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Abstract 18

Imaging flow cytometry combines the fluorescence sensitivity and high-throughput 19

capabilities of flow cytometry with single-cell imaging, and hence provides high-volume 20

data well-matched to the strengths of deep learning. We present DeepFlow, a data 21

analysis workflow for imaging flow cytometry that combines deep convolutional neural 22

networks with non-linear dimension reduction. DeepFlow uses learned features of the 23

neural network to visualize, organize and biologically interpret single-cell data. 24

Dissecting the cell cycle as a source of cell-to-cell variability is crucial for quantitative 25

single-cell biology. We demonstrate DeepFlow for a large dataset of cell-cycling Jurkat 26

cells. First, we reconstruct the cells’ continuous progression through cell cycle from raw 27

image data. This shows that DeepFlow can learn a continuous distance measure between 28

categorical phenotypes. Second, we are able to detect and separate a subpopulation of 29

dead cells, although the data set had been cleaned using established approaches. 30

DeepFlow detects this morphologically abnormal subpopulation in an unsupervised 31

manner. Third, in label-free classification of cell cycle phases, we reach a 6-fold 32

reduction in error rate as compared to a recent approach based on boosting on a series 33

of image features. In contrast to previous methods, DeepFlow’s predictions are fast 34

enough to consider integration with the imaging flow cytometry measurement process. 35

Author Summary 36

We present DeepFlow, a deep learning based data analysis workflow optimized for the 37

requirements of imaging flow cytometry. We use it to analyze a large data set of a 38

certain type of human T cells (Jurkat cells), which undergo cell cycle. DeepFlow enables 39

reconstructing the continuous cell cycle progression of these cells, and separates dead 40

from living cells. We show how learned features of the neural network can be visualized 41

and biologically interpreted. When used to classify the cell cycle stage, DeepFlow 42

performs significantly better than previous approaches. 43

PLOS 1/13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081364doi: bioRxiv preprint 

https://doi.org/10.1101/081364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Input

Global Average 
PoolingCNN Feed Forward

Feature Extraction

Classification

Visualization

Softmax

G1
S
G2
Prophase

Metaphase
Anaphase
Telophase

TSNE

...

Image Flow Cytometry DeepFlow Feature Extraction
on raw images

Classification + Visualization

Fig 1. Overview of DeepFlow — deep learning data analysis for imaging
flow cytometry. Images from all channels of the Imaging Flow Cytometer are
uniformly resized, and input directly into the neural network, which is trained on the
classification task. The learned features serve for both the classification objective and
the visualization task.

Introduction 44

A major current challenge and opportunity in biology is interpreting the increasing 45

amount of information-rich and high-throughput single-cell data. Here, we consider 46

imaging data from fluorescence microscopy [1], in particular from imaging flow 47

cytometry [2]. Imaging flow cytometry (IFC) combines the fluorescence sensitivity and 48

high-throughput capabilities of flow cytometry with single-cell imaging. Relevant 49

fluorescent labels are chosen to assess certain phenotypes of interest. The large number 50

of single cells analyzed per sample — often hundreds of thousands — makes imaging 51

flow cytometry unusually well-suited to deep learning, which demands very large 52

training sets. 53

Further, IFC generates high-dimensional information for each cell, including 54

spatially-mapped intensity information for thousands of pixels for each of several 55

channels: brightfield and darkfield (which require no staining procedure) and, optionally, 56

several fluorescence channels. This means a dramatic increase in information content as 57

compared to the measurement of a single spatially integrated fluorescence intensity 58

value for each channel, as in conventional flow cytometry [3]. Finally, IFC provides one 59

image for each single cell, and hence does not require whole-image segmentation. 60

It is often not known in advance which morphological features are useful to 61

distinguish specific, often rare, phenotypes in IFC. Classical computer vision algorithms 62

are unlikely to extract sufficient metrics to capture all relevant morphological features. 63

