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Abstract 

Oscillatory synchrony among neurons occurs in many species and brain areas, and has been 

proposed to help neural circuits process information. One hypothesis states that oscillatory 

input creates cyclic integration windows: specific times in each oscillatory cycle when 

postsynaptic neurons become especially responsive to inputs. With paired local field potential 

(LFP) and intracellular recordings and controlled stimulus manipulations we directly tested this 

idea in the locust olfactory system. We found that inputs arriving in Kenyon cells (KCs) sum 

most effectively in a preferred window of the oscillation cycle. With a computational model, we 

found that the non-uniform structure of noise in the membrane potential helps mediate this 

process. Further experiments performed in vivo demonstrated that integration windows can 

form in the absence of inhibition and at a broad range of oscillation frequencies. Our results 

reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to 

decode temporally organized spiking.   
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Introduction  

Oscillatory synchronization of neurons occurs in many brain regions (Buzsáki, 2006), including 

the olfactory systems of vertebrates (Adrian, 1942; Kay, 2014) and invertebrates (Laurent and 

Naraghi, 1994; Stopfer et al., 1997; Ito et al., 2009; Tanaka et al., 2009), and is indispensable for 

precise olfactory coding (Stopfer et al., 1997; MacLeod et al., 1998). One mechanism by which 

oscillations have been proposed to influence coding is through the creation of cyclic integration 

windows — specific times within the oscillation cycle when synaptic input is most efficiently 

integrated by a postsynaptic neuron (Laurent, 2002). Cyclic integration windows could allow a 

neuron to respond preferentially to spikes arriving from multiple presynaptic neurons 

coincidentally in a specific part of the cycle (Perez-Orive et al., 2002). Thus, coincidence 

detection mediated by integration windows could help read precise temporal codes for odors 

(Perez-Orive et al., 2002; Bathellier et al., 2010). Phase-specific effects of synaptic inputs have 

been described both in brain slices (Lampl and Yarom, 1993; Chorev et al., 2007) and in 

simulations (Izhikevich, 2000, 2002).  However, the existence of cyclic integration windows has 

not been demonstrated, and their functional requirements are unknown. 

 

We examined cyclic integration windows in the locust olfactory system. Here, information 

about odors is carried from the antenna to ~800 projection neurons (PNs) in the antennal lobe. 

Individual PNs respond to multiple odors with dense, time-varying patterns of spikes. Excitatory 

and inhibitory interactions between PNs and local neurons in the antennal lobe tend to 

synchronize subsets of PNs so their spikes arise in waves of ~20 Hz oscillations (Laurent, 2002). 

PNs carry the synchronized spikes to the mushroom body, where each of the 50,000 Kenyon 
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cells (KCs) receives input from a subset of PNs (Jortner et al., 2007). KCs have been described as 

coincidence detectors (Perez-Orive et al., 2002), responding selectively to odors, with very few 

spikes. In each oscillatory cycle, KCs receive excitatory input from PNs followed by inhibitory 

input from GABAergic neurons (Perez-Orive et al., 2002; Gupta and Stopfer, 2012). Perez-Orive 

et al. (Perez-Orive et al., 2002) suggested this inhibition could periodically antagonize the 

excitation, leaving a brief time window in every cycle, between the arrivals of excitatory and 

inhibitory inputs, for KCs to efficiently integrate the input. Thus, not only would KCs receive 

more presynaptic inputs within the window, but each input occurring within the window would 

contribute more to the firing of the KC than an equally strong input occurring outside the 

window (Perez-Orive et al., 2002). Cyclic integration windows therefore provide a possible 

mechanism for amplifying and privileging synchronized inputs from PNs. Spikes generated by 

KCs strongly phase-lock with the oscillations (Perez-Orive et al., 2002; Ito et al., 2009), but 

whether this occurs because KCs integrate input more effectively at some phases determined 

by integration windows, or simply because KCs receive more input at those phases, is not 

known. 

 

We sought to determine whether and how the cyclic input arriving in KCs establishes 

integration windows in these neurons. In awake animals we elicited oscillatory drive to KCs by 

delivering odors, and then manipulated excitatory inputs directly to KCs by injecting pairs of 

current pulses.  With simultaneous intracellular and field potential recordings we found that 

summation of inputs was more efficient in a specific part of the oscillatory cycle, demonstrating 

effective integration windows in KCs. Next, with a computational model we revealed the 
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substantial inhibition-independent contribution of noisy membrane potential fluctuations to 

this process. To test further predictions of the model we then directly injected purely excitatory 

oscillatory input to KCs, establishing that integration windows can be formed without 

inhibition, and showing that integration windows endure variations in oscillation frequency and 

interpulse interval. Our results establish that integration windows exist and provide a robust, 

simple and flexible mechanism for coincidence detection using oscillations. 

