoothing schemes perform very
708 similar, but are more evenly sloped with increasing filter size compared to unconstrained
700 volumetric filtering. Except for the 0.8 mm data, where the insufficient signal is even
70 more evident, the BP performance is extremely similar. We conclude that there is little
m  evidence for an impact of standard, unmasked, volumetric spatial filtering for this type
n2  of decoding analysis, compared to alternative procedures.

ns  Veins contribute signal usable for orientation decoding

714 Several studies have cited an orientation-related BOLD signal originating from the
75 vascular system (draining veins) as a potential information source for decoding that
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ne may introduce spatial biases in the representation of orientation as measured with
7 fMRI (Kriegeskorte et al., 2010; Chaimow et al., 2011; Shmuel et al., 2010). The
ns  present results confirm the availability of such a signal. Particularly for the two highest
70 resolutions tested here the decoding accuracy obtained from voxels sampling veins is
720 equal to the performance obtained from the non-venous rest of the V1 ROI, or even
721 outperforms it when controlling for the number of input voxels for the classification
72 model (Fig. 6A).

723 A BOLD signal originating in the blood vessels has the potential to introduce com-
724 plex transformations of the spatial representation of orientation in the BOLD response
s patterns. Due to the structural properties of the vascular system this signal is likely
26 to be of lower spatial frequency, compared to the underlying neuronal activation pat-
727 tern, and is superimposed on a potential high-frequency pattern reflecting the columnar
726 structure of V1. This explanation has been put forth by Kriegeskorte et al. (2010) who
720 describe voxels as “complex spatio-temporal filters” and our results are compatible with
730 this model. However, gradient echo BOLD fMRI is highly sensitive to large draining
7n veins (Gardner, 2010; Shmuel et al., 2010; Chaimow et al., 2011), which might influence
722 the BOLD signal also at a considerable distance from the blood vessel, rendering the
733 interpretation of these findings even more difficult.

734 It should also be mentioned that previous studies found a substantial reduction of
735 intra-vascular BOLD signals at higher magnetic field strength (Yacoub et al., 2001),
76 and enhanced signal contributions from microvascular structures at 7T (Shmuel et al.,
7z 2007). Consequently, the particular composition of the compound signal captured with
s BOLD fMRI will vary with the magnetic field strength. A future study should compare
739 the present results with data acquisitions at a different field strength to shed more light
70 on nature of the underlying signal and the implications for decoding analysis.

m  Limitations. The focus of the present study was to investigate the effect of acquisition
2 resolution and spatial filtering on the decoding of visual orientations from primary
n3  visual cortex. In order to yield comparable results, the acquisition parameters were
s constrained to guarantee a certain minimum coverage of the V1 ROI even at the highest
725 resolutions and to have an identical temporal sampling frequency (TR) to yield the same
s number of observations across all resolutions. This choice implied that the GRAPPA
7 acceleration factor had to be increased with increasing resolution, hence leading to an
us increased under-sampling of the k-space with higher resolutions. This could impact the
9 sensitivity of the scan to high-frequency spatial signals. A future study will have to test
70 whether the present findings hold when constraints on coverage and sampling frequency
751 are relaxed. For example, a study by De Martino et al. (2013) using a 3D gradient and
72 spin echo (GRASE) sequence suggests that such a sequence outperforms a gradient
73 echo sequence, such as the one employed in this study, for high-resolution imaging at
74 0.8 mm isotropic resolution — at the expense of a vastly reduced scan volume.

755 The present study is exclusively based on 7 Tesla fMRI data, hence it remains unclear
76 in which way the characteristics of the relation of decoding performance and acquisition
77 resolution are dependent on MR field-strength. The differences in the sizes of the BOLD
758 point-spread functions (Shmuel et al., 2007; Engel et al., 1997) suggest a lower resolution
70 limit for 3 Tesla scans. However, the reported optimal resolution is within the range of
70 conventional acquisition resolutions of today’s 3 Tesla scanners. A future study should
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w1 address the question of how the decoding performance varies with field-strength for
72 identical resolutions.

