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Abstract    
In optogenetics, light signals are used to control genetically engineered photoreceptors, and in 

turn manipulate biological pathways with unmatched precision. Recently, evolved 

photoreceptors with diverse in vitro-measured wavelength and intensity-dependent 

photoswitching properties have been repurposed for synthetic control of gene expression, 

proteolysis, and numerous other cellular processes. However, the relationship between the input 

light spectrum and in vivo photoreceptor response dynamics is poorly understood, restricting the 

utility of these optogenetic tools. Here, we advance a classic in vitro two-state photoreceptor 

model to reflect the in vivo environment, and combine it with simplified mathematical 

descriptions of signal transduction and output gene expression through our previously engineered 

green/red and red/far red photoreversible bacterial two-component systems (TCSs). Additionally, 

we leverage our recent open-source optical instrument to develop a workflow of spectral and 

dynamical characterization experiments to parameterize the model for both TCSs. To validate 

our approach, we challenge the model to predict experimental responses to a series of complex 

light signals very different from those used during parameterization. We find that the model 

generalizes remarkably well, predicting the results of all categories of experiments with high 

quantitative accuracy for both systems. Finally, we exploit this predictive power to program two 

simultaneous and independent dynamical gene expression signals in bacteria expressing both 

TCSs. This multiplexed gene expression programming approach will enable entirely new studies 

of how metabolic, signaling, and decision-making pathways integrate multiple gene expression 

signals. Additionally, our approach should be compatible with a wide range of optogenetic tools 

and model organisms. 

 

Significance statement  
 Light-switchable signaling pathways (optogenetic tools) enable precision studies of how 

biochemical networks underlie cellular behaviors. We have developed a versatile mathematical 

model based on a two-state photoconversion mechanism that we have applied to the E. coli 

CcaSR and Cph8-OmpR optogenetic tools. This model enables accurate prediction of the gene 

expression response to virtually any light source or mixture of light sources. We express both 

optogenetic tools in the same cell and apply our model to program two simultaneous and 

independent gene expression signals in the same cell. This method can be used to study how 

biological pathways integrate multiple inputs and should be extensible to other optogenetic tools 

and host organisms. 
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Introduction 
 Most optogenetic tools are based on a photoreceptor protein with a light-sensing domain 

that regulates an effector domain, which in turn generates a biological signal such as gene 

expression. One can consider a simplified model wherein a photoreceptor is produced in a 

‘ground’ state and switched to an ‘active’ state by activating wavelengths (i.e. forward 

photoconversion)
1
. Active state photoreceptors thermally revert to the ground state with a 

characteristic timescale that ranges from milliseconds
2
 to more than a month

3
. Certain 

photoreceptors, exemplified by the linear tetrapyrrole (bilin)-binding phytochrome (Phy) and 

cyanobacteriochrome (CBCR) families are also photoreversible where reversion from the active 

to ground state is driven by deactivating wavelengths
4–6

.  

 Two-component systems (TCSs) are signal transduction pathways that control gene 

expression and other processes in response to chemical or physical stimuli (inputs). Canonical 

TCSs comprise two proteins; a sensor histidine kinase (SK) and a response regulator (RR). The 

SK is produced in a ground state, which often has low kinase activity toward the RR. When it 

detects an input via a N-terminal sensing domain, the SK uses ATP to autophosphorylate on a 

histidine residue within a C-terminal kinase domain. This phosphoryl group is then transferred to 

an aspartate on the RR. In most cases the phosphorylated RR (RR~P) binds to a target promoter, 

activating transcription. Many SKs are bi-functional and the kinase domain dephosphorylates the 

RR~P in the absence of the input or presence of a different, de-activating input. 

 We have previously engineered two spectrally distinct photoreversible E. coli TCSs, 

CcaSR and Cph8-OmpR
7–9

. CcaS is a SK with a CBCR sensing domain that absorbs light via a 

covalently ligated phycocyanobilin (PCB) chromophore produced by an engineered metabolic 

pathway. Holo-CcaS is produced in an inactive, green light sensitive ground state, termed Pg, 

with low kinase activity. Upon green light exposure, CcaS Pg switches to a red light sensitive 

active state (Pr) with high kinase activity toward the RR CcaR. CcaR~P binds to the promoter 

PcpcG2-172, activating transcription. Red light drives CcaS Pr to revert to Pg. Cph8 is a chimeric 

SK containing the PCB-binding Phy light-sensing domain of Synechocystis PCC6803 Cph1 and 

the signaling domain of E. coli EnvZ. In contrast to CcaS, Cph8 has high kinase activity toward 

the E. coli RR OmpR in the ground state (Pr) and low kinase (high phosphatase) activity in a far-

red absorbing activated state (Pfr). OmpR~P binds and activates transcription from the PompF146 

promoter. Data from our group and others suggest that CcaS Pr is stable for hours or more
10,11

 

while Cph8 Pfr is far less stable
11

.  

Recently, we developed predictive phenomenological models of the responses of CcaSR 

and Cph8-OmpR to green and red light intensity signals, respectively
11

. These models describe a 

three step dynamical response comprising a pure delay, an intensity-dependent first-order 

transition in output gene expression rate, and a first-order transition in the concentration of the 

output gene set by cell growth rate. By measuring the expression of a reporter gene over time in 

response to a series of light step-changes of different initial and final intensities, we 

parameterized these three timescales for both light sensors.  

Next, we used these models to program tailor-made gene expression signals with an 

unrivaled degree of control and predictability
11

. In particular, we combined the models with a 

custom ‘light program generator’ algorithm that accepts a reference (desired) gene expression 

signal as an input and produces a green or red light signal that drives CcaSR or Cph8-OmpR to 

produce that gene expression output experimentally. We utilized this ‘biological function 

generator’ method to create linear ramps and sine waves of a transcriptional repressor in order to 

characterize the input/output dynamics of a synthetic gene circuit
11

.  
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Despite their utility, our previous models have several key limitations. First, they can 

only predict the responses of the optogenetic tools to the specific light sources used during 

parameterization. Second, they cannot account for perturbations introduced by secondary light 

sources such as those that might be used for simultaneous measurement of fluorescent reporter 

proteins or multiplexed control of both tools in the same cell. Third, the models yield few 

insights into the mechanistic origin of the observed response dynamics. For example, the models 

captured, but could not elucidate the origin of, our observation that the rate of the gene 

expression transition depends upon the direction and final intensity of the light step change.  

 An in vitro two-state model
1,12,13

 describing the intensity and wavelength dependence of 

switching between ground and active states has previously been used to describe photoswitching 

of Phys
1
, CBCRs

3
, bacteriophytochromes

13
, LOV domains

14
, and Cryptochromes

15
 among 

others. In this model, the sensors are characterized by their ground- and active-state 

photoconversion cross sections (PCSs), σg(λ) and σa(λ), which enable direct calculation of the 

forward and reverse photoconversion rates, k1 and k2, in response to photons of wavelength λ. 

The PCS, expressed as the photoconversion rate per unit light intensity (min
-1

 [µmol m
-2

 s
-1

]
-1

), is 

proportional to the product of ε(λ), the molar extinction coefficient (m
2
 mol

-1
), which is related to 

the probability of the photoreceptor absorbing a photon, and the ϕ(λ), the quantum yield 

(unitless), which describes the probability of photoconversion upon photon absorption. Given 

knowledge of both PCSs (σi(λ)), one can compute both photoconversion rates (ki) for a light 

source with a known spectral flux density nlight(λ) (µmol m
-2

 s
-1

 nm
-1

) by calculating the spectral 

overlap integral 𝑘𝑖 = ∫ 𝜎𝑖 ⋅ 𝑛light 𝑑𝜆. The photoconversion rates can then be used to calculate the 

populations of ground and active state photoreceptor. 

 Despite its potential for predicting photoreceptor responses to virtually any light 

condition, the two-state model has not been explored for optogenetics. In particular, the complete 

σi(λ) has not been determined for any photoreceptor used in optogenetics. Even if σi(λ) were to be 

determined, the two-state model would need to be extended to capture photoreceptor production 

and decay dynamics in the in vivo environment. Finally, an additional model would be needed to 

capture the biological events that occur downstream of the photoreceptor.  

 Here, we extend the two-state model for the in vivo environment, develop a new strategy 

for estimating σi(λ) in vivo, and combine these efforts with simplified descriptions of TCS 

signaling and gene expression for CcaSR and Cph8-OmpR. We then develop a standard set of 

spectral and dynamic characterization experiments to parameterize the overall TCS 

photoswitching model. We validate the models by predicting and measuring the gene expression 

response of both systems to spectrally and dynamically diverse light programs. Finally, we 

express CcaSR and Cph8-OmpR in the same cell and combine the models with our biological 

function generator approach to achieve the first multiplexed programming of gene expression 

dynamics.  

 

Results 
TCS photoconversion model 

We constructed a TCS ‘sensing model’ (Methods) by adding terms for production of 

new ground state photoreceptors (Sg) at rate kS and dilution of Sg and active state photoreceptors 

(Sa) at rate kdil to the two-state model (Fig. 1a). The sensing model accepts any nlight(λ) input and 

produces Sg and Sa populations as an output (Fig. 1b,c). The ratio Sa/Sg feeds into an ‘output 

model’ comprising a phenomenological description of TCS signaling and a standard model of 

output gene expression (Fig. 1c). The TCS signaling model (Methods) describes a pure time 
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delay (𝜏) and Hill-function mapping (𝐻𝑖𝑙𝑙(𝑎̂, 𝑏̂, 𝑛, 𝑘)) between Sa/Sg and output gene production 

rate (kG). In our initial experiments, we utilize superfolder GFP (G) as the output and quantify its 

expression level in Molecules of Equivalent Fluorescein (MEFL). 𝑎̂ is the range of possible kG 

values, 𝑏̂ is the minimum value of kG, n is the Hill parameter, and k is Sa/Sg ratio resulting in 50% 

maximal system response. Together, these terms capture SK autophosphorylation, 

phosphotransfer, RR dimerization, DNA binding, promoter activation, and G production. G is 

degraded in a first-order process with rate kdil (Methods), and has a minimum concentration 

𝑏 = 𝑏̂/𝑘dil and concentration range 𝑎 = 𝑎̂/𝑘dil given a constant cell growth rate.  