 

Results  

Input summation in KCs is regulated by cyclic integration windows 

In intact and awake locusts we made intracellular recordings from a KC (n = 16) while 

simultaneously recording odor-evoked LFP oscillations (~20Hz) with an extracellular electrode 

in the mushroom body (Fig. 1a). We injected pairs of identical intracellular current pulses into 

the KC and tested whether the summation of the two pulses depended on the phase of the 

oscillations (Fig. 1b). Intracellular current injections allowed us to control, with millisecond 

precision, the time when the input reached the KC, while minimizing indirect inputs.  Current 

pulses arrived at different phases owing to variations in the onset and duration of the odor-

elicited oscillatory cycles. Pulses in each pair were separated by 25 ms (~1/2 cycle) so the two 

pulses would be equally likely to fall within or between cycles. The interval between pulse pairs 

was 125 ms, sufficient for the membrane potential to return to baseline before the next pulse 

pair arrived (Fig. 1c).  
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Consistent with expectations and earlier results, we found that odors evoked oscillations in the 

subthreshold membrane potential of KCs (Fig. 2a), with depolarizing (upward) deflections in 

the first half of the cycle. The average peak-to-peak amplitude of these oscillations was 1.1 ± 

0.7 mV (n = 16 cells). We characterized the membrane properties of the recorded KCs by their 

responses to current injections: the input resistance in the recorded KCs (n = 16) varied 

between 151 and 1082 MΩ; net capacitance varied between 5.8 and 40.1 pF; and membrane 

time constant varied between 2.3 and 15.2 ms. Current pulses induced depolarizations that 

decayed over a few tens of milliseconds (Fig. 2b). Twenty to 25 ms after a pulse (just before the 

beginning of the second pulse), we observed 1.21 ± 0.44 mV residual depolarization. The 

magnitude of the residual depolarization was expected to be independent of the phases at 

which the pulses arrived, which we confirmed (Pearson correlation between depolarization and 

membrane potential oscillations as functions of phase, r = 0.32, p = 0.31; Fig. 2c).  

 

To investigate the integrative properties of the KCs we measured the probabilities of spiking in 

response to the first pulse, R1(φ), and to the second pulse, R2(φ), as functions of their phase, φ, 

with respect to the LFP oscillation cycle. In the presence of odor, the membrane potential and 

the spikes of KCs were expected to show oscillations that phase-locked with the LFP (Laurent 

and Naraghi, 1994; Perez-Orive et al., 2002). Also, because an input at a depolarized phase was 

expected to elicit more spiking than the same input at a hyperpolarized phase, R1(φ) and R2(φ) 

were also expected to show similar phase-locking. And, as expected, both R1(φ) and R2(φ) were 

phase-locked to the LFP (Fig. 2d) and highly correlated with the membrane potential 
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oscillations (Pearson correlation, r = 0.74, p = 0.006 for R1(φ); r = 0.79, p = 0.002 for R2(φ);  n = 

12 phase-bins per correlation).  

 

As the first and second pulses were identical in magnitude, spiking generated by both would be 

equally dependent on the membrane potential oscillations. Therefore, subtracting R1(φ) from 

R2(φ) for any given φ controls for the direct contributions of oscillations on the spiking 

generated by an input. Thus, R2(φ)-R1(φ) quantifies the phase dependency of any excess spiking 

caused by the summation of the two pulses. In the absence of any summation between the 

first and the second pulses, R2(φ) - R1(φ) will be 0. Note that the two pulses in a pair arrive at 

different phases and so cannot be directly compared (see Fig. 1b); thus, for each phase position 

φ, we measured the effect of summation as the difference in average responses to all first 

pulses at φ [R1(φ)] and all second pulses at φ [R2(φ)] after collecting responses from all pairs. 

 

Unexpectedly, R2(φ)-R1(φ) showed a strong phase preference: summation was significantly 

more effective when the second pulse occurred in the first (rising) half of the oscillation cycle 

(t(10)=3.78, p=0.004, two-sample t test, n = 6 phase-bins per sample), and was correlated with 

the membrane potential oscillations (r = 0.70, p = 0.01; Fig. 2e). This was unexpected for two 

reasons; first, although R1(φ) and R2(φ) were both greater in the first half of the cycle (when 

the membrane potential is depolarized), this “direct” effect of depolarization had been 

eliminated by subtracting R1(φ) from R2(φ); second, R2(φ)-R1(φ) was phase-dependent even 

though residual depolarization from the first pulse was demonstrably not phase-dependent 

(Fig. 2c). Notably, the unexpected effect of phase-dependent summation was just as strong as 
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the “direct” effect of phasic depolarization alone (maximum difference of 0.13 in R2-R1 values 

across phases, Fig. 2e, compared to 0.12 for R1 across phases, Fig. 2d). These results provide 

the first evidence for phase-dependent summation in neurons. The positive correlation 

between membrane potential oscillations and summation efficiency establishes not only that 

KCs receive more inputs (from PNs) in a particular window of the oscillation cycle but also that 

each input received in that window is more effective.  These results show that integration of 

inputs is more effective in a specific window of the oscillation cycle, thus demonstrating 

effective cyclic integration windows in KCs. 