Deep learning, by contrast, potentially captures many more subtleties of image data. 64

Here, we present the deep learning based data analysis workflow DeepFlow — deep 65

learning for imaging flow cytometry. It consists of a deep convolutional neural network 66

combined with a standard softmax classifier and a visualization tool based on non-linear 67

dimension reduction (Fig. 1). 68

DeepFlow enables improved data analysis capabilities for IFC as compared to prior 69

traditional machine learning methods [4–7]. This is mainly due to three general 70

advantages of deep learning over traditional machine learning: there is no need for 71

cumbersome preprocessing and manual feature definition, classification accuracy is 72

improved and learned features can be visualized to uncover their biological meaning. 73

Other recent work on deep learning in high-throughput microscopy either relied on 74

engineered features [8], focused on whole-image segmentation without addressing 75

visualization of network features [9]. Reference [10] is most closely related to the present 76

work, but neither presents an optimized solution to Imaging Flow Cytometry data, nor 77
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Fig 2. Representative images for the cell cycle stages as measured in
brightfield, darkfield and fluorescence channels. Seven cell cycle stages define
seven classes. We only show one representative image for the interphase classes G1, S,
and G2, which can hardly be distinguished by eye.

addresses the particular challenges of a continuous biological process, like cell cycle. 78

Materials and Methods 79

We used a data set of 32,266 asynchronously growing immortalized human T 80

lymphocyte cells (Jurkat cells), which had previously been analyzed using traditional 81

machine learning [5,11]. Images of these cells can be classified into seven different stages 82

of cell cycle (Figure 2), including phases of interphase (G1, S and G2) and phases of 83

mitosis (Prophase, Anaphase, Metaphase and Telophase). In this data set, ground truth 84

is based on the inclusion of two fluorescent stains: propodium iodine (PI) to quantify 85

each cell’s DNA content and the mitotic protein monoclonal #2 (MPM2) antibody to 86

identify cells in mitotic phases. These stains allow each cell to be labeled through a 87

combination of algorithmic segmentation, morphology analysis of the fluorescence 88

channels, and user inspection [5]. Note that 97.78% of samples in the dataset belong to 89

one of the interphase classes G1, S and G2. The strong class imbalance in the dataset is 90

related to the fact that interphase lasts — when considering the actual length of the 91

biological process — a much longer period of time than mitosis. 92

Recent advances in deep learning have shown that deep neural networks are able to 93

learn powerful feature representations [12–15]. For DeepFlow, we adapt the widely used 94

“Inception” architecture [14], and optimize it for treating the relatively small input 95

dimensions that occur in IFC data. The architecture consists in 13 three-layer 96

“dual-path” modules (Suppl. Fig. 7), which process and aggregate visual information at 97

an increasing scale. These 39 layers are followed by a standard convolution layer, a fully 98

connected layer and the softmax classifier. Training this 42-layer deep network does not 99

present any computational difficulty, as the first three layers consist in “reduction 100

dual-path” modules (Suppl. Fig. 7), which strongly reduce the original input dimensions 101

prior to convolutions in the following “normal dual-path modules”. The number of 102

kernels used in each layer increases towards the end, until 336 feature maps with size 8 103

× 8 are obtained. A final average pooling operation melts the local resolution of these 104
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maps and generates the last 336-dimensional layer, which serves as an input for both 105

classification and visualization. The neural network operates directly on the uniformly 106

resized images from an arbitrary number of channels of the Imaging Flow Cytometer. It 107

is trained with cell images that have been labeled as described above, using stochastic 108

gradient descent with standard parameters (see Suppl. Notes). Here, we focus on the 109

case in which only the brightfield and darkfield channels are used as input for the 110

network, during training, visualization and prediction. This case is interesting as 111

sometimes fluorescent labeling might affect the biological process under study and 112

should then be avoided. Also, this case provides much less information as when using all 113

channels, and hence provides a difficult benchmark test for DeepFlow. We note, 114

however, that technical imperfections in the IFC data capture might always lead to a 115

minor amount of fluorescence signal, activated by a fluorescence channel, in the darkfield 116

and brightfield channels, a phenomenon known as “bleed through” (see Suppl. Notes). 117