 

Light source model 

 Most light sources have a fixed spectral flux density (i.e. output spectrum) that scales 

with light intensity (I, µmol m
-2

 s
-1

). For such light sources, we can write 𝑛light = 𝑛̂light ⋅ 𝐼 where 

𝑛̂light is the output spectrum at 1 µmol m
-2

 s
-1

. To quantify the overlap between 𝑛light and 𝜎𝑖 for a 

given photoreceptor, we introduce 𝑘̂𝑖 as the photoconversion rate per unit light intensity (min
-1

 

[µmol m
-2

 s
-1

]
-1

). Then, for a given light source, 𝑘𝑖 = 𝐼 ⋅ ∫ 𝜎𝑖 ⋅ 𝑛̂light𝑑𝜆 = 𝐼 ⋅ 𝑘̂𝑖. That is, k1 and k2 

take on values proportional to light intensity.  

 

Dynamical and spectral characterization of CcaSR 

 We designed a set of four gene expression characterization experiments (File S1-2, Note 

S1-2) to train the TCS photoconversion model for CcaSR (Fig. 2a). First, we quantify activation 

dynamics by preconditioning E. coli expressing CcaSR (Fig. S1) in the dark, introducing step 

increases in green light (centroid wavelength 𝜆𝑐 = 526 nm, Table S1-3, File S3-4, Note S3) to 

different intensities, and measuring sfGFP levels over time by flow cytometry (Methods, Fig. 

2b, S2). Second, we measure de-activation dynamics by preconditioning the cells in different 

intensities of green light and measuring the response to step decreases to dark (Fig. 2c, S2). 

Third, we measure the ground state spectral response by exposing the bacteria to 23 LEDs with 

𝜆𝑐 spanning 369 to 958 nm at over three orders of magnitude intensity (Methods, Fig. 2d, S3, 

Table S1-3, File S3-4, Note S3) and measuring sfGFP at steady state. Finally, we measure the 

activated state spectral response by repeating the previous experiment in the presence of a 

constant intensity of activating light (Fig. 2e, S3).  

 

CcaSR model parameterization 

 We used nonlinear regression (Methods, Table S4) to fit the model to these data. While 

the resulting parameters recapitulate the known properties of the system (Fig. 2f-g, S4), the value 

of the Hill parameter k is weakly determined (Table S4). In particular, alterations in k from the 

best-fit value can be compensated for by changes in 𝑘̂1 and 𝑘̂2 (Fig. S5). Thus, we cannot 

confidently determine the absolute rates of forward and reverse photoconversion. Nonetheless, 

fixing k at its best fit value results in model predictions that quantitatively agree with the 

experimental measurements (Fig. 2b-e). However, the ultimate validation of this approach 

involves predicting the response of CcaSR to a wide range of spectral and dynamical light inputs 

different from those used in parameterization.  

    

Spectral validation of the CcaSR photoconversion model 

 To predict the response of an optogenetic tool to a given light source, knowledge of 𝜎𝑖 is 

required. To estimate 𝜎𝑖 for CcaSR, we used non-linear regression to fit a cubic spline to the 
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previously determined photoconversion rates for each of the 23 LEDs (Methods Fig. 3a, Fig. 

S6-7). Importantly, our regression procedure considers the response of CcaSR to the full spectral 

output of each LED, not just its centroid wavelength. To validate the resulting 𝜎𝑖 estimate, we 

measured 𝑛̂light for a previously untested set of eight color-filtered white light LEDs designed to 

have complex spectral characteristics (Table S1-3, File S3-4, Note S3) and calculated an 

expected 𝑘̂𝑖 for each (Fig. 3b). In combination with the remaining model parameters (Fig. 2f), 

we used these 𝑘̂𝑖 to predict the steady state intensity dose-response to these eight LEDs in the 

presence and absence of activating light (𝜆𝑐 = 526 nm). These predictions are remarkably 

accurate for LEDs 1-5 (root-mean-square errors (RMSEs) from 0.11 to 0.18, Methods), which 

drive sfGFP to high levels, and 7 and 8, which drive low expression (RMSE = 0.14 and 0.18, 

respectively), but slightly less so for LED 6 (RMSE = 0.26), which drives sfGFP to an 

intermediate expression level (Fig. 3c). 

 

Dynamic validation of the CcaSR photoconversion model 

 Our biological function generator method constitutes a rigorous validation of the 

predictive power of a model because the light inputs and gene expression outputs are temporally 

complex and cover a wide range of levels. To validate our CcaSR photoconversion model, we 

first designed a challenging reference gene expression signal (Fig. 4, File S5). The signal starts 

at b and then increases linearly (on a logarithmic scale) over 90% of the total CcaSR response 

range over 210 min. After a 60 min. hold, the signal decreases linearly to an intermediate 

expression level over another 210 min. Using this reference, we then used the model to 

computationally design four light time courses each with different LEDs or LED mixtures 

(Methods, File S6). “UV mono” utilizes a single UV LED (𝜆𝑐 = 389 nm) (Fig. 4a) to 

demonstrate control of CcaSR with an atypical light source. “Green mono” uses the 𝜆𝑐 = 526 nm 

LED (Fig. 4b) to demonstrate predictive control with a typical light source. “Red perturbation” 

combines “Green mono” with a strong red (𝜆𝑐 = 657 nm) sinusoidal signal (Fig. 4c) designed to 

demonstrate the perturbative effects of alternative light sources. Finally, in “Red compensation”, 

the “Green mono” time course is re-optimized to compensate for the impact of “Red 

perturbation” (Fig. 4d, Methods).  

 The model accurately predicts the response of CcaSR to all four light signals (Fig. 4). 

“Mono UV” presents the greatest challenge, resulting in an RMSE of 0.15 (Fig. 4a). We suspect 

that prediction errors in this program are due to PCB photodegradation, as we observed no 

significant toxicity via bacterial growth rate, and the prediction remains accurate until UV 

reaches maximum intensity (20 µmol m
-2

 s
-1

). “Green mono” (Fig. 4b) results in the lowest error 

(RMSE = 0.038), which is expected because this LED was used to perform the dynamic 

calibrations (Fig. 2b,c). As intended, “Red perturbation” results in an enormous deviation from 

the reference signal (Fig. 4c), and the model accurately predicts this effect (RMSE = 0.081). 

Finally, “Red compensation” demonstrates that the effect of the perturbation can be eliminated 

using our model (Fig. 4d, RMSE = 0.078).  

 

Cph8-OmpR photoconversion model 

 To evaluate the generality of our approach, we repeated the entire workflow for Cph8-

OmpR (Fig. S8-13, Table S5, File S6-7). Though CcaSR and Cph8-OmpR are both 

photoreversible TCSs, they have different photosensory domains, ground state activities, and 

dynamics. To account for the fact that Cph8-OmpR is produced in an active ground state, we 

used a repressing Hill function (Methods). The model again fits exceptionally well to the 
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experimental data (Fig S8-11). Unlike CcaSR, which exhibited no detectable dark reversion 

(Fig. 2f), Cph8-OmpR appears to revert in 𝜏1/2 = ln 2 /𝑘dr = 5.5 min (Fig. S8f). As before, k is 

underdetermined, and we chose the best-fit value (Table S5). The Cph8-OmpR model performs 

similarly to its CcaSR counterpart in the spectral validation experiments (Fig. S12), and 

demonstrates greater predictive control in the dynamical validation experiments (Fig. S13).  

 

Development of a CcaSR, Cph8-OmpR dual-system model 

We engineered a three-plasmid system (Fig. S1) to express CcaSR and Cph8-OmpR in 

the same cell with sfGFP and mCherry outputs, respectively (Fig. 5a). Because the 

photoconversion parameters are a property of the photoreceptors themselves, we left them 

unchanged. To recalibrate for mCherry (quantified in Molecules of Equivalent Cy5 (MECY)) 

and any changes due to the new cellular context, we measured the steady state levels of the 

sfGFP and mCherry at different combinations of green (𝜆𝑐 = 526) and red (𝜆𝑐 = 657) light (Fig. 

5b, S14, File S8) and refit the Hill function parameters (Table S6). The dual-system model 

accurately captures the experimental observations from the characterization dataset (Fig. 5b). 

 To validate the dual-system model, we again used the biological function generator 

approach (Fig. 6). We designed a series of four dual sfGFP/mCherry expression programs to 

increasingly challenge the model: “Green mono” using only green light and intended only to 

control CcaSR (Fig. 6a), “Red mono” using only red light and intended to control only Cph8-

OmpR (Fig. 6b), “Sum”, a simple combination of the first two programs (Fig. 6c), and 

“Compensated sum” where the green light time course is re-optimized to account for the 

presence of the red signal (Fig. 6d) as before (Methods).  Due to the minimal response of dual-

system Cph8-OmpR to green light (Fig. 5b), there was no need to adjust the red program to 

compensate for the presence of green light. The validation experimental results (Fig. 6) show 

that our dual-system model accurately captures both the sfGFP and mCherry expression 

dynamics. The CcaSR predictions are nearly as accurate as the single-system experiments (Fig. 

4), and the Cph8-OmpR results match single-system accuracy (Fig. S12-13), demonstrating the 

extensibility of our approach to multiple optogenetic tools.   

 

Multiplexed biological function generation 

Finally, we designed and experimentally implemented four multiplexed sfGFP/mCherry 

expression functions representing classes of signals useful for gene circuit characterization (File 

S5-6). “Dual sines” illustrates that two gene expression sinusoids with different offsets, 

amplitudes, and periods can be composed without interference (Fig. 7a). Variations of this 

combination of signals could be used to perform frequency analysis of multiple nodes in a gene 

network. “Sine and stairs” demonstrates that our approach can generate two completely different 

gene expression signals at the same time (Fig. 7b). “Dual stairs” demonstrates that the ratio of 

two proteins can be varied over a remarkably wide range (Fig. 7c). Finally, “Time-shifted 

waveform” (Fig. 7d) demonstrates that our approach can be used to characterize genetic circuits 

where time-delays are critical, such as those involved in cellular decision-making. 

 

Discussion 
 In this study, we demonstrate the first use of a mechanistic model of wavelength-

dependent photoconversion to characterize and control light responsive signaling pathways in 

vivo. Additionally, we develop a standard set of characterization and validation experiments to 

parameterize the model and demonstrate that it accurately predicts the spectral and dynamical 
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performance of these optogenetic tools. We demonstrate that the models can be used with 

virtually any light source or mixture of light sources as long as their emission spectra are known. 