 

Membrane potential noise properties contribute to cyclic integration windows 

It was not immediately clear why summation should be phase-dependent. Notably, it was not 

mediated simply by the presence of oscillatory depolarization. Then, what mechanisms 

underlie phase-dependent summation? We first considered the possibility that the 

afterhyperpolarization following a spike elicited by the first injected current pulse suppresses 

the response to the second pulse. Our reasoning was this: if the first pulse arrives near the 

peak of the membrane potential oscillation, it would have a high probability of eliciting a spike. 

Then, this spike's afterhyperpolarization could interfere with the response to the second pulse, 

which arrives 25-ms later. Thus, a second pulse that arrives nearer the trough (in case of 50-ms 

oscillation cycle) would be less likely to elicit a spike than a first pulse at the same phase. This 

timing relationship could potentially contribute to the observed correlation between R2-R1 and 

membrane potential oscillation. To test whether this relationship is responsible for the phase-

dependent summation we reanalyzed our results, now including only those pulse pairs in which 
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the first pulse did not elicit a spike; thus, in this analysis, no afterhyperpolarizations followed 

the first pulses. However, in these cases we still observed phase-dependent summation (Fig 2f): 

R2(φ)-R1(φ) was greater in the first half of the cycle (t(10)=4.32, p = 0.002, t test), and 

correlated significantly with the membrane potential oscillations (r = 0.74, p = 0.006). These 

results rule out an essential contribution of afterhyperpolarizations to phase-dependent 

summation and suggest a different mechanism is responsible. 

  

Even in the absence of odor or current inputs, intracellular recordings showed noisy membrane 

potential fluctuations reflecting, in part, subthreshold synaptic activity (see for example, in Fig. 

1c, the first two seconds of each trial) (Faisal et al., 2008). The average amplitude of this noise 

was 0.82 mV (standard deviation of the membrane potential), 4.78 mV (peak-to-peak 

amplitude). This input could affect the probability of the KC reaching spiking threshold. To test 

this and to investigate the minimal requirements for phase-dependent summation, we 

constructed a simple computational model of a KC (see Methods). The membrane potential (V) 

was determined by three independent factors based on measurements we had made in vivo: 

cyclic excitatory input from PNs, which generated subthreshold oscillations (Vosc) of amplitude 

~1.5 mV; a noise term reflecting fluctuations in V; and injected excitatory current pulses (Iinj) 

(Fig. 3a). We found that, consistent with experimental results, responses of the model neuron 

to single pulses, R1(φ), depended strongly on phase, and correlated with subthreshold 

oscillations in the membrane potential (r = 0.94, p = 4.0x10-6; Fig. 3b,c). Notably, even this 

simple model showed phase-dependent summation of paired current pulses: R2(φ)-R1(φ) 

correlated strongly with subthreshold oscillations (r = 0.92, p = 2.5x10-5). The results were 
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robust to variations in key model parameters, such as the amplitude of the injected current 

pulses, the amplitude of the subthreshold oscillations, and the amplitude of the noise term in 

the membrane potential (Fig. 3d).  

 

A comprehensive analysis of synaptic noise required considering the shape of the noise 

distribution. Figure 3e illustrates the relationships among the membrane potential, the 

distribution of noise, and the probability of spiking. In the absence of noise and current pulses, 

V(φ) = Vosc(φ). When noise is added, V(φ) follows a Gaussian distribution with mean Vosc(φ). 

Even if the source of the noise is not Gaussian, the cumulative effect of noise on the membrane 

potential approaches a Gaussian distribution (central limit theorem). The area of this 

distribution above the spiking threshold equals the probability of spiking at phase φ. Injecting a 

positive current pulse shifts this distribution upward by raising the mean, increasing the 

probability of spiking. If a pair of current pulses is injected, the second pulse shifts the 

distribution of V further upward by residual depolarization ∆V (the depolarization elicited by 

the first pulse remaining when the second pulse arrives). This upward shift also increases the 

area of the distribution above the threshold, from R1(φ) to R2(φ). Because the constitutive 

membrane properties of the cell and the delay between the two pulses are constant, ∆V is 

independent of φ (Fig. 2c shows this is true in vivo). However, notably, the non-uniform, bell-

like shape of the distribution causes R2(φ)-R1(φ) to depend on φ; thus, R2-R1 is greatest during 

the phase with the most spiking (Fig. 3e, top).  
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The analysis shown in Fig. 3e suggests that summation will be independent of phase if the area 

under the curve between two thresholds separated by ∆V were independent of V, a condition 

that is guaranteed only for a uniform distribution. To test this prediction, we artificially set the 

noise distribution in the model to be uniform (see Methods) instead of Gaussian. As predicted, 

summation in the presence of a uniform distribution became independent of phase (r = 0.13, p 

= 0.68; Fig. 3f). Thus, our model revealed that the inevitable Gaussian, nonlinear shape of the 

noise distribution underlies phase-dependent summation.  

 

The computational analysis showed that, in principle, phase-dependent summation could occur 

even when noise amplitude was low (Fig 3d right). However, further analysis of the model 

(Supplementary figure) revealed that this occurs when R1(φ) = 0 but R2(φ) > 0 for some φ (that 

is, when a single input never elicits spiking at phase φ but paired inputs do). Our recordings 

made in vivo (Fig. 2) showed that R1(φ) was always > 0 for all phases. Thus, phase-dependent 

summation observed in KCs could not be explained by this low noise effect.  