Results 118

To show how learned features of the neural network can be used to visualize, organize 119

and biologically interpret single-cell data, we study the activations in the last layer of 120

the neural network [10,16]. We refer to this as studying the activation space 121

representation of the data. The approach is motivated by the fact that the neural 122

network strives to organize data in the last layer in a linearly separable way, given that 123

it is directly followed by a softmax classifier. Euclidian distances in this space can be 124

interpreted as similarities between cells in terms of the features extracted by the 125

network. Cells with similar feature representations — and hence similar class 126

assignments — are close to each other in Euclidian distance and cells with different 127

class assignments are far away from each other. 128

Still, the activation space of DeepFlow’s last layer has 336 dimensions; it is much too 129

high-dimensional to be accessible for human interpretation. As the fine-grained 130

geometric structure of data in this space is highly complex, non-linear dimension 131

reduction methods are best suited to visualize the data in a lower dimensional space. 132

We thus use t-distributed stochastic neighbor embedding (tSNE) [17] to visualize the 133

activation space representation [16] of a validation data set. 134

DeepFlow reconstructs continuous cell cycle progression. 135

In this visualization, we observe that the Jurkat cell data is organized in a long 136

stretched cylinder along which cell cycle phases are ordered in the chronologically 137

correct order (Fig. 3a). This is remarkable as the network has been provided with 138

neither structure within the class labels nor the relation among classes but simply with 139

categorical class labels. The learned features evidently allow reconstructing the 140

continuous temporal progression from the raw IFC data, and by that allow defining a 141

continuous distance between the phenotypes of different cell cycle phases. 142

We separately visualized just those cells annotated as being in the interphase classes 143

(G1, S, G2) (Figure 3b). We overlaid on this structure a color map displaying the DNA 144

content of cells as obtained after segmentation of images from one of the fluorescent 145

channels (PI). The DNA content reflects the continuous progression of cells in the cell 146

cycle on a more fine-grained level. Its correspondence with the longitudinal direction of 147

the cylinder found by tSNE demonstrates that the temporal order learned by the neural 148

network is accurate even beyond the categorical class labels. 149
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Fig 3. Visualization. a, tSNE visualization of test set data in activation space
representation. All interphase classes (G1, S, G2) and the two mitotic phases with the
highest number of representatives are shown (Prophase: red, Metaphase: blue).
Telophase and Anaphase are not visible due to their low number representatives. b,
tSNE visualization of data from the interphase classes (G1, S, G2) in activation space.
The color map now shows the DNA content of cells. A cluster of damaged cells is
indicated with an arrow. c, Randomly picked representatives from the bulk of
undamaged cells. d, Randomly picked representatives from the cluster of damaged cells.
e, tSNE visualization of data from the interphase classes (G1, S, G2) in the space of
features used in Ref. [5]

.
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Fig 4. Exemplary activation patterns of intermediate layers. Plotted are
activations after the second convolutional module for examples of single cells from four
different phases: a, G1 b, G2 c, Anaphase and d, Telophase. The response maps mark
regions of high activation. Map 1 responds to the cell boundaries. Map 2 responds to
the internal area of the cells. Map 3 extracts the localized scatter intensities. Map 4
constitutes a cross-channel feature, which correlates with the difference of map 2 and 3.