Finally, we exploit this unique predictive power to demonstrate the first programming of two 

independent gene expression signals by accounting for inherent cross-talk in the action spectra of 

the two optogenetic tools that would otherwise impede such efforts. 

 Our TCS photoconversion model is superior to current alternatives by several key 

criteria. First, like our previous model
11

, it is quantitatively predictive and requires no parameter 

recalibrations from day-to-day. However, while our previous model is restricted to a single light 

source, our current model generalizes to virtually any light source or mixture of light sources. 

Second, our TCS photoconversion model is compatible with photoreceptors with very different 

action spectra, opposite ground versus active state signaling logic, and dramatically different 

dark reversion timescales. Third, our current model modularly decouples the processes of 

sensing (photoconversion) and output (signal transduction and gene expression). The sensing 

model component (Fig. 1a) should be compatible with a wide range of photoreceptors, including 

those in other organisms, because the core two-state photoswitching mechanism is used to 

describe their performance in vitro. Then, to describe optogenetic tools based upon those 

photoreceptors, our TCS output model can be replaced with alternatives appropriate to other 

pathways, as needed. 

 A major current problem in optogenetics is that tools developed in different studies are 

characterized using different culturing conditions, experiments, light sources, reporters, metrics, 

and so on. This lack of standardization makes it challenging to compare the performance features 

of different optogenetic tools on even a qualitative basis. The modeling and characterization 

approach we develop here could be used to make data sheets that describe the behavior of 

diverse optogenetic tools in standard units. This would enable researchers to choose the most 

appropriate tool for different applications. Additionally, shortcomings of specific tools could be 

identified, informing efforts to optimize performance by rational approaches such as protein 

design
16–18

.  

 Our approach should enable better control of optogenetic tools with alternative or highly 

constrained optical hardware used in many research laboratories. For example, many groups 

perform single cell optogenetic studies using fluorescence microscopes with severely restricted 

optical configurations. Alternatively, consumer projectors or tablet displays are potentially 

powerful, low cost hardware options for optogenetics
19,20

. The output spectrum of the light 

source can be measured and integrated into our workflow. After a simple recalibration (e.g. Fig. 

5) to account for any changes due to the new growth environment, one should be able to predict 

and control the optogenetic tool using the new light source.  

 Oftentimes, it is desirable to simultaneously control an optogenetic tool while imaging a 

cell of interest using white light sources and excitation light for fluorescent reporters. Such 

alternative sources of illumination can have deleterious effects on the ability to control the 

optogenetic tool. However, if the nature of the alternative light signal is known, our approach can 

compensate for such perturbations (e.g. Fig. 6, 7). In silico feedback control has also been used 

to drive desired gene expression dynamics in optogenetic experiments
21–23

. The major benefit of 

this approach is that perturbations of unknown origin can be compensated by monitoring 

deviations in the output of an optogenetic tool relative to a reference. Our model is compatible 

with in silico feedback control.  

While basic multichromatic control of optogenetic tools has been previously 

demonstrated
8,24

, the multiplexed biological function generation approach demonstrated here 
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dramatically extends the capabilities of these systems, enabling implementation of several 

classes of experiments. First, the two-dimensional response of a genetic circuit or signaling 

pathway could be rapidly evaluated with high reproducibility and precision. For example, one 

could map the response of 2-input transcriptional logic gates
25

, which integrate the expression 

levels of two different transcription factors by systematically and independently varying their 

expression levels while measuring the gate output with a reporter gene. The dynamics of such 

gates are otherwise difficult to evaluate and seldom characterized
26

. Second, the input/output 

dynamics of a transcriptional circuit could be characterized as a function of the state of the 

circuit itself. For example, one could evaluate how well a synthetic transcriptional oscillator can 

be entrained
27,28

 as a function of the strength of a feedback node. In this case, one optogenetic 

tool could be used for the entrainment, while the second was used to alter expression level of a 

circuit transcription factor regulating feedback strength. Third, transcription and proteolysis
29

 

could be independently controlled with two different optogenetic tools to alternatively program 

rapid increases or decreases in expression level. Such an approach could accelerate the gene 

expression signals that we have generated in this and our previous study
11

, enabling 

characterization of gene circuit dynamics on faster timescales. Finally, multiplexed biological 

function generation could be used to evaluate how the timing of expression of two genes impacts 

cellular decision making
30–32

. For example, in B. subtilis, the gene circuits that regulate 

sporulation and competence compete via a ‘molecular race’ in the levels of the corresponding 

master regulators
30

. By placing them under independent optogenetic control, the means by which 

their dynamics impact these cellular decisions could be evaluated more easily and rigorously. 

 

Materials and Methods 

Bacterial strains 

All systems utilize the E. coli BW29655 host strain
33

. The CcaSR system strain carries the 

pSR43.6 and pSR58.6 plasmids, which confer spectinomycin and chloramphenicol resistance, 

respectively
9
. The Cph8-OmpR system strain carries the pSR33.4 (spectinomycin) and pSR59.4 

(ampicillin) plasmids
9
. The dual-system strain carries pSR58.6, pSR78 (spectinomycin), and 

pSR83 (ampicillin).  

 

Bacterial growth and light exposure 

Cell culturing and harvesting protocols were developed to ensure a high degree of precision and 

reproducibility in experiments both from well-to-well and from day-to-day (Note S1). Cells were 

grown at 37°C and shaken at 250 rpm throughout the experiment (Sheldon Manufacturing Inc. 

SI9R) with temperature calibrated and logged by placing a thermometer probe in a sealed 125 

mL water-filled flask (Traceable Excursion-Trac 6433). Cultures were grown in M9 media 

supplemented with 0.2% casamino acids, 0.4% glucose, and appropriate antibiotics. Precultures 

were prepared in advance by freezing 100 µL aliquots of early exponential phase cultures (OD600 

= 0.1-0.2) grown in the same media conditions at -80°C (Note S2). Cultures were inoculated at 

low densities (typically OD600 = 1 × 10−5) to ensure that final densities did not reach stationary 

phase (OD600 < 0.2). For each experiment, 192 cultures were grown in 500 µL volumes within 

24-well plates (ArcticWhite AWLS-303008), sealed with adhesive foil (VWR 60941-126).  

 

Experiments were performed using eight 24-well Light Plate Apparatus (LPA) instruments
34

, 

enabling precise control of two LEDs to define the optical environment of 192 cultures at a time. 

LPA program files were generated using Iris
34

 and Python scripts.  
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LED measurement 

All LEDs were measured and calibrated (Note S3) using a spectrometer (StellarNet UVN-SR-25 

LT16) with NIST-traceable factory calibrations performed on both its wavelength and intensity 

axes immediately prior to use for this study. A six-inch integrating sphere (StellarNet IS6) was 

used, enabling measurement of the total power output of each LED (in µmol s
-1

). The 

spectrophotometer was blanked by a measurement of a dark sample before each LED 

measurement. Measurements were saved as .IRR files, which contain the complete LED spectral 

power density 𝑃light(𝜆) (µmol s
-1

 nm
-1

) in 0.5 nm increments as well as all setup parameters for 

the measurement (i.e. integration time and number of scans to average). These files were 

processed by Python scripts to calculate the LED characteristics, including the peak, centroid, 

FWHM, and total power. For spectral validation experiments, cinematic lighting filters 

(Roscolux) were cut, formed into LED-shaped caps, and fitted atop white LEDs (Table S1). 

 

Calculation of nlight 

Because the LEDs we utilize have fixed spectral characteristics, the spectral flux density (µmol 

m
-2

 s
-1

 nm
-1

) incident on the photoreceptors can be parameterized by the LED intensity (µmol m
-2

 

s
-1

). The cultures are shaken throughout the experiment, and we assume that the cells are well 

mixed within the culture volume. Thus, the mean light intensity within the culture volume, 

𝑛light(𝜆), can be calculated by integrating the intensity throughout the volume of the well. Under 

the assumption of negligible light absorption by the culture sample (the M9 media is transparent, 

and the cultures are harvested at low density), this integral simplifies to become the total power 

of the LED (µmol s
-1

) divided by the cross-sectional area of the well. Given a well radius of 7.5 

mm, we calculate 𝑛light(𝜆) =
𝑃light(𝜆)

𝜋(7.5×10−3m)2 ≈ 5.659 × 103 m−2 × 𝑃light(𝜆). 

 

LED calibration 

Each of the approximately 700 individual LEDs used in the study were measured (Note S3), 

enabling compensation for variation in LED and LPA manufacturing (Table S1-3). Each LED 

was calibrated while powered from the same LPA socket used in experiments. First, a sample of 

LEDs were measured to identify the electrical current required to achieve an appropriate level of 

total flux, ∫ 𝑛light(𝜆)dλ. The amount of current required varied depending on the wavelength 

and manufacturer. The current was adjusted using the LPA ‘dot-correction (DC)’ to achieve a 

total flux approximately 20% above 20 µmol m
-2

 s
-1

 when the LED was fully illuminated. The 

appropriate DC level was determined for each LED model. Using these DC levels, the complete 

set of LEDs were measured. LEDs that produced a total flux below 20 µmol m
-2

 s
-1

 were re-

measured at a higher DC level. This set of LED measurements was used to convert the desired 

intensity time course of each LED into a series of 12-bit grayscale values (i.e. 0-4095) used by 

the LPA. The LPA reads the grayscale values to produce the appropriate pulse-width-modulated 

(PWM) signal to achieve the desired intensities. 

 

Bacterial sample harvesting 

Cultures were harvested for measurement (Note S1) after precisely 8 h growth by placing the 24-

well plates into ice-water baths. Each culture was then subjected to both an absorbance 

measurement to ensure consistent well-to-well and day-to-day growth, and flow cytometry for 
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quantification of sfGFP or mCherry expression. Absorbance measurements were performed in 

black-walled, clear-bottomed 96-well plates (VWR 82050-748) in a plate reader (Tecan Infinite 

M200 Pro). Before fluorescence measurements were performed, culture samples were processed 

via a fluorescence maturation protocol to ensure measurements were representative of the total 

amount of produced fluorescent reporter
11

.  Rifampicin (Tokyo Chemical Industry R0079), was 

dissolved in Phosphate-buffered saline (PBS, VWR 72060-035) at 500 µg/mL and used to inhibit 

sfGFP production during maturation.  