 

The computational model gave rise to three additional predictions that we describe in the 

following sections: integration windows should not require inhibitory input, should be robust to 

variations in oscillation frequency, and should be robust to variations in interstimulus interval. 

We tested these predictions in vivo. 

 

Integration windows can form in the absence of inhibition 
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The odor-evoked oscillatory excitation that KCs receive from PNs is accompanied by feedback 

inhibition from another network element, a giant GABAergic neuron (GGN) (Papadopoulou et 

al., 2011; Lei et al., 2013; Lin et al., 2014). This inhibition is also phase-locked to the oscillations 

(Perez-Orive et al., 2002; Gupta and Stopfer, 2012). Indeed, integration windows in KCs were 

originally proposed to be sculpted by the phase-locked inhibition (Perez-Orive et al., 2002). 

However, results from our simple computational model, which lacked inhibitory input, suggest 

that purely excitatory oscillatory input suffices to generate effective integration windows. 

These results lead to the prediction that KCs will exhibit integration windows when provided 

with oscillatory input even in the absence of inhibition.  

 

To test this prediction, we used direct intracellular current injections (see Methods) to 

individual KCs to provide purely depolarizing oscillatory input, along with the usual pairs of 

excitatory current pulses. Thus, the input included no inhibition (Fig. 4a,b). In each experiment 

(n=10) current was inject into a single KC, one of nearly 50,000 in each hemisphere (Laurent 

and Naraghi, 1994). Because feedback inhibition to KCs is proportional to the net activity of the 

whole KC population (Papadopoulou et al., 2011), our stimulation of a single KC should 

generate negligible inhibitory feedback. 

 

Current injections successfully generated 20-Hz oscillations in the membrane potential (Fig. 

4a,c) with an average peak-to-peak amplitude of 1.24 ± 0.58 mV.  These oscillations affected 

both R1(φ) and R2(φ) reliably, and resulted in phase-dependent summation similar to that 

evoked by odor delivery: R2(φ)-R1(φ) was stronger in the first half of the cycle (t(10)=3.69, p = 
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0.004, t test), and correlated with the membrane potential oscillations (r = 0.82, p = 0.001; Fig. 

4c). These results show that effective integration windows can be formed without inhibition. 

 

Integration windows are robust to the frequency of oscillatory input 

Are mushroom bodies hard-wired to resonate at ~20 Hz (MacLeod and Laurent, 1996), or, as 

our computational model predicted (Fig. 5a), is the integration mechanism sufficiently flexible 

to operate at other frequencies? If integration windows are determined solely by oscillatory 

input, it should be possible to form integration windows given inputs at another frequency. 

Using direct current injections (Fig. 5b), we provided oscillatory depolarizing input to KCs with 

an arbitrary frequency of ~12 Hz (84-ms period; see Methods), and tested KCs for the 

emergence of integration windows.  

 

KCs exhibited robust subthreshold oscillations at ~12 Hz, with an amplitude of 1.29 ± 0.49 mV 

(n = 10 cells). Thus, KCs were able to follow oscillatory input at an arbitrary frequency as 

strongly as they follow the typical odor-elicited frequency of 20 Hz. Further, KCs showed robust 

integration windows at the tested frequency: R2(φ)-R1(φ) was stronger in the first half of the 

cycle (t(10)=3.56, p = 0.005, t test), and correlated with the membrane potential oscillations (r 

= 0.64, p = 0.02; Fig. 5c). Therefore, effective integration windows can be formed by oscillatory 

input even at frequencies not generated by olfactory circuitry or typically encountered during 

odor presentations. Further, the observation that KCs can form integration windows at an 

arbitrary frequency confirms that cyclic integration windows can be driven by oscillatory input 
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alone, and do not necessarily require frequency-tuned intrinsic properties like resonance, or 

inhibition. 

 

Integration windows are robust to interstimulus interval 

The computational model suggested that integration windows should be effective over a range 

of interstimulus intervals (Fig. 6a). To test this in vivo we modified the experiment illustrated in 

Fig. 2, and, using odor puffs to elicit ~20Hz oscillations, we delivered pulse pairs with short (15 

ms) or long (35 ms) separations (Fig. 6b). With 15-ms separation (n = 18 KCs), R2(φ)-R1(φ) was 

again greater in the first half of the cycle (t(10)=2.50, p = 0.03, t test), and significantly 

correlated with the membrane potential oscillations (r = 0.82, p = 0.001; Fig. 6c). Similarly, with 

35-ms separation (n = 13 KCs), R2(φ)-R1(φ) was stronger in the first half of the cycle (t(10)=6.39, 

p = 0.00008, t test), and significantly correlated with the membrane potential oscillations (r = 

0.70, p = 0.01; Fig. 6d). These results confirm the phase-dependent summation in KCs shown in 

Fig. 2, and further show that this effect is not limited to inputs separated by a specific interval.  