763 While this study focused on the optimal acquisition parameters for decoding of
74 visual orientation from fMRI BOLD response patterns in early visual cortex, we ac-
765 knowledge other possibilities of further optimization of the decoding procedure (clas-
76 sification algorithm, hyper-parameter optimization, etc.) and their potential impacts
77 on results and interpretations. To facilitate the required future analyses we have pub-
s licly released the data (available without restrictions from GitHub https://github.
760 com/psychoinformatics-de/studyforrest-data-multires7t) and a “Data in brief”
770 manuscript along with this. In this study we have found that given a neural signal with
m  known fine-scale spatial characteristics, there are technical and physiological factors
72 that place the acquisition resolution optimal for decoding at a substantially coarser
73 scale. Future studies should investigate whether the optimal settings for other decod-
72 ing paradigms and different cortical areas, beyond the findings for visual orientation
75 in visual cortex presented here, and the congruent results for auditory representations
76 reported by Gardumi et al. (2016), are similar in nature.
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= Supplementary materials and methods

o1 Fxperimental Design

o2 'This section describes how the display sequence of the oriented gratings in both the
ss3  hemifields were generated per experimental run. Independent sequences were gener-
osa ated per hemifield with equal number of occurrences of each orientation. There were
o5 4 different orientations (0°, 45°, 90°, or 135°) each occurring for 5 times in the se-
w6 quence, contributing to 20 trials in one run. The sequences were randomly shuffled
o7 per hemifield. In this analysis a single GLM was used to model the events in both the
oss  hemifields. This was done to account for potential inter-hemispheric cross-talk due to
os0 the simultaneous bilateral stimulation, and correlation in this stimulus sequence be-
o0 tween hemifields. Moreover, in order to minimize undesired attention shift effects, we
w1 opted for a simultaneous onsets of the stimulation in both hemifields. Combined with
o2 the further constraint of the same number of stimulation trials per orientation in both
o3 hemifields, this would unavoidably lead to a singularity of the GLM design matrix,
sa unless a further source of temporal variability is introduced. In order to address this
ss issue unilateral stimulation events (termed NULL events) were introduced and included
o6 1N the GLM.

967 For comparison, we additionally analyzed these data using two separate models for
ss both hemifields, while excluding NULL events from the modeling. This resulted in an
w0 overall improved classification performance, but did not impact the structure of the
oo relative performance differences between resolutions (0.8 mm: 32.32%, 1.4mm:41.78%,
on 2.0mm: 46.42%, and 3.0mm: 40.17%) Figure S1 illustrates the combined impact of
a2 potential interhemispheric cross-talk and random correlations of the stimulus sequence
o3 between hemispheres by comparing the decoding performance in the contralateral and
ora ipsilateral V1 ROI.

as  Alternative spatial filtering procedures

o76 In Figure 4 the performance of orientation decoding was quantified following low-
o7 pass, high-pass, band-pass, and band-stop spatial filtering in order to study the spatial
as frequency dependent orientation selective responses. All spatial filtering procedures
oo Were volumetric, using 3D Gaussian kernels and ROI voxel selection was performed after
w0 spatial filtering with different Gaussian kernel widths on the entire volume. Though
1 this 3D filtering procedure was being extensively used in previous studies like (Op de
w2 Beeck, 2010; Swisher et al., 2010), this approach leads to information propagation
e3 from adjacent parts of the cortex, white matter and superficial vessels. Moreover,
ses unconstrained 3D filtering does not respect the cortical folding pattern and, given a
ss large enough filter, can smooth across sulcal boundaries, such as the two banks of the
ss calcarine sulcus. This confounds filter width with the extent of the cortical region from
o7 which information is drawn. To avoid this problem, two additional spatial filtering
ws approaches were implemented, namely volumetric filtering restricted to the V1 ROI,
so and surface-based smoothing.

wo  Volumetric filtering restricted to the V1 ROI. Similar to the spatial filtering procedure
o1 performed in Alink et al. (2013), the voxel values outside the V1 ROI were considered
02 to be missing values (NaN) instead of applying spatial filtering on the whole volume,
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Figure S1: Orientation decoding accuracy on spatially unfiltered data across acquisition resolutions
in both contralateral and ipsilateral V1 ROI. The ipsilateral accuracies show similar trend as the
contralateral accuracies. The ipsilateral accuracies for 1.4 mm and 2 mm resolution show low decoding
performance and the 0.8 mm and 3 mm decoding accuracies are at chance level.

o3 prior to any masking. To eliminate a potential effect of smoothing across hemispheres
wa with large Gaussian kernels, filtering was restricted to individual hemispheres. First,
ws voxel values outside the left V1 ROI was considered to be NaNs and spatial smoothing
ws was applied. The same procedure was applied to the right ROI, and then the smoothed
o7 left and right V1 ROI were combined to form the smoothed BOLD volume. The same
o nested cross validation approach was performed on the smoothed data. The results
wo Of this analysis are highly similar to the results for the unconstrained filtering prior
1000 masking (Fig. S3 A—D)

o Surface-based smoothing. Freesurfer’s mri vol2surf function (Dale et al., 1999) was
w2 used for smoothing gray matter BOLD data on the cortical surface, while specifying
w3 the filter size with the surf-fwhm parameter. In the next step surface-projected data
woe  were mapped back into the BOLD volume using Freesurfer’s mri_surf2vol function
wos  (tri-linear interpolation, fill-projfrac parameter with range 0-1 in steps of 0.01).
wos This procedure was performed for each hemisphere separately. Back projection into
oz the volume was performed to maintain an equal number of input features for the de-
ws  coding analysis. To illustrate the effect of surface based filtering, Figure S2 shows the
woe  reconstructed surface of one participant, with the average modeled response to cardinal
w0 and oblique orientations, filtered with 3 different filter FWHMSs.