 

Flow cytometry 

Population distributions of fluorescence were measured for each culture on a flow cytometer as 

previously described
11

. A calibration bead sample (Spherotech RCP-30-5A) in PBS was 

measured immediately prior to the culture samples from each experimental trial. At least 5,000 

events were collected for the calibration bead sample, and at least 20,000 events were collected 

for each culture sample. 

 

Flow cytometry data analysis 

Single-cell distributions of sfGFP fluorescence were gated, analyzed, and calibrated into MEFL 

and MECY units using FlowCal
35

. Measurements were gated on the FSC and SSC channels 

using a gate fraction of 0.3 for calibration beads and 0.8 for cellular samples
35

. Reported culture 

fluorescence values are the arithmetic means of the cellular populations.  

 

Sensing model 

The light sensing model can be described by the following system of ODEs: 
𝑑𝑆𝑔

𝑑𝑡
= 𝑘𝑆 + (𝑘2 + 𝑘dr) ⋅ 𝑆𝑎(𝑡) − (𝑘1 + 𝑘dil) ⋅ 𝑆𝑔(𝑡) 

 

𝑑𝑆𝑎

𝑑𝑡
= 𝑘1 ⋅ 𝑆𝑔(𝑡) − (𝑘2 + 𝑘dil + 𝑘dr) ⋅ 𝑆𝑎(𝑡),               

where the variables and rates have been described in the text and figures. Note that 𝑘1 and 𝑘2 are 

implicitly dependent upon time, as they are functions of the time-varying light environment of 

the sensors. 

 

If we substitute for the fraction of active sensors, 𝑦 ≡
𝑆𝑎

𝑆𝑔+𝑆𝑎
, the system reduces to: 

 

𝑑𝑦

𝑑𝑡
= 𝑘1 − (𝑘1 + 𝑘2 + 𝑘dil + 𝑘dr) ⋅ 𝑦(𝑡) = 𝑘1 − 𝑘tot ⋅ 𝑦(𝑡), 

 

where 𝑘tot ≡ 𝑘1 + 𝑘2 + 𝑘dil + 𝑘dr. 

 

This ODE can be solved analytically for a step-change in light from one environment to another. 

If the step-change occurs at time 𝑡 = 0, then 𝑘1, 𝑘2, and 𝑘tot are all fixed for 𝑡 > 0. Given an 

initial sensor fraction 𝑦(0) = 𝑦0, we find. 

𝑦(𝑡) = 𝑦0 + (
𝑘1

𝑘tot
− 𝑦0) (1 − 𝑒−𝑘tot𝑡). 

This solution represents an exponential transition from an initial sensor fraction of 𝑦0 to a final 

fraction given by 
𝑘1

𝑘tot
 with a time constant set by 𝑘tot. As a result, we anticipate that the transition 
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dynamics of 𝑦(𝑡) will be slowest under zero illumination when 𝑘tot = 𝑘dil + 𝑘dr. We also expect 

that the transition rates will be unbounded as intensity increases.  

 

Finally, for multiple light sources, we simply linearly combine the photoconversion rates from 

each source: 𝑘𝑖 = 𝑘𝑖,𝑠𝑜𝑢𝑟𝑐𝑒 1 + 𝑘𝑖,𝑠𝑜𝑢𝑟𝑐𝑒 2. 

 

TCS signaling model 

We utilize a highly simplified model of TCS signaling and gene regulation. This model relates 

the production rate of the output gene 𝑘𝐺(𝑡) to the active ratio of light sensors 
𝑆𝑎(𝑡)

𝑆𝑔(𝑡)
=

𝑦(𝑡)

1−𝑦(𝑡)
≡

𝑅(𝑡). We model TCS signaling as a pure time delay 𝜏 and a sigmoidal Hill function. For CcaSR, 

the Hill function is activated by increasing sensor ratios, while for Cph8-OmpR the inverted TCS 

signaling activity results in a repressing Hill function. Thus, we write 𝑘𝐺(𝑡) = 𝑏̂ + 𝑎̂
𝑅(𝑡−𝜏)𝑛

𝑘𝑛+𝑅(𝑡−𝜏)𝑛
 

for CcaSR and 𝑘𝐺(𝑡) = 𝑏̂ + 𝑎̂
𝑘𝑛

𝑘𝑛+𝑅(𝑡−𝜏)𝑛 for Cph8-OmpR. 

 

Output gene expression model 

We model output gene expression by first-order production and dilution dynamics: 
𝑑𝐺

𝑑𝑡
= 𝑘𝐺 − 𝑘dil ⋅ 𝐺(𝑡). 

 

Generation of model simulations  

Simulations were produced by numerically integrating the system of ODEs using Python’s 

scipy.integrate.ode method using the ‘zvode’ integrator with a maximum of 3000 steps. 

 

Model parameterization 

The CcaSR and Cph8-OmpR models were parameterized using global fits of the model 

parameters to the complete training data sets (Fig. 2b-e, Fig. S8b-e). The ‘lmfit’ Python 

package, which is based on the Levenberg-Marquardt minimization algorithm, was used to 

perform the fits and analyze the resulting parameter sets
36

. The fits were performed by 

minimizing the sum of the square of the relative error between each measured data point and the 

same point in a corresponding model simulation. Thus the form of the error metric utilized was 

error = ∑ (
𝐺𝑖

data−𝐺𝑖
model

𝐺𝑖
data )

2

𝑖  across the complete set of data points {𝐺𝑖
data}. 

 

Estimation of PCSs 

PCS estimates 𝜎𝑖
est.(𝜆) were constructed by linearly regressing a cubic spline to the 

experimentally determined photoconversion rates in order to produce a continuous PCS (Fig. 

S6). The 𝜎𝑖
est.(𝜆) were produced by minimizing the error between unit experimental 

photoconversion rates 𝑘̂𝑖
expt.

 (Fig. 2f, Fig. S8f) and spline-derived estimates 𝑘̂𝑖
est. = ∫ 𝜎𝑖

est. ⋅

𝑛light 𝑑𝜆. The splines were constructed by establishing a series of integral constraints for the 

photoconversion rates, continuity constraints for the spline knots, and boundary constraints. As 

this problem contains more constraints than parameters, optimization is required. We used 

weighted least-squares with Lagrange multipliers to optimize each spline. To avoid over-

parameterization of the 𝜎𝑖
est.(𝜆), we used “Leave-one-out cross-validation (LOOCV)” to evaluate 
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the performance of optimal splines with between 5 and 20 knots in order to determine the ideal 

number required for each 𝜎𝑖
est.(𝜆) (Fig. S7).  

 

Calculation of prediction error (RMSEs) 

For model validation we use a relative error metric 

(𝑅𝑀𝑆𝐸 = √(∑ 𝑙𝑜𝑔10(𝐺𝑖
(𝑝𝑟𝑒𝑑.)/𝐺𝑖

(𝑒𝑥𝑝𝑡.)))2
𝑖 /𝑛) that reports the root-mean-square (RMS) of the 

log10 error between the predicted and measured responses.  

 

Light program generator (LPG) algorithm 

The light program generator was used as previously described
11

. The only modification was to 

use simulations generated by the model described herein rather than the previous model. 

Compensated light programs were generated by incorporating the presence of the external light 

signal into the model simulations. 
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Figure legends 
Fig 1 – 

TCS photoconversion model. (a) The two-state photoreceptor model, which includes ground 

(Sg) and active (Sa) state photoreceptors (aka sensors), photoconversion rates k1 and k2, and dark 

reversion rate kdr, is converted to a “sensing model” for in vivo environments by adding a Sg 

production rate kS that captures both gene expression and holo-protein formation, and a dilution 

rate kdil due to cell growth and sensor degradation (Methods). The hollow blue pentagon 

represents a chromophore in the ground state while the filled blue pentagon represents that in the 

activated state. (b) Photoconversion rates are determined by the overlap integral of the spectral 

flux density of the light source (nlight) and the Sg and Sa photoconversion cross sections σg and σa 

(Methods). (c) The sensing model converts nlight into the active ratio of light sensors Sa/Sg which 

feeds into an “output model” with a simplified model of TCS signaling that regulates the 

production rate kG of the target protein G, which is diluted due to cell growth and proteolysis as 

kdil (Methods).  

 

Fig 2 –  

Characterization and model parameterization for CcaSR. (a) Schematic of CcaSR TCS with 

sfGFP output. Wavelength values represent in vitro measured absorbance maxima. (b-e) 

Training data for the full CcaSR system model (Fig. 1c). Experimental observations (“Expt.”) 

and simulations of the best-fit model (“Model”) are shown for each set. In particular, the 

response dynamics to step (b) increases from dark to eight different intensities and (c) decreases 

from eight different intensities to dark were evaluated using the 𝜆𝑐 = 526 nm LED. Time points 

are distributed unevenly to increase resolution of the initial response. (c-d) Steady-state intensity 

dose-response to a set of 23 “spectral LEDs” with 𝜆𝑐 spanning 369 nm to 958 nm. (c) Forward 

photoconversion is primarily determined by the response to the spectral LEDs. (d) Reverse 

photoconversion is analyzed by including light from a second, activating LED (𝜆𝑐 = 526 nm at 

1.25 µmol m
-2

 s
-1

). The 𝜆𝑐 = 369 nm LED is not capable of reaching the brightest intensities, and 

thus those data points are not included. Light intensities are shown in units of 0.1 x log2 µmol m
-

2
 s

-1
 scale (e.g. a value of 1 corresponds to 10 x 2

1
 = 20 µmol m

-2
 s

-1
). sfGFP fluorescence is 

calibrated to MEFL units (Methods). Each row of measurements in panels b-e was collected in a 

single 24-well plate. The 40 plates required to produce the training dataset were randomly 

distributed across eight LPAs over five separate trials (Methods, File S1-2). Each color patch 

represents the arithmetic mean of a single population of cells. (f-g) Best-fit model parameters 

produced via nonlinear regression of the model to training data (Methods, Table S4). 𝑘̂𝑖 are unit 

photoconversion rates (i.e. 𝑘𝑖 = 𝐼 ⋅ 𝑘̂𝑖, where I is the LED intensity in µmol m
-2

 s
-1

). Uncertainty 

in the least-significant digits are indicated in parenthesis.  