 

Discussion 

Our results provide the first demonstration of cyclic integration windows in neurons: we found 

that the summation of two nearly coincident current injections in KCs is more effective during a 

specific time in the oscillation cycle (Fig. 2). We also studied the mechanisms underlying the 

origin of integration windows. Our computational model suggested this feature is elicited, in 

large part, by oscillatory input and the inevitable, non-uniform shape of the synaptic noise 

distribution of the membrane potential (Fig. 3). Using direct injections of oscillatory 
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depolarizing current into KCs, we verified that integration windows can arise in the absence of 

inhibition (Fig. 4). Further confirming that integration windows are driven by the oscillatory 

input rather than, for example, resonance properties, we showed that KCs can form integration 

windows from input at an arbitrary frequency (Fig. 5). And consistent with a prediction of our 

computational model, phase-dependent summation was robust to broad variations in 

interstimulus interval (Fig. 6). 

 

These results are important for understanding how temporal codes for odors (Stopfer et al., 

2003; Carey and Carlson, 2011; Haddad et al., 2013) may be decoded. Phase-dependent 

summation allows individual spikes of PNs to have variable importance to their downstream 

followers, the KCs (Laurent, 2002): PN spikes that occur within a preferred window of the 

oscillation cycle can be integrated with other near-coincident spikes more effectively than 

spikes that occur outside the window. Thus, integration windows provide a mechanism for 

reading out information contained in the precise timing of spikes (Pouille and Scanziani, 2001; 

Wehr and Zador, 2003; Luna and Schoppa, 2008). Integration windows also provide a 

mechanism for propagating synchrony across layers of neurons: integration windows reinforce 

phase-locked spiking in neurons by increasing their sensitivity to inputs at favored phases; 

phase-locked spiking, in turn, creates integration windows in the next layer of neurons.  

 

Our results establish that cyclic integration windows can be formed from very few ingredients: 

oscillatory input and noisy fluctuations in the membrane potential. Given the ubiquity of 

membrane noise, the mechanisms we describe likely apply to a wide range of neurons that 
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receive oscillatory inputs (Buzsáki, 2006), with or without inhibition and across a range of 

frequencies (Figs. 4,5). Further, the ability of a given type of cell to form integration windows at 

multiple frequencies could allow robust oscillation-based coding despite frequency changes 

caused by stimulus variations (Gray and Viana Di Prisco, 1997), stimulus duration (Neville and 

Haberly, 2003; Ito et al., 2009), or varying internal states of the animal (reviewed by (Salinas 

and Sejnowski, 2001)).  

 

Our results show that inhibition and active conductances are not needed to form integration 

windows. However, coincidence detection by KCs may be enhanced by their active 

conductances and phase-locked inhibitory input from other neurons (Perez-Orive et al., 2004; 

Demmer and Kloppenburg, 2009). KCs were originally proposed to receive feedforward 

inhibition through the lateral horn (Perez-Orive et al., 2002), but recent work has shown that 

the inhibition originates mostly from the unique feedback neuron GGN (Papadopoulou et al., 

2011; Gupta and Stopfer, 2012; Lin et al., 2014). Because this inhibitory feedback is also phase-

locked to the LFP (Gupta and Stopfer, 2012), it may contribute to integration windows in KCs.  

 

The sparse responses of KCs may facilitate association of odors with reward (Laurent, 2002; 

Cassenaer and Laurent, 2012), consistent with a role for the mushroom bodies in olfactory 

learning (Keene and Waddell, 2007). Integration windows provide a flexible mechanism for 

maintaining sparseness; for example, the duration of the window can adjust to allow consistent 

responses to varying input conditions (Assisi et al., 2007), increasing the dynamic range of 

sensory systems. Theoretical studies suggest coincidence detection with integration windows 
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can enable more robust stimulus representations than coincidence detection with high spiking 

thresholds (Patel and Joshi, 2013). Other phase-specific effects of oscillations have been 

reported previously: work on the vertebrate brain performed in vivo and in vitro (Lampl and 

Yarom, 1993; Desmaisons et al., 1999; Chorev et al., 2007) as well as simulations (Izhikevich, 

2000, 2002) have shown that inputs arriving during the depolarizing phase of an oscillatory 

membrane potential can trigger action potentials with timing shaped by the oscillations. 

Discoveries of odor-evoked oscillations and phase-locked spiking in several insects, including 

bees (Stopfer et al., 1997), moths (Ito et al., 2009), and Drosophila (Tanaka et al., 2009), as well 

as in the mammalian olfactory cortex (Poo and Isaacson, 2009), suggest the principles revealed 

here are likely to apply throughout the animal kingdom.  

 

 

 

Experimental Procedures 

Animals and preparation. All experiments were performed on restrained, unanesthetized 

locusts, Schistocerca americana, raised in our crowded colony (hundreds of animals per cage), 

with 12-h dark, 12-h light cycle. Two-month old animals (n = 11) of either sex were used in the 

experiments. Animals were immobilized and the brains were exposed, desheathed, and 

superfused with locust saline at room temperature as described previously (Saha et al., 2013). 