DeepFlow detects abnormal cells. 150

Both tSNE visualizations (Fig. 3a,b) produce a small, separate cluster, highlighted with 151

an arrow in Fig. 3b. This cluster is learned in an unsupervised way as cell cycle phase 152

labels provide no information about it: it contains cells from all three interphase classes. 153

While cells in the bulk have high circularity and well defined borders (Fig. 3c), cells in 154

the small cluster are characterized by morphological abnormalities such as broken cell 155

walls and outgrowths, signifying dead cells (Fig. 3d). 156

Comparison with previous approaches. 157

For comparison, we show the tSNE visualization of cells from the interphase classes in a 158

space of image-analysis based features (Fig. 3e), used in Ref. [5]. The data is neither 159

organized in a continuous way that reflects cell cycle progression, nor can one detect a 160

cluster of abnormal cells. 161

Analysis of intermediate-layer activation patterns. 162

We interpret the data representation encoded in one of the trained intermediate layers 163

of the neural network by inspecting its activation patterns using exemplary input data 164

from several classes (Fig. 4). These activation patterns are the essential information 165

transmitted through the network. They show the response of various kernels on their 166

input. By inspecting the activation patterns, we obtain an insight into what the 167

network is “focusing on” in order to organize data. We observe a strong response to 168

features that arise from the cell border thickness (Fig. 6, map 1), to area-based features 169
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Fig 5. Confusion matrices for boosting and DeepFlow for classification of
five classes. To compare with previous work [5], the three interphase phases (G1, S,
G2) are treated as a single class. Red numbers denote absolute numbers of cells in each
entry of the confusion matrix, that is, diagonal elements correspond to precision.
Coloring of the matrix is obtained by normalizing absolute numbers to column sums. a,
Boosting [5], which leads to 92.35% accuracy. b, DeepFlow, which leads to
98.73%±0.16% accuracy.

(Fig. 6, map 2), as well as cross-channel features. For example, map 4 in Fig. 6 shows 170

high response to the difference of information from the brightfield channel, as seen in 171

map 2, and scatter intensities, as seen in map 3. A strong response of the neural 172

network to area-based features as in map 2 could indicate that the network learned to 173

perform a segmentation task. 174

DeepFlow outperforms boosting for cell cycle classification. 175

We study the classification performance of DeepFlow on the validation data set shown 176

in Fig. 3. We first focus on the case in which G1, S and G2 phases are considered as a 177

single class. Using five-fold cross-validation on the 32,266 cells, we obtain an accuracy of 178

98.73%±0.16%. This means a 6-fold improvement in error rate over the 92.35% 179

accuracy for the same task on the same data in prior work using boosting on features 180

extracted via image analysis [5]. The confusion matrix obtained using boosting show 181

high true positive rates for the mitotic phases (Fig. 5a). For example, no cells in 182

Anaphase and Telophase are wrongly classified, as indicated by the zeros in the 183

off-diagonal entries of the two lower rows of the matrix (Fig. 5a). This means high 184

sensitivity, most cells from mitotic phases are correctly classified as such. Still this 185

comes at the price of low precision: many cells from the interphase class are classified as 186

mitotic phases, as indicated by the high numbers in the off-diagonal entries of the first 187

row of the matrix (Fig. 5a). DeepFlow, by contrast, achieves high sensitivity and 188

precision, leading to an almost diagonal confusion matrix (Fig. 5b). 189

DeepFlow enables separation of all seven cell cycle classes. 190

We also evaluated the full seven-class problem in which the three interphase classes are 191

considered individually. Here, we obtain an accuracy of 79.40%±0.77%. This number 192

serves as an orientation for what deep learning could be able to achieve on this 193

particularly hard classification problem — G1, S and G2 are extremely difficult to 194

distinguish (see Fig. 2), even when using information from the fluorescence channels. 195

The accuracy might therefore be affected by wrong labelling, it might be higher if all 196
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Fig 6. Performance of DeepFlow for classification of seven classes. a,
Confusion matrix. Red numbers denote absolute numbers of cells in each entry of the
confusion matrix. Coloring of the matrix is obtained by normalizing absolute numbers
to column sums, that is, diagonal elements correspond to precision. b, Class-specific
Receiver Operating Characteristics.