 

Fig 3 –  
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Estimation of the CcaS photoconversion cross section and spectral validation of the CcaSR 

model. (a) We estimate the continuous ground and active state PCSs of CcaS (𝜎𝑖
est., lines) by 

regressing cubic splines to minimize the difference between experimentally-determined 

photoconversion rates (points) and those calculated via 𝑘̂𝑖
est. = ∫ 𝜎𝑖

est. ⋅ 𝑛light 𝑑𝜆 (Methods, Fig. 

S6,7). Error bars correspond to the standard error of the fits for the experimentally-determined 

photoconversion rates. The normalized spectral flux densities of the spectral LEDs are shown at 

bottom. (b) Using 𝜎𝑖
est. to predict photoconversion rates for light sources not in the spectral LED 

training set. Predicted photoconversion rates are integrated into the CcaSR model by keeping all 

other parameters (Fig. 2f) fixed, enabling prediction of the intensity dose-response of CcaSR to 

the new light source (i.e. 𝐺(𝐼)𝑝𝑟𝑒𝑑.). (c) Spectral validation of the CcaSR model and 𝜎𝑖
est. 

consists of prediction of the intensity dose-response for eight challenging, broad-spectrum light 

sources constructed by applying colored filters over white-light LEDs (Methods, Table S1-3, 

File S1-4). Measured nlight, predicted  𝑘̂𝑖, measured and predicted intensity dose-response curves, 

and RMSE between model and prediction are shown for each LED (Methods).  The forward and 

reverse intensity responses are determined using the filtered LED alone (circles) and in the 

presence of a second activating LED (𝜆𝑐 = 526 nm at 1.25 µmol m
-2

 s
-1

, triangles). The simulated 

responses are determined using the calculated photoconversion rates (Methods). RMSE relative 

errors are expressed in log10 decades (Methods). Data was collected across four LPAs, and the 

forward (circles) and reverse (triangles) intensity responses were collected over two separate 

experimental trials (Methods, File S1-2). Each data point represents the arithmetic mean of a 

single population of cells. 

 

Fig 4 –  

Dynamical validation of the CcaSR model. We compare model predictions of dynamical 

CcaSR sfGFP output to experimental measurements for time-varying light inputs from UV (𝜆𝑐 = 

389 nm), green (𝜆𝑐 = 526 nm), or green plus red (𝜆𝑐 = 657 nm) light. In all cases, the light 

program generator algorithm (LPG, Methods) is used to design light signals predicted to drive 

sfGFP to follow the reference 𝐺(𝑡)Ref., consisting of a ramp up, hold, and ramp down on a 

logarithmic scale (File S5-6). (a) “UV mono”. The LPG-generated UV light signal drives the 

CcaSR system along a trajectory predicted to follow the reference signal. (b) “Green mono”. The 

green LED alone provides an optimized input signal. (c) “Red perturbation”. The green LED 

provides the “Green mono” signal, while the red LED generates a sinusoidal perturbative signal 

(center) with a 240-minute period and 20 µmol m
-2

 s
-1

 peak-to-peak amplitude. (d) “Red 

compensation”. The red perturbative signal is again present. However, the LPG redesigns the 

green light signal to account for its presence. Light signals are shown in units of log10 µmol m
-2

 

s
-1

, and RMSE relative errors are expressed in log10 decades (Methods). Error bars correspond to 

the standard deviation in fluorescence measurements over three independent experimental trials 

(Table S4). 

 

Fig 5 –  

Characterization and modeling of a multiplexed CcaSR/Cph8-OmpR system. (a) CcaSR and 

Cph8-OmpR are co-expressed in a single strain. CcaSR regulates the expression of sfGFP, while 

Cph8-OmpR regulates the expression of mCherry. Wavelength values are as in Fig. 2a (b) 

Training data for the multiplexed model (“Experiment”, File S8) consists of a two-dimensional 

steady-state intensity dose-response to green (𝜆𝑐 = 526 nm) and red (𝜆𝑐 = 657 nm) light. The 

light intensities are logarithmically distributed, with the green light varying on a 0.05 x log2 µmol 
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m
-2

 s
-1

 scale (e.g. a value of -1 corresponds to 20 x 2
-1

 = 10 µmol m
-2

 s
-1

) and the red light 

varying over a 0.05 x log3 µmol m
-2

 s
-1

 scale (e.g. a value of -1 corresponds to 20 x 3
-1

 = 6.67 

µmol m
-2

 s
-1

). The different intensity ranges are used to maintain a high-resolution measurement 

despite the differences in the intensity dose-responses of the two systems. The four missing 

intensity values (white boxes) were not collected. The training data was used to re-fit the a, b, n, 

and k Hill function parameters for the CcaSR and Cph8-OmpR models (Table S6). Simulated 

steady-state responses to the same light environments for the best-fit dual-system models (Table 

S6) are shown (“Model”). mCherry fluorescence is calibrated to MECY units (Molecules of 

Equivalent Cy5, Methods). RMSE relative errors are expressed in log10 decades (Methods). 

Data was collected in one experimental trial, and the 192 samples were randomly distributed 

across eight LPAs (Methods, Table S6).  Each color patch represents the arithmetic mean of a 

single population of cells. 

 

Fig 6 –  

Validation of the multiplexed system model. Predicted responses of the multiplexed system 

(Fig.5a) to time-varying signals of green (𝜆𝑐 = 526 nm) and red (𝜆𝑐 = 657 nm) light are 

compared to experimental results. Reference signals, light programs, and experimental data are 

as in Fig 4. (a) “Green mono”. The green LED alone provides an optimized input signal for 

CcaSR. (b) “Red mono”. The red LED alone provides an optimized input for Cph8-OmpR. (c) 

“Sum”. The “Green mono” and “Red mono” programs are used simultaneously without any 

compensation, leading to a substantial deviation of the CcaSR output from the reference 

trajectory. (d) “Compensated sum”. The “Red mono” program is used; however, the green light 

program is produced while incorporating red light program into the LPG (above). RMSE relative 

errors are expressed in log10 decades (Methods). Error bars correspond to the standard deviation 

in fluorescence measurements over three separate experimental trials (Table S6). 

 

Fig 7 –  

Multiplexed biological function generation. The LPG is used to program CcaSR and Cph8-

OmpR outputs to independently follow different reference signals. Red light (𝜆𝑐 = 657 nm) 

programs are optimized first using the LPG, and then the “Compensated” approach (Fig. 6d) is 

utilized to generate the green light (𝜆𝑐 = 526 nm) program (Methods). The LPG, reference 

signals, light programs, and results are as in Fig 5d. (a) “Dual-sines”. The sfGFP and mCherry 

reference trajectories are sinusoids with different periods, amplitudes, and offsets. (b) “Sine and 

stairs”. The mCherry signal follows the same sinusoid in “Dual-sines,” but the sfGFP reference 

is a stepped trajectory with several plateaus and increasing linear ramps. (c) “Dual-stairs”. The 

sfGFP signal follows the same stair-shape in “Sine and stairs,” however the mCherry response is 

a decreasing stair-shape. (d) “Time-shifted waveform”. The sfGFP and mCherry reference 

trajectories both follow the same arbitrary waveform consisting of ramps, holds, and a sinusoid, 

with sfGFP trailing mCherry by 40-minutes. RMSE relative errors are expressed in log10 decades 

(Methods). Error bars correspond to the standard deviation in fluorescence measurements over 

three independent experimental trials (Table S6). 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081430doi: bioRxiv preprint 

https://doi.org/10.1101/081430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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SI Materials and Methods 
 
Detailed bacterial growth and light exposure protocol 
1. Experiment initialization. This an approximately 2-hour process. 

 
(a) Prepare program files on SD cards and load the SD cards into LPAs. 
 
(b) Prepare 24-well plates for use (ArcticWhite AWLS-303008): Soak plates for at least 15 

minutes in 70% EtOH. Triple-rinse the plates using DI water. Place rinsed plates onto a sheet of 
foil which will later wrap around the plate. Dry plates near a lit burner until the interior of the 
wells are dry (approximately 45 min). Use a paper wipe to dry the bottom of the plate and the 
foil. Wrap the plate in the foil. 

 
(c) Prepare media and cell culture: Prepare 100 mL M9 medium (75.8 mL autoclaved, distilled 

H2O, 20 mL 5x M9 salts, 2mL 10% casamino acids, 2mL 20% glucose, 200 µL 1m MgSO4, 10 
µL 1m CaCl2). (Note: prepare 1-2L of this media and pipet it into 50mL aliquots to be used at a 
later date. For 8x LPA experiments, combine two aliquots.). Add appropriate antibiotics to 
medium. Shake/stir the container to homogenize. Remove -80 °C culture aliquot from the 
freezer and allow to thaw. Lightly vortex thawed culture aliquot and briefly spin down in a 
microcentrifuge. Add appropriate culture volume to the 100mL media. (Note: inoculation 
densities for strains used in this work are CcaSR: 1E-5, Cph8-OmpR: 5E-6, Dual-system: 1E-5). 

 
(d) Distribute inoculated media into 24-well plates: Prepare a row of 1mL tips in a box so that 

only every-other tip is present (i.e. 6 tips total). Shake to homogenize inoculated media. Arrange 
the 8x 24-well plates with the wells open and uncovered. Pour more than half of the media into 
a 50mL disposable multichannel tray. Use a 1mL 12-channel pipettor with the previously-
prepared row of 6 tips to transfer 500 µL of media into each well. Pour remaining media into the 
tray and continue. Cover each plate with an adhesive-backed foil seal (VWR 60941-126). 

 
(e) Load the LPAs and start the programs: Carry the 8x plates, 8x LPA lids, and 32x LPA wing 

nuts to the incubator containing the LPAs. (Note: a small carboard box or plastic container is 
helpful). Load the plates onto each LPA, ensuring that the plate is oriented correctly and is 
completely engaged with the LPA plate adapter. Place the lid onto each LPA, ensuring that the 
lid is oriented correctly. Engage 4x LPA wing nuts onto each device. Tighten the nuts evenly 
until the pressure of the rubber gaskets being compressed is felt (approximately 1-2 full turns 
after the nut engages with the lid). Start an 8-hour timer while synchronously releasing the reset 
button on one of the LPAs. Every 10 seconds, release the reset button on another LPA. Make 
sure to recall the order in which the LPAs were reset. This staggering of the start times enables 
the plates to be removed immediately when each of their programs ends. Allow the cells to grow 
in the LPAs at 37 °C for 8 hours. 