 

Odor delivery. In some experiments odor pulses were used to elicit neural oscillations. 20 ml of 

odorant solution (hexanol or cyclohexanone) was placed in 60 ml glass bottles at dilutions of 
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10% v/v in mineral oil.  Odors, drawn from the headspace above these odorants, were puffed 

by a pneumatic picopump (WPI) into the continuously flowing air stream directed at the 

animal's antenna, and a large vacuum funnel behind the animal rapidly evacuated the odors, as 

described previously (Brown et al., 2005). 

 

Local field potential (LFP) recording. To monitor odor-elicited oscillations, the LFP was 

recorded in the calyx of the mushroom body using gold-plated nickel-chrome wire (Kanthal). 

The signal was preamplified, amplified, and filtered by a commercial amplifier (A-M Systems, 

Model 3600).  

 

Sharp intracellular recording. Intracellular recordings were made from KC somata using sharp 

glass micropipettes (150–300 MΩ) filled with 0.2 M potassium acetate. The signals were 

amplified in bridge mode (Axoclamp-2B; Molecular Devices), further amplified with a DC 

amplifier (BrownLee Precision), and digitally sampled at 20 kHz (LabView software; USB-6353 

DAQ card; National Instruments).  KC somata could be targeted unambiguously above the 

mushroom body calyx (Laurent and Naraghi, 1994).  

 

Intracellular stimulation. Brief current pulses (5-ms duration) were injected into the cells 

through the intracellular electrode, using the "step command" of the Axoclamp-2B amplifier. 

The timing of the pulses was controlled by a custom LabView program. The amplitude of the 

current pulses (typically between 0.1 and 0.2 nA) was set for each cell to elicit spikes on a 

fraction of the pulses.  
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Oscillatory current injections. To inject oscillatory current directly into the cell, we designed 

sinusoidal depolarizing waveforms in LabView and injected them using the analog output of the 

DAQ card. The output was amplified and low-pass filtered (1000 Hz; BrownLee Precision) to 

remove high-frequency noise, de-amplified 1:1000 using a custom voltage divider, and sent to 

the electrode using the DC-coupled "external command" of the Axoclamp-2B amplifier. The 

peak-to-peak amplitude of the injected oscillatory current was 4 or 6 pA. The period of the 

injected waveform was either 50 ms (to mimic odor-evoked oscillations) or 84 ms (an arbitrarily 

chosen period that is harmonically unrelated to the 50-ms period, and is outside the range of 

frequencies normally evoked by odors (Ito et al., 2009); a multiple of 12 was chosen to simplify 

binning into 12 bins; we did not test any other period). Pairs of current pulses were injected on 

top of the oscillatory input using the method described above. Pulses within a pair were 

separated by 25 ms. Pairs were separated by 122 ms and 133 ms for experiments with 50-ms 

and 84-ms waveforms, respectively; these values were large enough to allow the membrane 

potential to return to baseline before encountering the next pair, and ensured that neighboring 

pairs within a trial occurred at different phases of the oscillation cycle. The binning of phases 

was done relative to the oscillations in the membrane potential (π/2 denotes the peak of the 

membrane potential oscillation). Oscillatory current injections started 1-s before pulse 

injections (Fig. 4a); this allowed us to estimate the phase difference between injected current 

oscillations and resultant oscillations in the membrane potential, and use it for computing the 

phases of subsequent current pulses. 
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Data Analysis. All analyses were performed using custom programs written in MATLAB 

(MathWorks). Spikes were detected by an algorithm and manually checked (blind to the LFP) to 

correct errors caused by superpositions with current-injection artifacts. Phases of spikes and 

current pulses (computed at pulse-offset) with respect to oscillations were estimated by 

measuring their positions relative to the previous (0 radian) and the next (2π radians) peak in 

the simultaneously recorded LFP (noncausal band-pass filtered, 15–30 Hz). Current pulses 

occurring during asymmetrical LFP cycles were discarded if the peak-to-peak amplitude of the 

cycle was <25% of the maximum in that trial, or if the phase difference between two pulses in a 

pair deviated by more than π/3 from the expected phase difference (e.g., π for pulses 

separated by 25 ms). Spikes whose peaks occurred within a 6-ms window following the offset 

of a current pulse were considered to be triggered by the pulse. Spikes that occurred at least 20 

ms after the end of a pair of pulses and before the beginning of the next pair were used for 

computing the phase-preference of odor-evoked spikes. Membrane potential oscillations were 

determined by estimating the average membrane potential, as a function of LFP phase (12 

bins), in the 20-ms period (excluding periods that followed spikes) before the beginning of each 

pair of pulses. The peak-to-peak amplitude of oscillations was estimated for each cell from this 

binned waveform. The membrane properties of KCs were characterized by measuring their 

responses to current pulses and fitting them to exponential rise and decay curves. The 

amplitude of noise in vivo was estimated as the standard deviation in the membrane potential 

in the first two seconds of each trial, before any odor or current stimulus was provided (trials 

which had spikes during this period were excluded). The peak-to-peak noise amplitude was 
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estimated as the difference between the maximum and the minimum value of the membrane 

potential in the 2-s period. 

