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Abstract 
Numerous advances in sequencing technologies have revolutionized genomics through 
generating many types of genomic functional data. Statistical tools have been developed to 
analyze individual data types, but there lack strategies to integrate disparate datasets under a 
unified framework. Moreover, most analysis techniques heavily rely on feature selection and 
data preprocessing which increase the difficulty of addressing biological questions through the 
integration of multiple datasets. Here, we introduce FIDDLE (Flexible Integration of Data with 
Deep LEarning) an open source data-agnostic flexible integrative framework that learns a 
unified representation from multiple data types to infer another data type. As a case study, we 
use multiple Saccharomyces cerevisiae  genomic datasets to predict global transcription start 
sites (TSS) through the simulation of TSS-seq data. We demonstrate that a type of data can be 
inferred from other sources of data types without manually specifying the relevant features and 
preprocessing. We show that models built from multiple genome-wide datasets perform 
profoundly better than models built from individual datasets. Thus FIDDLE learns the complex 
synergistic relationship within individual datasets and, importantly, across datasets.  
 

Introduction 
Functional annotation of a particular genomic region requires probing multiple molecular 
interactions under different conditions. The combinatorial complexity of genomic interactions 
and various perturbative conditions dictate that probing each one-by-one is extremely laborious 
and resource prohibitive. Thus, there is a critical need for integrative approaches that learn the 
unified representation of a given genomic region from heterogeneous datasets to infer data that 
has not been directly obtained. Furthermore, high-level questions are best answered by the 
evaluation of multiple genomic datasets simultaneously and will benefit from a unifying 
easy-to-use integrative framework. 
 
Genomics data provide position specific information about molecular interactions that take place 
on the DNA. For a number of cell types numerous datasets are publicly available in large 
databases, such as ENCODE and Roadmap Epigenome (The ENCODE Project Consortium 
2012; Roadmap Epigenomics Consortium et al. 2015). It is highly challenging to integrate these 
datasets to learn a unified representation for a given task. First of all, these datasets are often 
highly dimensional. In other words, a genomic region of interest is represented many numbers 
across the region that arise from experiments that make measurements for each basepair. 
Second, the data to be integrated have different spatial resolution and can be discrete or 
continuous valued. Last but not least, such data comprise complex structures, i.e.  a position can 
correlate with other positions within or across datasets. Current integrative approaches are 
highly customized as they depend on domain knowledge, data pre-processing and feature 
selection, which creates a bottleneck for learning rich representations in a reusable and 
transferable manner.  
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Recently, in the fields of computer vision (Krizhevsky, Sutskever, and Hinton 2012) and natural 
language processing (Collobert et al. 2011), a breakthrough has been achieved by automatic 
learning of features solely from data using deep learning. Convolutional neural networks 
(ConvNets) were utilized to adaptively learn the features instead of choosing manually. 
ConvNets nonlinearly transforms the data to decouple the complex internal structure that arises 
from the correlation between the low level features and provide an informative rich 
representations that simplifies classification or regression (Bengio 2013). Several studies have 
adopted ConvNets to DNA sequence analysis to predict protein binding, protein contact map, 
alternative splicing and accessibility from DNA sequence (Alipanahi et al. 2015; Xiong et al. 
2015; Kelley, Snoek, and Rinn 2016; Wang et al. 2016). Moreover, as in many other fields, deep 
learning approaches are shown to outperform classical well-known machine learning algorithms 
such as support vector machines and random forests (Rusk 2015; Angermueller et al. 2016). 
Deep learning has the potential to statistically learn unified rich representations from multiple 
data sources (modalities) (Castrejon, Aytar, and Vondrick, n.d.), yet has not been readily 
accessible by experimental biologists due to technical and notational reasons.  
 