 
2. Experiment completion and data collection. This is an approximately 4-hour process. 

 
(a) 30 minutes prior to the end of the LPA programs, prepare a PBS+rifampicin solution: Fill a 

250 mL beaker with 125 mL of a PBS solution in the pH7-7.2 range (VWR 72060-035). Add a 
stir-bar to the beaker and place on a stir-plate. Weigh 62.5 mg of rifampicin (rif, Tokyo Chemical 
Industry, R0079). Adjust the beaker to be centered on the stir plate. Adjust the rate of the stir 
plate to produce a vortex which doesn't quite reach down to the bar. Add the rifampicin to the 
middle of the vortex. Slide the beaker to be slightly off-center on the stir plate. This often 
encourages the vortex to lower, leading to the stir-bar clipping the vortex with each rotation. This 
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is the desired state for dissolving. Make any adjustments if necessary. Cover the dissolving 
solution with an opaque container (e.g. tin can) or foil, as the rif is light-sensitive. 

 
(b) Finishing the LPA programs: Prepare two autoclave trays with ice-water baths. Make sure 

the water level is near the surface of the ice so that the submerged items will make contact with 
water and not just ice (Note: a utility cart is useful here). Submerge the 8x multichannel-ready 
tube racks into one of the icewater baths. Load the 192x wells in these racks with flow cytometry 
tubes (VWR 60818-419). Carry the other ice-water bath to the incubator with the LPAs. At 2 min 
time remaining on the LPA programs, open the incubator and unscrew all of the wing nuts 
(leave the lids in place). As the status LEDs on each LPA change to indicate that the program is 
complete, remove the enclosed plate and immediately submerge it at least halfway up the side 
of the plate in the ice-water bath. The temperature logs from the data-logging thermometer on 
the growth incubator can now be gathered. 

 
(c) Preparing for culture transfers: After a 10 minute wait, remove the rif solution from the stir-

plate. The solution should be a vivid, bright orange. If it is dark-colored, either there was light 
leakage, the stirring was too vigorous, or the saline was not in the pH 7-7.2 range, and the 
solution should be remade. Filter the rif solution using a 0.22 µm filter. Use a multichannel 
pipettor to load the 192x cytometry tubes each with 500 µL of the rif solution. Label 2x black-
walled clear-bottomed 96-well plates (VWR 82050-748). Prepare 192x 200 µL tips by arranging 
them in four tip boxes such that every-other tip is present (i.e. rows of 6 tips). 

 
(d) Transferring cultures for measurement: Remove the first 24-well plate from its water bath 

and place it on a paper towel. Use another towel to dry its top surface and sides. Carefully 
remove and discard the adhesive foil without spilling the contents of the plate. Use a 12-channel 
200 µL pipettor to transfer 100 µL volumes of the cultures into the 96-well plate. Make sure to 
pipette up-and-down in the 24-well plate in several locations to ensure that the culture is 
homogenized before this transfer. Do not discard the tips after this transfer. After the transfer to 
the 96-well plate, using the same tips, transfer the same volume into the corresponding PBS+rif 
tubes in the tube racks. Discard the tips after this transfer. Place plastic caps onto the PBS+rif 
tubes containing the cultures. This aids in reducing pipetting errors. Repeat this process until all 
192x samples have been transferred to the 96-well plates and the cytometry tubes. It is useful to 
fill the 96-well plates using an interleaved strategy, where the first 24-well plate begins in A1, the 
second plate in A2, the third plate in E1, and the fourth plate in E2. Once all samples have been 
transferred, the cytometry tubes should be homogenized. To do this, take the racks out one-at-
a-time, tilt them nearly horizontally, and gently shake the rack. Rotate the rack 180° and repeat. 
This will cause the PBS+rif to roll up the sides of the tubes, mixing in any culture which was 
stuck on the sides of the tube.  

 
(e) Preparing for the next experiment (optional): If another experiment is to be started as soon 

as possible (the 8x LPA growth protocol can be performed twice in a day), the 24-well plates 
should be cleaned immediately and dried after at least a 15-minute soak in 70% ethanol in 
water. 

 
(f) Fluorescence maturation and culture OD measurements: Transfer the PBS+rif+culture tube 

racks into a 37 °C water bath. Allow 1 hour for maturation of fluorescent proteins. While the 
maturation is in process, use a plate reader to measure the absorbance of the cultures in the 
96-well plates. When the fluorescence maturation is complete, remove the tube racks and place 
them back into an ice-water bath. The samples should remain on ice at least 30 minutes before 
measurement via flow cytometry. The temperature logs from the data-logging thermometer on 
the maturation incubator can now be gathered. 
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(g) Calibrated cytometry measurements: Prepare a bead sample for cytometry calibration. 

Pipette 500 µL of PBS into a cytometry tube. Add one drop of calibration beads (Spherotech 
RCP-30-5A) to the PBS. Cap the tube and place it on ice. Transport the PBS+rif+culture 
samples and the bead sample to the cytometer (modified BD FACScan1). Turn the cytometer on 
and allow it to pressurize and stabilize the laser. If applicable to your cytometer, perform several 
“Drain/Fill" cycles to clear the lines of any residue leached from the tubing. Also fill and drain the 
sheath and waste containers if necessary. Analyze the bead sample. The beads should be 
tightly-clustered in the center of the FSC vs. SSC scatter plot. The gain settings on the 
fluorescence channels should match the gain used to acquire the cell samples (if measuring a 
strain for the first time, it is wise to measure the cultures anticipated to have the highest and 
lowest fluorescence levels to establish an appropriate gain). Collect at least 5,000 events (more 
is better). Run the cell samples through the cytometer. The cells should be clearly visible on the 
FSC vs. SSC scatter plot. Collect at least 20,000 events per sample. Make sure that the 
fluorescence histograms are fully contained within the measurement range at the current gain 
settings. When complete, perform an instrument shutdown cycle by running 10% bleach and 
then water through both the droplet-containment line and the sample line. 
 
Detailed -80 °C preculture aliquot protocol 

1. Perform a plasmid transformation to produce your desired strain. From the transformation 
plate, pick a colony and grow a 3 mL culture in LB media + appropriate antibiotics. Grow to a 
OD600 of 0.1-0.2. Make a standard 1mL -80 °C glycerol stock from this culture (700 µL culture 
and 300 µL of 60% glycerol) and freeze the stock overnight.  
 
2. Use a sterile toothpick or pipette tip to stab the glycerol stock and begin growing an 8 mL 
liquid preculture in a culture tube under experimental growth conditions (i.e. 37 °C for the 
experiments in this manuscript). It is critical to grow this culture using the same media which is 
specified for the experiments you will be performing with the aliquots. That is, if your 
experiments will be in M9+antibiotics, you should grow this culture in M9+antibiotics. Prepare a 
PCR rack with 48 sterile, opened PCR tubes. Cover the tubes with foil. 
 
3. When the culture begins to exhibit the slightest bit of turbidity, take a 1 mL sample from it and 
check the density. Check the density again in 30 minutes. Use these measurements to 
(exponentially) extrapolate the time at which the culture will reach an OD600 of 0.1. If the 
culture OD600 is already above 0.1, but below 0.2, remove immediately. If the culture is above 
0.2, start over with a new preculture. 
 
4. When an OD600 of 0.1-0.2 is reached, remove the tube from the shaker. Do not put the 
culture on ice. Add a quantity of 60% glycerol to the preculture to bring the final glycerol 
concentration to 18%. Homogenize the culture by gently vortexing. Use a multichannel pipettor 
to transfer 100 µL of the preculture into each of the PCR tubes. Close all of the PCR tubes, and 
transfer the rack to a -80 °C freezer. 
 
5. After 30 minutes, transfer the frozen PCR aliquots into a labeled 50 mL conical tube. Store 
the conical in the -80 °C freezer. 
 
Detailed LED measurement protocol 
1. Initialize the LPA by programming it with your desired settings. For LED calibration, first 
maximize all of the parameters for each LED by setting the DC values to 63, GCAL values to 
255, and GS sequence to 4095. If a specific final intensity is desired, adjust the DC parameter 
to produce a measurement which is approximately 10-20% above your desired intensity. 
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2. Connect all wires to the spectrometer (StellarNet UVN-SR-25 LT16): power to wall-socket, 
USB to computer, and fiber-optic to the IS6. 
 
3. Open the SpectraWiz software and say “No” to the pop-up dialog named “Confirm” if it shows 
up. If the software has not been installed, follow the manufacturer instructions for installation. 
 
4. Load the IS6 calibration file. Click “View” → “Radiometer” → “Save or Load Cal File for 
attached light receptor !” and then click “Yes” to open a file explorer dialog. Select the calibration 
file (“MyCal-EPP10022524-RAD-IS6.CAL” for our instrument) and click “Open.” Click “OK.” at 
the dialog that pops up. 
 
5. Switch the instrument to scope mode, which reads out the raw 16-bit values from the light 
detector. Click “View” → “Scope Mode.” 
 
6. Place the LED into the IS6 LED adapter socket, and screw the adapter onto the IS6. The IS6 
LED adapter is the screw-on cap with a wire coming out of the back of it terminated by a barrel-
jack power connector. Connect power to the barrel-jack connector using the LPA-side of the 
power adapter. The LPA-side of the power adapter is the wire terminated in a male barrel-jack 
on one end and a two-pronged terminal on the other. The two-pronged end fits into the LED 
socket in the LPA in which the currently-measured LED will be placed. Note: to minimize 
measurement of back-emission from the LED, a 3d-printable cone which holds the LED in place 
is available. 
 
7. Adjust the integration time on the spectrometer to maximize the signal from the LED. Click 
“Setup” → “Detector integration time” and type a value which produces a signal that peaks at 
approximately 75% of the detector range. Repeat if necessary until the full detector range is 
utilized. Note: By default the software will be averaging the spectra of 5 independent 
measurements. To speed up the measurement process, the number of repeats can be reduced 
by clicking “Setup” → “Number of scans to average” and specifying a smaller number. 
 
8. Switch to a calibrated intensity y-axis. Click “View” → “Radiometer” → “MicroMoles per 
square meter per second” and click “Yes”. You may want to adjust the limits of the y-axis so that 
the spectrum is visible. To do this, click “View” → “Y scale” → “set Max Y” and specify a lower 
value. A typical value is 0.0001. 
 