1011 Subsequently, the same nested cross validation approach was performed on the
w2 smoothed data. The results of this analysis are shown in Figure S3 E-H. The re-
w3 sults of surface based smoothing were similar to those of the 3D Gaussian filter, but
s the decoding accuracy did not decrease as rapidly with larger kernels. The band pass
s filtering peak was present at ~5-8 mm but less pronounced and more evenly sloped than
w6 what was obtained from volumetric filtering.
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Figure S2: Surface-rendering of BOLD response patterns for one participant (2 mm acquisition, sub-
21), after surface-based smoothing with three kernel sizes. Overlays indicate the modeled average
response to cardinal and oblique orientations (Z-score) in the manually delineated V1 region, thresh-
olded at p < 0.05 (voxelwise).

w7 Resampling procedure to other resolutions

1018 Resampling BOLD fMRI data from one resolution to the other was implemented
9 as a two-step procedure. In the following, we describe the procedure using resampling
w20 from 0.8 mm to 3.0 mm resolution as an example, but the procedure was analogous for
w2z all resolution pairs.

1022 First FFT-based spatial filtering was performed on the distortion corrected 0.8 mm
023 data (see Figure S4A) using the scipy function signal.resample(). This removed
1024 the higher frequency components, but the voxel grid remained unchanged (in-plane
02s matrix size (208, 160) with 32 slices). In the next step, linear resampling /reslicing was
w6 performed with nilearn function resample img() to convert the FF'T filtered image
027 to the corresponding 3.0 mm voxel grid (see Fig. S4B for an example). Importantly,
ws other than changing the voxel size, no further transformation, for example, to align
w0 a resampled image to the orientation of the corresponding native acquisition, were
1030 applied.
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Results of alternative spatial filtering procedures (analog to Fig. 4). Volumetric spatial

filtering restricted to V1 ROI (A-D), cortical surface-based smoothing (E-H).

32


https://doi.org/10.1101/081604

bioRxiv preprint doi: https://doi.org/10.1101/081604; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A B

Figure S4: Illustration of resampling from 0.8 mm to 3.0 mm resolution. (A) Distortion corrected
0.8mm isotropic BOLD image with superimposed V1 ROI mask. (B) After removal of high-frequency
components using scipy function signal.resample() superimposed with resampled V1 ROI mask (linear
interpolation using scipy function ndimage.interpolation.zoom())
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Figure S5: Illustration of the attenuation profile of a Difference-of-Gaussian (DoG) band-pass filter.
The blue and green curve represent the profiles of Gaussian low-pass filters (4mm and 5 mm respec-
tively) in the frequency domain. Horizontal lines represent the -3 db points of the Gaussians. Band-pass
filtering is implemented by subtracting the two low-pass filter outputs from each other. The profile of
the resulting DoG band-pass filter is shown in red. Vertical lines show the Nyquist-frequencies for the
three lowest resolutions in the study. The pass-band of this exemplary DoG filter (corresponding to
an axis label “5mm” in Figure 4 contains frequencies higher than what can be adequately measured
with a 3mm acquisition.
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Figure S6: Range of tuned Linear SVM C parameters in the orientation decoding analysis across
different resolutions.

Figure S7: Illustration of the alignment of distortion corrected BOLD images obtained at 7 Tesla
to the structural data obtained at 3 Tesla for 2 subjects. (A) Uncorrected image from Siemens 7T
Magnetom (B) Distortion-corrected image (In and Speck, 2012) (C) Alignment of the BOLD image
and the cortical surface, reconstructed from the corresponding structural scans. The white matter
segmentation is shown in yellow and the pial surface in red.
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Figure S8: Temporal signal-to-noise ratio (tSNR) as a function of voxel volume. The observed data
are represented by dots and the error bars represent the SEM across subjects. The dashed line shows
the fit to the following model tSNR = xV/v/1 4+ A\2k2V?2 similar to the report of Triantafyllou et al.
(2005)
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