Here, we provide an open source package, called FIDDLE (https://github.com/ueser/FIDDLE) , 
that comprises ConvNet modules for individual datasets and combines under a common 
scaffold for unified data representation  for dataset inference. We used FIDDLE to infer yeast 
Transcription Start Site sequencing (TSS-seq) (Malabat et al. 2015) data from NET-seq 
(Churchman and Weissman 2011), MNase-seq, TFIIB-ChIP-seq, RNA-seq (Hughes et al. 2012) 
and DNA sequence, individually and combined. We first demonstrate that these individual data 
types contain information about TSS-seq by quantifying the prediction of conditional probability 
distribution and peak detection accuracy. We then evaluate the performance by comparing the 
prediction from biological replicates as upper limit. Next, we show that the combined model that 
uses all of the datasets synergistically boosts the performance towards the upper limit of 
accuracy. Finally, we dissect the contribution of individual datasets by defining necessity and 
sufficiency scores. We find that DNA sequence alone is not sufficient and produces the model 
with the least accurate predictions, however, when combined with the other data, it becomes 
necessary to maintain the high accuracy. Such a synergistic relationship denotes the 
importance of data integration through automatic feature learning. As a result, FIDDLE provides 
a flexible, data agnostic framework to integrate multiple data types and infer a dataset.  
 

Results 
Genomics data originate from experiments designed to target specific molecular interactions, 
however, they are likely to indirectly provide information about other biological processes. For 
instance, Native Elongating Transcript Sequencing (NET-seq) directly monitors the distribution 
of actively transcribing polymerase along the genome, but also indirectly informs about the 
transcription initiation, nucleosome occupancy, transcript levels, splicing activity etc. 
(Churchman and Weissman 2011). However, it is highly challenging to exploit such secondary 
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information as it requires knowing the relevant features beforehand. One of the premises of 
deep learning is that it enables automatic extraction of relevant features at multiple scales.  
 
Therefore, we built a generic ConvNet module with 2 convolutional layers and a fully connected 
layer using Tensorflow (Figure 1a). Each layer applies a non-linear affine transformation to the 
tensor produced by the previous layer and conducts the transformed tensor to the next layer. 
Output of this ConvNet module is a representation of the input data which is concatenated with 
the representations of other datasets. Then, an additional convolutional layer is applied to the 
concatenated representations to learn the patterns emerge from synergistic interactions 
between input datasets. Finally, a fully connected layer is applied to the output of the combined 
convolution layer to predict the non-parametric probability distribution of the target. (Figure 1b).  
 
The raw sequencing data are mapped to DNA on both strands, even if the experiment does not 
have any strand specificity, such as MNase-seq and ChIP-seq. Usually during alignment both 
strands are aggregated into one track and are shifted by a certain amount or by a sophisticated 
analysis such as template filtering (Weiner et al. 2010). FIDDLE neither requires aligning the 
signal by shifting, nor needs any peak detection to find transcription factor or nucleosome 
positioning. It takes both strands as two tracks of an input to a ConvNet module. Moreover, to 
have a readily usable universal framework, we avoided input dependent preprocessing such as 
denoising, normalizing etc. and directly used the mapped sequencing data as inputs. When 
using DNA sequence as an input, we do not provide any pre-defined DNA sequence motifs. We 
convert DNA sequence into a binary matrix of size 4xL by one-hot-encoding, where L is the 
length of the DNA sequence.  
 
Throughout the study, we prepared the inputs and output (TSS-seq) as L=500bp regions taken 
from a larger region that spans from 1 kp upstream and 1 kp downstream of non-overlapping 
genes’ start sites, producing 129K samples (see example in Figure 2).Then we split our data 
into 128K training and 1K testing. As our aim is to provide a universally flexible and readily 
available module, we chose reasonable hyperparameters as suggested previously and did not 
optimize them for this particular task (Angermueller et al. 2016). However, to see whether 
FIDDLE is sensitive to hyperparameters, we performed experiments by changing batch size, 
learning rate, number and size of convolution filters. We observe only slight changes on 
performance.  
 