9. Blank the spectrometer. Remove power from the LED by disconnecting the power adapter at 
the barrel-jack connection. Allow the spectral measurement to update until the spectrum has 
cleared the screen. Then click the dark light bulb icon (fifth icon from the left near the top of the 
screen). Reconnect power to the LED and allow the spectrum to stabilize. 
 
10. Export the spectrum. Click the floppy disk icon (second icon from the left near the top of the 
screen). Choose a location and save the spectrum. If the “File save EXPORT parameters” 
dialog pops up, click “auto-set” on each of the fields to maximize the exported range and 
resolution of the spectrum. 
 
11. To measure the next LED, remove the current LED and return to either step 5 or 6. Use step 
6 if the next LED has an intensity known to be similar to the just-measured LED, or use step 5 to 
adjust the integration time if necessary. The output of the LED measurement protocol is a “.IRR” 
spectrum file which contains the complete LED power spectrum in ∆λ = 0.5nm increments as 
well as all setup parameters for the measurement (i.e. integration time, number of averages, 
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etc.). This spectra file can be viewed in a text editor or can be loaded into a spreadsheet viewer. 
The LED power spectrum can be used to calculate a number of characteristics, including the 
peak, centroid, FWHM, and total flux. 
 
Comparison of output gene expression ranges for single- vs dual-systems 
The CcaSR output range is nearly conserved (60-fold vs. 56-fold) while the mCherry response 
from Cph8-OmpR is substantially reduced (210-fold vs. 6.0-fold). Additionally, the light response 
is less sensitive than was observed for Cph8-OmpR individually, as half-repression requires a 
5.2-fold higher intensity (Fig. S16). We speculate that the reduction in the output range and 
decrease in sensitivity of Cph8-OmpR results from a competition between Cph8 and CcaS for 
limiting PCB, leading to a substantial population of light-insensitive apo-Cph8. Notably, the 
growth rate (Fig. S15) of the dual-system strain (39.2 minutes per doubling) is only marginally 
slower than the single-system strains (37.4 and 37.9 minutes for CcaSR and Cph8-OmpR, 
respectively). 

 
Detailed descriptions of multiplexed function generation reference signals 
In the below descriptions, the percentages and fractions correspond to a log-scaled 
representation of the output range (e.g. if a system has a 16-fold output range, the 50% level on 
a log scale would be at the same expression at the 25% level on a linear scale). 
 

1. Dual-sines. The mCherry reference signal is described by the function 0.5 + 0.3 sin
2𝜋𝑡

480 min
 

while the sfGFP reference signal follows 0.7 + 0.2 sin
2𝜋𝑡

360 min
. 

2. Sine and steps. The mCherry reference signal is the same as in “Dual sines”, while the 
sfGFP signal is a series of 80-minute holds and 40-minute linear ramps in increasing 
increments of 20% of the output range. 

3. The sfGFP signal is the same as in the “Sine and steps” program, while the mCherry 
signal is the inverse of the same program. 

4. (Time-shifted waveform). The mCherry signal is a complex function consisting of  
a. a linear ramp from 0 to 70% over 80 minutes, 
b. a hold at 70% for 40 minutes, 
c. a linear ramp down to 50% over 60 minutes, 
d. a hold at 50% for 40 minutes, 

e. a sine wave described by the function 0.5 + 0.25 sin
2𝜋(𝑡−220 min)

220 min
, 

f. and a hold at 50% for 40 minutes. 
The sfGFP signal is the same program but delayed by 60 minutes. 
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SI Figures 

 

 
Fig S1. CcaSR, Cph8-OmpR, and dual-system plasmid maps. (A) Maps of plasmids pSR43.6 
(top) and pSR58.6 (bottom) expressing the CcaSR system including the PCB biosynthetic 
enzymes ho1 and pcyA2. (B) Maps of plasmids pSR33.4 (top) and pSR59.4 (bottom) expressing 
the Cph8-OmpR system. (C) Maps of plasmids pSR78 (top), pSR58.6 (middle), and pSR83 
(bottom) used in the dual-system experiments. 
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Fig S2. Alternative representations of CcaSR dynamic training experiments. (A,C,E) Activating 
and (B,D,F) deactivating step response dynamics are shown with (A,B) linear axes, (C,D) 
semilog axes, and (E,F) log-log axes. Each data point represents the arithmetic mean of a 
single population of cells. Lines are linear interpolations between points, and are simply a guide 
to the eye.  
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081430doi: bioRxiv preprint 

https://doi.org/10.1101/081430
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig S3. Alternative representations of CcaSR spectral training experiments. Results of the 
spectral characterization experiments are shown LED-by-LED on log-log axes. Each plot shows 
the forward activation spectrum (circles) and reverse activation spectrum (squares) for each 
LED (centroid wavelength indicated). Each data point represents the arithmetic mean of a single 
population of cells. Lines are simulated results of the best-fit model. 
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Fig S4. Residuals of CcaSR model to the training data. Residuals between the data and the 
model are shown for the (A) activating and (B) deactivating step-responses as well as the (C) 
forward and (D) reverse spectral measurements. The residuals are expressed relative to the 
measured fluorescence data on a log (base 2) scale (i.e. log2 𝐹data/𝐹model. 
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Fig S5. Multicollinearity in the model fit results. The ability of the model parameters to 
compensate for one another was examined by repeatedly performing the model regression to 
the data while holding the k parameter fixed as an independent variable to a range of values. 
The CcaSR (A-D) and Cph8-OmpR (E-H) results are shown. The The quality of the fit relative to 
the best-fit models are shown (A,E), as well as the relationship between the forward (B,F) and 
reverse (C,G) photoconversion rates. For the CcaSR system, the photoconversion rates for the 
green LED (𝜆𝐶=526 nm, 𝑘𝑖,8) are shown, and for the Cph8-OmpR system, the red (𝜆𝐶=657 nm, 

𝑘𝑖,14) is used. Finally, the forward and reverse rates are plotted against each other (D,H). 
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Fig S6. Detailed results of best-fit splines. Spline results and photoconversion rates are shown 

for CcaSR (a,b) and Cph8-OmpR (c,d). Experimental unit photoconversion rates (blue, 𝑘̂𝑖
expt.

) 

are shown with errorbars indicating the uncertainty via the standard error of the model fits. The 

PCS spline estimate (green, 𝜎𝑖
est.(𝜆)) is constructed by minimizing the sum of the squared error 

(weighted by the experimental uncertainty) between the experimental and spline-derived 

(calculated) rates. The spline-derived, estimated rates are calculated via 𝑘̂𝑖
est. = ∫ 𝜎𝑖

est.(𝜆) ⋅
𝑛light(𝜆)dλ. The 𝜆𝐶=526 nm LED was not included during spline optimization, as the 

experimental rates for this LED appear to be outliers. We believe that because this LED has a 
wider output angle than the other LEDs, that light from this LED may have been cropped by the 
LPA well geometry, leading to a lower-than-expected amount of light reaching the cells (and 
hence lower measured photoconversion rates). 
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Fig S7. Spline knot number optimization via LOOCV. To determine the appropriate spline 
complexity (i.e. number of knots) for each PCS estimate spline, we used a “Leave-one-out 
cross-validation (LOOCV)” approach. In this approach, the experimental dataset is split into a 
series of training and test LED datasets, each of which is constructed by pulling a single LED 
out of the training set to be used for testing. Then, for each number of spline knots to evaluate, 
we construct a spline to each training set (the spline knots are evenly distributed from 350 to 
800 nm), predict the remaining test LED, and calculate the RMS of the relative errors of the 
predictions. The RMS errors for each level of spline complexity are shown for CcaSR forward 
(a) and reverse (b) spectra and for Cph8-OmpR forward (c) and reverse (d) spectra. 
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Fig S8. Cph8-OmpR characterization and model parameterization. Figure details are described 
in Fig. 2. Note that the reverse action spectrum measurements (e) contain only four intensities 
of the spectral LEDs rather than the full set of 12 used in the CcaSR experiments. 
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Fig S9. Alternative representations of Cph8-OmpR dynamic training experiments. A,C,E) 
Activating and (B,D,F) deactivating step response dynamics are shown with (A,B) linear axes, 
(C,D) semilog axes, and (E,F) log-log axes. Each data point represents the arithmetic mean of a 
single population of cells. Lines are linear interpolations between points, and are simply a guide 
to the eye. 
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Fig S10. Alternative representations of Cph8-OmpR spectral training experiments. Results of 
the spectral characterization experiments are shown LED-by-LED on log-log axes. Each plot 
shows the forward activation spectrum (circles) and reverse activation spectrum (squares) for 
each LED (centroid wavelength indicated). Each data point represents the arithmetic mean of a 
single population of cells. Lines are simulated results of the best-fit model. 
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Fig S11. Residuals of Cph8-OmpR model to the training data. Residuals between the data and 
the model are shown for the (A) activating and (B) deactivating step-responses as well as the 
(C) forward and (D) reverse spectral measurements. The residuals are expressed relative to the 
measured fluorescence data on a log (base 2) scale (i.e. log2 𝐹data/𝐹model. 
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Fig S12. Cph8 PCS estimation and Cph8-OmpR model spectral validation. Figure details are 
described in Fig. 3. 
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Fig S13. Cph8-OmpR model dynamic programming validation. Figure details are described in 
Fig. 4. 
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Fig S14. Dual-system fluorescent reporter bleedthrough compensation. High intracellular 
concentrations of sfGFP produce signal in the red-shifted long-pass filter cytometer channel 
(FL3) typically used for mCherry readout. To compensate for this bleedthrough, the “rgv2_r01” 
experimental data (File S1), containing a wide range of sfGFP expression levels (and no 
mCherry) was analyzed and a linear relationship between FL3 and FL1 (the green-shifted 
channel used for sfGFP) was identified. A linear fit to the data was performed, and the fit is used 
to compensate and blank the FL3 channel to enable quantification of the mCherry signal. The 

compensation function used was 𝑚𝐶ℎ𝑒𝑟𝑟𝑦 = FL3 − 368 MECY − FL1 ⋅ 2.25 × 10−3MECY/MEFL. 
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Fig S15.  Optogenetic strain growth rate measurements. Growth rates of cells containing no 
plasmids (BW29655), the Cph8-OmpR system (RDv2), the dual-system (Mux), and the CcaSR 
system (RGv2) were measured by inoculating 8 mL M9 cultures (with appropriate antibiotics, i.e. 
experimental media) to the initial densities used for experiments (Note S1) and later drawing 1 
mL samples from these cultures for OD600 measurements in a Cary 50 spectrophotometer. 
Linear fits were made to semi-logged data in order to extract the exponential growth rates of the 
strains (linear fits and R2 values shown below graph). 
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Fig S16.  Comparison of response of single- vs. dual-system Cph8-OmpR to red light. The 
decreased sensitivity of the dual-system to red light is made apparent when the normalized 
responses of the single and dual-system Cph8-OmpR are compared. The normalization is made 
using the best-fit a and b values for each system in order to account for the different units and 
different reporters used by these systems (sfGFP for the single-strain and mCherry for the dual-
strain). 
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SI Tables 

LED ID Manufacturer Mfg. Model 
V_drop 

(V) 
I_test 
(mA) 

Centroid 
(nm) 

Peak 
(nm) Inten. 