 

Statistics. We used two-tailed t tests and Pearson correlations for statistical comparisons. The 

sample sizes for these tests are specified by the number of bins in a cycle, which was 

predetermined to be 12. Thus, for correlation tests, n = 12; for two-sample t tests, in which we 

compare the values in the first 6 bins and the last 6 bins, n = 6 per sample. To obtain reliable 

averages for each bin, we recorded from as many cells as we could (minimum of 10) from each 

animal in this study. Because the values in each phase bin are averages from multiple cells 

(between 10 and 18), their distribution is approximately normal (central limit theorem). 

 

Simulations. A KC was modeled as a leaky integrate-and-fire neuron: C dV/dt = -(V-E)/R+I, 

where membrane capacitance C = 10 pF, and membrane resistance R = 1000 MΩ (Laurent and 

Naraghi, 1994; Demmer and Kloppenburg, 2009). The choice of the model was driven by its 

simplicity, small number of parameters, and ease of comparison with experimental data. 

Simulations were performed in MATLAB, using 1/12 ms time-steps. If membrane potential V 

exceeded the spiking threshold (-41 mV), a spike was generated and V was reset to E (-65 mV). 

A noise term was drawn every 1 ms from a uniform distribution between -2 and 2 mV, and 

added to V (the resulting cumulative noise distribution appears Gaussian). The LFP was 

represented by a sinusoidal wave: 1+cos(2πt/T), with period T = 50 ms to mimic odor-evoked 

oscillations. The input to the cell, I, was modeled by the same excitatory sinusoidal wave (peak-

to-peak amplitude = 5 pA), with a small time lag (6 ms) relative to LFP to approximate synaptic 
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and conduction delays. Oscillations generated by this input in the membrane potential (Vosc) 

were further delayed because they reflect the integration of I. Two brief current pulses, Iinj 

(amplitude = 0.05 nA, width = 5 ms, inter-pulse interval = 25 ms), were added to I at different 

phases of LFP in different simulation trials (96,000 trials in total). To exclude any role of 

afterhyperpolarization in generating phase-dependent summation, we limited this analysis to 

only those pulse pairs in which the first pulse did not elicit a spike. 

 

Simulations with uniform noise. In biological neurons as well as in the model, accumulation of 

noise over time necessarily makes the distribution of noise non-uniform, irrespective of the 

source of the noise. Therefore, to obtain uniform noise, we used an unrealistic version of the 

model: the noise term was added to V at every time-step during the pulses, for comparison 

with the spike threshold, but was removed from V before going to the next time-step (this is 

equivalent to adding noise to the threshold and circumvents accumulation of noise). The noise 

term was drawn from a uniform distribution between -5 and 5 mV. Note that the duration of a 

pulse contains several simulation time steps; if different noise terms are drawn from a uniform 

distribution for different time-steps, the probability of spiking during a pulse will depend on the 

maximum of all the noise terms, which would deviate from the uniform distribution. To avoid 

this problem, we added the same noise term to all time-steps within a pulse.  
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Figure Legends  

Figure 1. Experiment design. (a) Recording configuration:  In locusts, oscillating waves of odor-

evoked spikes are carried by projection neurons from the antennal lobe to Kenyon cells (KCs). A 

blunt electrode in the mushroom body monitored the odor-evoked oscillatory local field 

potential (LFP Rec) while an intracellular electrode in a KC (KC Rec) recorded membrane 

potential and injected pulses of current (Iinj). (b) Experiment strategy: By injecting pairs of 
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current pulses into KCs (upper and lower panels show two such pairs) we tested the effect of 

phase position on input summation. (c) Example experiment from n = 16 KCs: LFP oscillations 

(purple, top) were induced by a 2-s odor presentation (black, bottom). The second trace (blue) 

shows a simultaneous intracellular recording from a KC. In each trial, the KC received 19 pairs 

of intracellular current pulses (Iinj, red) with the following parameters: pulse-width = 5 ms; 

inter-pulse interval = 25 ms (onset-to-onset); inter-pair interval = 125 ms (onset-to-onset). Each 

neuron received at least 20 trials. Inset: A 210-ms period spanning the 10th and the 11th pulse 

pairs. Although current injections caused large artifacts in the recording, spikes (marked with 

asterisks) could be identified between or superimposed with the stereotyped artifacts.  