To demonstrate that a dataset can be inferred from other data types, we trained our ConvNet 
modules to predict TSS-seq data for individual input datasets. All of them converge immediately 
to a plateau practically within the first epoch, in other words, before the whole dataset has been 
seen by the model (Figure 3b). It is worth noting that when DNA sequence is used as the input, 
it takes slightly more iteration to converge to a plateau. This is probably due to the digital nature 
of the DNA sequence, which informs the probability distribution of TSS via motifs. Although 
learning from NET-seq is slightly slower than MNase-seq, it asymptotically outperforms the 
other inputs possibly because NET-seq provides single nucleotide resolution signal whereas the 
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resolution of other datasets are broader. Together, these results suggest that a dataset can be 
derived from other datasets, even without specifying the high level features.  
 
Output of the model is a probability distribution over 500 bp genomic region, denoting the 
transcription initiation probability at each nucleotide, given that transcription initiates within the 
region. To evaluate how well the individual ConvNet modules perform, we compared the 
Kullback-Leibler divergence (KL divergence) between the prediction and the TSS-seq data, both 
of which approximate the probability distribution of the presence of a TSS over the 500 bp 
region, given there is at least one TSS in the same region (Figure 3c). As it is difficult to interpret 
KL-divergence, we also devised a metric to intuitively compare the accuracy of the predictions. 
Although the TSS is distributed over a region, in many bioinformatics applications, major 
transcription start site (peak position of the distribution) is sufficient. Therefore, we first divided 
500 bp region into 10 non-overlapping bins, where each bin is a 50bp window. If both the model 
prediction and the TSS-seq data have their maxima within the same bin, we called the 
prediction correct. Randomized input-output datasets serve as a lower limit (10.5%) and 
biological replicates of TSS-seq data provide an estimate of the upper limit (81.2%) for accuracy 
for this type of measurements. We observe that NET-seq achieves 61.2% and the rest achieve 
the following accuracies: RNA-seq 60.1%, MNase-seq 55.4%, TFIIB ChIP-seq 53.9% and DNA 
sequence 50.2%. (Figure 3d) 
 
To see whether the prediction performance is further improved when the model is trained with 
all input datasets, we combined the ConvNet modules under the scaffold module. Then we 
trained the combined model by randomly initializing the parameters. As expected, the combined 
model achieves significantly higher performance than the individually trained models (72.6%, 
Figure 3c,d). The combined FIDDLE model is able to predict arbitrary non-parametric probability 
distributions (Figure 3a). Note that the model prediction can adopt the major transcription start 
site preference at the nucleotide scale from the combination of inputs many of which have lower 
resolutions. These results suggest that the information to predict TSS-seq is not redundant 
across different datasets. 
 
As the combined model radically improves performance, we hypothesized that the model learns 
the synergistic relationship between datasets when predicting the TSS. In other words, the 
model may utilize the information within a specific input dataset differently depending on the 
other input datasets’ context. For example, the combined model may ignore the presence of a 
DNA sequence motif within a specific region, if the corresponding NET-seq signal indicates no 
transcriptional activity. One way to understand whether there is a synergistic structure across 
datasets, is to measure the individual contribution of the input datasets to the combined model 
prediction. If a dataset is not sufficient but necessary to achieve high accuracy, then we deduce 
that the model is able to learn synergistic behavior. Therefore, we defined two scores, namely 
necessity and sufficiency. Necessity is determined by setting the input to its mean value over 
samples and measuring the cost discrepancy from the unperturbed prediction. If cost increases 
significantly, the necessity score will be high, which suggests that the input is necessary for 
accurate prediction. On the other hand, if the particular input is redundant given other inputs, we 
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expect that the cost will not change significantly and therefore will have low necessity score. 
Similarly, the sufficiency score is calculated by setting all inputs but the one of interest to their 
sample mean. Then we compare the cost with the unperturbed model. If the isolated input is 
alone sufficient to accurately predict the output, we do not expect to see a significant change in 
the cost and vica versa. To control for the sufficiency score, in another model, we also provide 
TSS-seq as input as it is evident that a dataset is sufficient to predict itself. Likewise, to control 
for the necessity score, we provide white noise as input which does not contain any information 
about TSS-seq and is not necessary at all. Overall, many of the datasets have high sufficiency 
scores and low necessity scores, implying that they each contain strong secondary information 
about where the TSS are (Figure 4). An interesting exception is the DNA sequence data. 
Interestingly, we observe that the DNA sequence is necessary to maintain the high accuracy but 
not sufficient by itself. This suggests that the model utilizes the information from DNA sequence 
in combination with the other data types to accurately infer the TSS probability distribution.  
 