Inten. 
Units 

Filter 
ID 

361-LS LEDSupply L5-0-U5TH15-1 3.8 20 ND 361 750 uW None 

380-SB SBL RL5-UV0230-380 3.5 20 380 ND 40 mW None 

405-SB SBL RL5-UV0430-400 3.5 20 400 ND 40 mW None 

430-MB Marubeni L430-03 3.4 20 ND 430 21 mW None 

450-MB Marubeni L450-03 3.4 20 ND 450 20 mW None 

470-SB SBL RL5-B2545 3.5 20 470 472 2500 mcd None 

490-MB_R383 Marubeni L490-03 3.3 20 496 490 12 mW R383 

505-SB SBL RL5-A9018 3.6 20 505 ND 9000 mcd None 

520-2-KB Kingbright WP7083ZGD/G 4 20 525 520 2200 mcd None 

525-SB_R2003 SBL RL5-G8045 3.5 20 ND 525 1600 mcd R2003 

570-KB Kingbright WP7113CGCK 2.5 20 570 574 700 mcd None 

590-SB SBL RL5-Y3545 2.4 20 ND 588 3500 mcd None 

605-SB SBL RL5-O4030 2 20 ND 605 4000 mcd None 

630-SB SBL RL5-R3545 2.2 20 ND 628 3500 mcd None 

660-LS LEDSupply L2-0-R5TH50-1 2.2 20 ND 660 2000 mcd None 

680-MT Marktech MTE6800N2-UR 1.8 20 ND 680 5.5 mW None 

700-MB Marubeni L700-03AU 2 50 ND 700 14 mW None 

720-MB Marubeni L720-03-AU 1.8 50 ND 720 13 mW None 

740-MT Marktech MTE1074N1-R 1.8 20 ND 740 4 mW None 

760-MB Marubeni L760-04-AU 1.8 50 ND 760 19 mW None 

780-MB Marubeni L780-04-AU 1.6 50 ND 780 28 mW None 

850-VI Vishay Infrared TSHG6200 1.5 100 ND 850 50 mW None 

940-VI Vishay Infrared TSAL6400 1.35 100 ND 940 40 mW None 

white SBL RL5-W18030 3.4 20 ND ND 18000 mcd None 

white_R12 

Same as above LED 

R12 

white_R27 R27 

white_R39 R39 

white_R90 R90 

white_R120 R120 

white_R2007 R2007 

white_R3150 R3150 

white_3310 R3310 

 
Table S1. Manufacturer information for LEDs and filters used in this study. All data shown is 
pulled from manufacturer data sheets. “LED ID” is the custom identifier we have given to each 
LED, “SBL” is “Super Bright LEDs”, “V_drop” is the forward voltage drop across the LED, 
“I_test” is the test current used by the manufacturer while making reference measurements, 
“Inten.” is the intensity reported in units of “Inten. Units”, and “Filter ID” corresponds to the filter 
identification number provided by the filter manufacturer (Rosco). 
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LED ID 
Centroid 

(nm) 
Peak 
(nm) 

FWHM 
(nm) 

Max 
inten. 

361-LS 369 364.5 11.3 8.62 

380-SB 389 387 13.2 269 

405-SB 404 402.5 16.0 427 

430-MB 433 433.5 19.8 321 

450-MB 452 448 20.1 206 

470-SB 470 463.5 28.0 293 

490-
MB_R383 494 493.5 24.0 29.4 

505-SB 516 508.5 33.5 289 

520-2-KB 526 520 28.7 428 

525-
SB_R2003 545 540 45.9 223 

570-KB 573 573 14.8 28.3 

590-SB 596 597.5 16.0 240 

605-SB 612 613.5 18.9 161 

630-SB 637 640 18.0 737 

660-LS 657 656.5 23.3 417 

680-MT 679 678 24.8 468 

700-MB 703 703 23.4 494 

720-MB 724 723.5 25.1 490 

740-MT 741 742 26.9 672 

760-MB 756 758 27.8 646 

780-MB 774 778 27.1 797 

850-VI 855 854.5 38.1 725 

940-VI 958 961.5 23.1 841 

white 577 582.5 201 678 

white_R12 600 583 125 505 

white_R27 687 673.5 84 77 

white_R39 645 623.5 90 137 

white_R90 576 532.5 47 34 

white_R120 669 633 70 140 

white_R2007 551 452.5 24 80 

white_R3150 601 598 93 202 

white_3310 617 600 73 290 
 

Table S2.  LED reference measurements. Reference measurements were made for each LED 
by powering the LED with the maximum LPA current (20 mA) and the minimum 
spectroradiometer integration time necessary to achieve 80% saturation of the detector in order 
to maximize the signal-to-noise ratio of the measurement. Statistics generated from these 
reference spectral measurements are shown in this table (“FWHM” is “Full-Width at Half-
Maximum”, “Max inten.” is in units of µmol m-2 s-1

. 
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Table S3.  LED calibration results. Statistics generated during the calibration of the LEDs used 
in this study are shown. These results were calculated after the first-pass of calibration and thus 
are representative of the variation present in each set of LEDs given the same settings in the 
LPA (i.e. all LEDs used in each row of the table had the same “dot-correction” and “gray-scale 
calibration” value). 
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0.00097
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0.14
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24
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403
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Table S4. Constraints and initial values for CcaSR model regression. 
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Table S5. Constraints and initial values for Cph8-OmpR model regression. 
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Table S6 Dual-system model parameters. 
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SI Files 
 
File S1 Plate-by-plate overview of CcaSR experiments. This Excel spreadsheet contains a 

description of the light programs used for each 24-well plate used for the CcaSR experiments. 

On the “experiment” sheet, the “Run ID” and “Run name” columns contain unique identifiers for 

each experimental trial. The “Strain ID” is an identifier for the CcaSR strain. “LPA” is the name 

of the LPA device used. “Top LEDs” and “Bottom LEDs” correspond to the LED set identifiers 

used in the LED calibration archives. “Randomize” indicates whether the light program time 

points were randomized throughout the wells of the plate. “Program type” is an identifier 

corresponding to the type of light program (“aas” is a forward action spectrum, “ras” is a reverse 

action spectrum, “dta” is an activating step change, “atd” is a deactivating step change, “dv” is a 

dynamic validation, and “sv” is a spectral validation). The parameter columns further specify the 

details of the light program (intensities are in µmol m-2 s-1, “Model” refers to an identifier for the 

system model used to generate the light program, reference signals and perturbation signals 

are identifiers corresponding to reference programs listed in File S3). For dynamic validation 

experiments, the model, reference signal, and perturbation signal (if present) are used to 

generate light programs which are available in File S4. 

File S2 Experimental measurements. This folder contains spreadsheets detailing all 

experimental measurements used in this manuscript. The “rgv2” folder corresponds to CcaSR, 

“rdv2” to Cph8-OmpR, and “mux” to the dual-system. Within these folders are the spreadsheets, 

identified using the “Run ID” values indicated in File S1,7-8. Within each of these spreadsheets 

are a series of tabs corresponding to the experimental measurements (including cytometry 

histograms, final OD600 values, and incubator temperature time-courses) and the light 

programs (both in intensity units and in LPA-readable 14-bit grayscale) used to generate them. 

Each sample can be correlated between tabs using the “Sample ID” column, which provides a 

unique identifier for each culture sample. 

File S3 Reference LED spectra. The raw spectroradiometric reference measurement of each 

LED is available as a .IRR file (human-readable in a text editor). The post-processed .xls file 

contains a truncated spectrum and statistics about the LED spectrum. The “reference_leds.xls” 

file contains the summary statistics for each of the LEDs. 

File S4 LED calibration measurements and results. The “process_led_archives.py” Python 2.7 

script parses the “led_archives.xlsx” and processes the contents of the “raw” and “sd” folders 

within each of the LED archive folders according to the LED layouts in the “layouts” folder. The 

“raw” folder contains the raw calibration measurements, while the “sd” folder contains the SD 

card files from the LPA used during calibration. The “processed” folder contains spreadsheets 

with spectra and LED statistics generated for each LED. During processing, an additional file is 

generated alongside the “processed” folder containing a summary of the LED calibration 

information for each set of LEDs.  

File S5 Reference gene expression signals. The reference programs and perturbation signals 

used for light program generation are stored in this file. Each reference program consists of a 

pair of columns identified by “[ID]_x” and “[ID]_y”. The first column contains time values (in 

minutes) while the values of the second column depend upon whether the signal is a reference 

or a perturbation (as indicated by the ID). Reference signals (ID=”ref”) describe normalized 

gene expression levels (i.e. 0 is the minimal output of a system, and 1 is the maximum), while 
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perturbation signals (ID=”pert”) describe perturbative light programs as a sequence of intensities 

(in µmol m-2 s-1). 

File S6 Generated light programs. The light programs produced using the Light Program 

Generator algorithm are stored in this file. “LED ID” corresponds to the LED which follows the 

light program, “Times” are the time points (in minutes) corresponding to step-changes in the 

light intensity, “Intensities” is a sequence of intensities describing the generated light program, 

“Pre-inten” is the preconditioning intensity used for the program, “Ref ID” is the reference signal 

used to generate the program, “Model ID” is the identifier of the model used to generate the 

program, “Compensated perturbation LED ID” is the LED ID for the perturbing LED (if present), 

and “Compensated perturbation ref ID” is the perturbation signal used by the perturbing LED (if 

present). 

File S7 Plate-by-plate overview of Cph8-OmpR experiments. File contents follow the same 

description used for File S1. 

File S8 Plate-by-plate overview of dual-system programming experiments. File contents follow 
the same description used for File S1. 
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