 

Figure 2. KCs have cyclic integration windows. (a) Average membrane potential plotted as a 

function of the LFP phase (φ) shows robust subthreshold oscillations (Vosc) with upward 

deflections in the first half of the cycle; n = 16 KCs, error bars: s.e.m. (b) Residual depolarization 

in different time intervals after the onset of the first pulse (the pulse ends at 5-ms). (c) Residual 

depolarization in the 20-25 ms interval after the first pulse (i.e., just before the onset of the 

second pulse) did not depend on the phase of the oscillation cycle. (d) Spiking responses 

(mean±s.e.m.) evoked by the first and the second current pulses, R1(φ) and R2(φ), respectively, 

are most likely to occur in the first half of the cycle. (e) Phase-dependent summation is 

measured by comparing responses to the first pulse (R1(φ)) and the second pulse (R2(φ)) 

occurring at the same phase (not to the two pulses in the same pair). The effect of summation, 

R2(φ)-R1(φ), is most effective in the first half of the cycle. (f) To test possible contributions of 

afterhyperpolarizations to phase-dependent summation, R2(φ)-R1(φ) was computed after 
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excluding responses to pairs of pulses in which the first pulse evoked a spike. This dataset 

lacking afterhyperpolarizations also showed robust phase-dependent summation. 

 

Figure 3. Computational model shows noise contributes to phase-dependent summation. (a) 

Top: representative membrane potential trace from a model KC. The membrane potential (V) 

has three independent components: subthreshold oscillations (Vosc) generated by the 

integration of oscillatory input from PNs; noise; and a pair of current pulses (Iinj) injected into 

the cell. In this example, the second current pulse elicited a spike. Oscillations in both LFP and 

Vosc are caused by the same oscillatory input from PNs, but are delayed in Vosc (see Methods). 

(b) The model’s average membrane potential as a function of the LFP phase (φ). (c) R1(φ) and 

R2(φ) show a phase-dependency similar to Vosc. The effect of summation, R2(φ)-R1(φ), also 

shows a similar phase-dependency. (d) Blue lines: correlation between R2-R1 and subthreshold 

oscillations was robust to variations in model parameters, such as the amplitude of the injected 

current pulses (Iinj), the amplitude of noise, and the amplitude of the subthreshold oscillations. 

Dots: parameter values used in simulations shown in panels a-c. Dashed line: correlations 

larger than this value (0.576) are statistically significant (p<0.05). Red line: fraction of phase 

bins (of 12) in which R1(φ) > 0. (e) A graphical description of phase-dependent summation in 

the presence of noise. The membrane potential oscillates (Vosc) when given cyclic input.  Noise 

causes the actual voltage V at a given phase to vary from the mean. The probability distribution 

of V at any phase must be approximately Gaussian because of the accumulation of noise. The 

area of this distribution above the spiking threshold equals the probability of spiking at that 

phase. If the cell receives two current pulses, the distribution of V during the second pulse 
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shifts upward by ∆V relative to the distribution of V during the first pulse. At the phase where 

Vosc is lowest (left), shifting the distribution by ∆V produces a small change in area above the 

curve (R2-R1, shown in checkerboard pattern). At the phase where Vosc is highest (right), the 

same shift ∆V produces a larger change in the area (compare the two checkerboard areas). 

Thus, owing to the nonlinear shape of the noise distribution, the first pulse makes a larger 

contribution to the second pulse when the second pulse occurs at phases close to the peak of 

Vosc. (f) If the noise distribution is made uniform (see Methods), R2-R1 loses its phase-

dependence and correlation with subthreshold oscillations.   

 

Figure 4. Integration windows can form in the absence of inhibition. (a) A representative 

experiment from n = 10 KCs, and (b) the experiment design are shown. Purely excitatory 

oscillatory waveforms (Iosc), and 25 pairs of 5-ms pulses (Iinj), were injected directly into the KC 

through the intracellular electrode, without eliciting network inhibition. Membrane potential 

oscillations were induced by Iosc. Inset: the mean membrane potential (20 trials) of the 

indicated segment. (c) Current injections evoked robust oscillations in the subthreshold 

membrane potential of the KC. Lacking inhibition, KCs still formed integration windows: R2-R1 

showed the same phase-dependence as seen previously with odor stimulation (see Fig. 2). 

 

Figure 5. KCs form integration windows robustly even at frequencies other than 20 Hz.  (a) The 

computational model predicted phase-dependent summation for a wide range of oscillation 

cycle periods (this panel uses the same format as Fig. 3d). (b) In vivo test: experiment design is 

similar to the one shown in Fig. 4: Oscillatory input with an arbitrary frequency of 11.9 Hz (84-
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ms period) was injected into the KC along with pairs of current pulses. Bottom: membrane 

potential oscillations generated by the current in a representative neuron (first 500 ms of 

current injection is shown), from n = 10 KCs. (c) Current injections at 11.9 Hz generated robust 

oscillations in the subthreshold membrane potential of the KC. KCs exhibited integration 

windows: R2-R1 showed the same phase-dependence as seen previously with 20-Hz oscillations 

(Figure 2). 

 

Figure 6. Integration windows are robust to variations in the inter-stimulus interval. (a) The 

computational model predicted phase-dependent summation for a range of intervals between 

the two pulse inputs. (b) In vivo test: the experiment shown in Fig. 1, including odor-elicited 

oscillations, was repeated with two different inter-pulse intervals (IPIs); LFP electrode is not 

shown. (c) For 15-ms IPI, subthreshold oscillations and the effect of summation are phase-

locked and correlated. (d) The same result was obtained for 35-ms IPI. 
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