 

Discussion 
In this study, we introduce FIDDLE as a Flexible Integration of Data with Deep LEarning for data 
inference. We demonstrate that the TSS-seq data can be learned accurately from different data 
types individually, and from their combination. The performance was boosted when the datasets 
are combined, because the FIDDLE can learn the context dependent synergistic relationship 
between datasets.  
 
Although the performance of FIDDLE is already high, further improvement could be obtained by 
optimizing the hyperparameters, such as number of layers. Moreover, the crafting the ConvNet 
module specifically to the input type would likely improve performance. However, we have not 
designed specific custom modules so that FIDDLE is as data agnostic as possible to encourage 
general use.  
 
We also avoid hyperparameter search and data preprocessing. The dynamic range of certain 
datasets (such as NET-seq) spans several order of magnitudes, which is usually worrisome for 
convergence and model generalization. However, with batch normalization (Ioffe and Szegedy 
2015), the internal covariate shift is reduced and a large dynamic range becomes less effective.  
 
FIDDLE is a generic framework that learns a unified rich representation by exploiting synergistic 
interactions within and across datasets. This representation can then be used to infer a 
particular dataset. Clearly with the cost and widespread need of genome-wide datasets, the 
potential of this framework is vast. All that is required for predicting a dataset is to constrain the 
model through aligning the representations of inputs within a context specified by the data to be 
predicted. Different representations can be learned by specifying different contexts. For 
example, we could ask FIDDLE to predict transcription factor binding sites using the same input 
datasets. In this case, the model would learn a different unified representation through the new 
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constraints. These representations can then be used in a number of flexible ways, such as to 
infer causality between genomic features or to transfer the relationship to another domain, such 
as another species or cell type where the target dataset is not available.  
 
 

Methods 
 

Model architecture and parameters 
 
Each convolutional layer also contains an average pooling, rectified linear unit, which thresholds 
negative values, and a batch normalizer unit. Batch normalization is shown to be important for 
fast convergence and better performance (Ioffe and Szegedy 2015). This generic convolutional 
module accepts input as H by L matrices and outputs 1x500 vector, where H is the number 
genomic data tracks and L is the length of the region of interest for a specific dataset. For the 
first convolution layer, we used 80 filters with size Hx5, where H is the height of the input matrix, 
depends on the input (e.g., NET-seq has 2x5, DNA sequence has 4x5 etc.). For the second 
convolution layer, we used 40 of 1x5 convolution filters. Finally, there is a scaffold module which 
concatenates the output vectors of individual ConvNet modules into a matrix of size Nx500, 
where N is the number of inputs. 
  
The scaffold module contains 1 convolution layer which has an average pooling, ReLU and 
batch normalizer unit. Specifically, we used 20 of Nx5 convolution filters for the scaffold 
convolution layer. The final layer is the unified representation of all datasets to predict TSS-seq 
data. We then apply logistic regression to predict the TSS-seq signal of size 1xL for the same 
region of interest as a probability distribution. The target data, TSS-seq, is converted to 
probability distribution by dividing the signal to total reads for the particular region. Therefore, 
the overall model predicts the conditional probability distribution of transcription start site, 
conditioned on the region. We use Kullback-Leibler divergence as a cost function to train 
FIDDLE.  

Description of datasets 
Native Elongating Transcript Sequencing (NET-seq) monitors actively elongating RNA 
Polymerase II by sequencing the 3’ ends of the associated nascent RNA. It provides nucleotide 
resolution data as the position of the 3’ end of the aligned reads denotes the RNAPII active site 
position. NET-seq also captures the unstable transcripts which might provide extra information 
about the queried system. The dataset is obtained from Churchman and Weissman, 2011. For 
every sample point, we concatenate NET-seq vectors of the positive and negative strands of 
size 500 into a 2x500 matrix and provide as the input.  
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Micrococcal Nuclease Sequencing (MNase-seq) captures the nucleosome occupancy by 
sequencing the DNA that is protected from nuclease digestion by nucleosomes (Hughes et al. 
2012). MNase-seq dataset is not strand specific and usually the signals on the strands are 
shifted and merged. However, instead of merging the signal after processing, we make 2x500 
matrices as input samples and leave the feature specification to FIDDLE.  
 