fluorescence channels were used as input for the neural network, and it might be slightly 197

lower if “bleed through” enriched brightfield and darkfield images. If high classification 198

accuracy is of importance, and one is not only interested in visualizing and interpreting 199

the data, these questions have to be answered from case to case. Their answer depends 200

in particular on how labels are generated and how many channels of the IFC are used. 201

Here, we confirm that the considerably lower accuracy as compared to the five-class 202

problem results primarily from cells in the S phase being wrongly classified as either G1 203

or G2 (Fig. 6a). This is also shown by the Receiver Operating Characteristic, which 204

relates the true positive rate (sensitivity) with the false positive rate (fall-out) as the 205

classification threshold changes (Fig. 6b). Integrating the curve to obtain the standard 206

performance metric “Area under the curve” (AUC). Even though the AUC for the S 207

phase is still high with 0.87, it is the lowest among the majority classes (G1,S,G2), and 208

therefore has a strong effect on the accuracy. Overall we find that all seven classes yield 209

high values, greater than 0.85, and four of the seven classes, yield very high values, 210

greater than 0.95. 211

Discussion 212

The visualization of the data as encoded by the last layer of the network using tSNE 213

demonstrates how DeepFlow overcomes a well known issue of traditional machine 214

learning. When trained on a continuous biological process using discrete class labels, 215

conventional machine learning often fail to resolve the continuum [4]. We confirmed this 216

for the present data set of cell-cycling Jurkat cells (Fig. 3e), but note that resolving the 217

continuous cell cycle progression based on features such as those of Ref. [5], has recently 218

been enabled [18] by combining feature extraction with an elaborate trajectory learning 219

algorithm [19]. While this approach still suffers from many other disadvantages of 220

traditional machine learning, as mentioned before, DeepFlow’s approach is conceptually 221

much simpler. The learned features of the neural network — which can also be used for 222

classification — directly generate a feature space, in which data is continuously 223

organized [20]. DeepFlow learns in an unsupervised way that some cells within the G1 224

phase are at the very beginning of the cell cycle, whereas others in the G1 are already 225

transitioning into the S phase. This is possible as adjacent classes are morphologically 226
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more similar to each other than classes that are temporally further separated. Of course, 227

if this assumption of continuity fails, then DeepFlow will not reconstruct the continuous 228

progression, a limitation in common with the other mentioned algorithmic 229

approaches [18]. Also, note that DeepFlow’s simple reconstruction of a continuum is 230

quite exceptional compared to other fields of single-cell biology. For example, in the 231

analysis of single-cell transcriptomic and proteomic data, much research effort has been 232

applied to solve precisely this task [19,21,22]. 233

The unsupervised detection of a discrete cluster of abnormal cells indicates that the 234

network learns the cluster of abnormal cells independently of the cell-cycle-label based 235

training. The model is therefore not only capable of resolving the biological process of 236

the cell cycle, but generates features that are general enough to separate even 237

incorrectly labeled cells, which do not belong to this process. This shows the ability of 238

DeepFlow to find completely unknown phenotypes and processes without knowledge 239

about features or even labels in cell populations from IFC data. There is also a high 240

practical use of the detection of damaged cells. The data set used in this paper has been 241

preprocessed using the IDEAS® (Merck Millipore Inc.) analysis software to remove 242

images of abnormal cells. In particular, we removed out of focus cells by gating for 243

images with gradient RMS and debris by gating for circular objects with a large area. 244

The discovery of a cluster of abnormal cells shows the limitations of this approach and 245

provides a solution to it. 246

An advantage of using a neural network for cell classification in IFC is its speed. 247