TFIIB-Chromatin ImmunoPrecipitation Sequencing (ChIP-seq) probes the TFIIB protein along 
the DNA by standard ChIP-seq procedure (Hughes et al. 2012). The dataset is not strand 
specific, and have a resolution around ~100bp. As we do for other datasets, we provide the 
reads from both strands without aligning to each other as an input, resulting a 2x500 matrix for a 
data point.  
 
RNA Sequencing (RNA-seq) measures the amount of transcripts by sequencing RNA. RNA-seq 
can be strand specific but in this case, we use unspecific one (Hughes et al. 2012). In this case, 
we merge both strands as it does not require strand alignments and use the spatial genomic 
profile. 
 
Transcription Start Site Sequencing (TSS-seq) is a modified version of 5’ RACE, which captures 
5’ end capped transcripts and sequences (Malabat et al. 2015). When mapped to the genome, 
only 5’ end is retained, denoting the TSS with a nucleotide resolution. We use this dataset as 
the target to be predicted. Instead of predicting unbounded reads, we converted the signal into 
probability density by dividing the reads over region of interest by the total read within the same 
region.  
  

Accuracy calculation 
 
To calculate the accuracy, we divided the 500 bp region into 10 non-overlapping bins. Then we 
counted the number of times that peaks of the model prediction and the TSS-seq data fall into 
the same bin. This is a conservative score as the peaks that fall into neighboring bins are 
considered as incorrect regardless of their proximity. However, there may be local maximum of 
the TSS signal in the predicted bin. Similarly, we calculated the accuracy of biological replicates 
by counting the percentage of the data points that the peaks of the both replicates fall into the 
same bin.  
 

Sufficiency and necessity scores 
To understand whether the model utilizes the interdependencies across input datasets, we 
defined two scores, namely sufficiency and necessity. 
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Let  be the loss of the combined model,  be the loss of the combined model when 
the dataset  is set to its sample mean and  be the loss of the combined model when all 
other datasets are set to their sample mean but , for a datapoint . Then the sufficiency score 

 and necessity score  are defined by,  
  
  

where  is the sigmoid function, applied to bound the scores between 0 and 1. 
 

Figure legends 
Figure 1 | Schematic of FIDDLE. (a) FIDDLE integrates convolution modules that are dedicated 
to learn the specific features of individual input types. A generic convolution module has two 
convolutional layers each of which learns the patterns through the convolutional filters in 
different length scales. (b) An additional convolutional layer over the combined representation 
learns the patterns that appear across data types.  
 
Figure 2 | Example of training data at the CCR4  locus. Probability density estimate of the target 
(TSS-seq), raw counts of the inputs, NET-seq, MNase-seq, TFIIB ChIP-seq and RNA-seq, and 
the one-hot-encoded representation of DNA sequence corresponding to the 500bp region that 
entails the up- and down-stream of CCR4  gene promoter are shown. Reads from NET-seq, 
MNase-seq and ChIP-seq are strand specific and labeled (Watson or Crick).  
  
Figure 3 | Evaluation of FIDDLE performance (a) Examples of TSS-seq data and model 
predictions. FIDDLE learns arbitrary non-parametric probability distributions. Besides capturing 
overall shape of the distribution, the predictions can also emphasizes the major TSS site at 
nucleotide resolution. (b) Learning curve denotes the decrease of the Kullback-Leibler 
divergence between the prediction and the target by the number of held-out samples. (c) 
Summary statistics of the KL-divergence and the accuracy of the held-out data for individual 
data types, combined training and the ones measured from biological replicates.  
  
Figure 4 | FIDDLE uses conditional information across input data types. Summary statistics of 
sufficiency score (a) and necessity score (b) for randomly selected 2000 data points.  
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