Traditional techniques rely on image segmentation and measurement, time-consuming 248

processes limited to roughly 10 cells per second. Neural network predictions, by 249

contrast, are extremely fast, as the main computation consists in parallelizable matrix 250

multiplications (“forward propagations”), which can be performed using optimized 251

numeric libraries. This yields a roughly 100-fold improvement in speed to about 1000 252

cells per second with a single GPU. Aside from much faster analysis of large cell 253

populations, this opens the door to “sorting on the fly”: imaging flow cytometers 254

currently do not allow physically sorting individual cells into separate receptacles based 255

on measured parameters, due to these speed limitations. 256

Conclusion 257

Given the compelling performance on reconstructing the cell cycle, we expect DeepFlow 258

to be helpful for a wide variety of biological processes involving continuous morphology 259

changes. Examples include developmental stages of organisms and the progression of 260

healthy states to disease states, situations that have often been non-ideally reduced to 261

binary classification problems. Ignoring intrinsic heterogeneity has likely hindered a 262

deeper insight into the mechanisms at work. In an example where we studied the 263

progression from healthy to diseased states, preliminary results indicate that DeepFlow 264

resolves and visualizes this process well when using brightfield, darkfield and 265

fluorescence channels as input for the network. Analysis as demonstrated here could 266

reveal morphological signatures in optical and fluorescence channels at much earlier 267

stages than previously recognized. 268

We also expect DeepFlow to be helpful for a wide variety of image data, including 269

images from high-throughput microscopy. Although generally lower-throughput in 270

terms of the number of cell processed, conventional microscopy is nevertheless still 271

high-throughput and can usually provide higher resolution images than IFC, providing 272

advantages for some biological processes. Furthermore, given that multi-spectral 273

methods are advancing rapidly, imaging mass spectrometry is allowing dozens of labeled 274

channels to be acquired [23,24]. Due to its basic structure and high flexibility, 275

DeepFlow can accommodate a large increase in the number of available channels. 276
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Fig 7. Dual-path modules. a, Normal dual-path Module. b, Reduction dual-path
Module. The numbers beneath the convolution operations indicate the kernel sizes,
stride and the number of filters.

Although the current version of DeepFlow is oriented towards those with 277

computational expertise, a biologist-oriented version could be created to make the 278

general approach more tractable to that audience. The packages used for this paper are 279

listed in the supplemental notes. 280
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Supplemental Notes 286

Preprocessing. 287

Our algorithmic workflow of cell cycle analysis with Deep Neural Networks begins with 288

brightfield and darkfield images from the cells. In order to allow uniform training of our 289

network on the whole dataset, we resize the images to 66 × 66 pixels by stretching the 290

border pixels. We choose this method over individual image rescaling to avoid the 291

destruction of possibly important size relation information between cells. 292

The data set used in this paper has been preprocessed using the IDEAS® software 293

(Merck Millipore Inc.) to remove images of abnormal cells. In particular, we removed 294

out of focus cells by gating for images with gradient RMS and removed debris by gating 295

for circular cells with a large area. 296
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Network architecture. 297

Figure 7 shows normal and reduction dual-path modules, the basic elements of the 298

network architecture of DeepFlow discussed in the main text. Kernel sizes, stride and 299

number of filters are indicated in the figure. 300

The DeepFlow network architecture consists of 42 layers, which results in a total 301

number of parameters of about 2mio. It is build up starting with 3 dual-path reduction 302

modules, followed by 10 normal dual-path modules, one pooling layer, one fully 303

connected layer and the softmax layer. Each dual-path module consists in 3 layers: a 304

convolution layer, a batch normalization layer and an activation layer. Although there is 305

no “big” fundamental difference between dualpath and standard convolution modules, 306

dual-path based networks tend to converge a little better in practice, since the gradient 307

flow from pooling and convolution in the reduction module counteracts the vanishing 308

gradient problem: not the entire gradient gets multiplied by approx 10−4 convolutional 309

weight, pooling just lets it through. 310

In the first (input) layer, all IFC channels are combined in a linear operation by 311

feeding them in the channel — which equals the color — dimension of the convolution 312

input. This means the convolution uses kernels which convolve over all channels 313

simultaneously. The number of 3×3 kernel weights then is nine times the number of 314

channels. Increasing the number of channels simply increases the “kernel depth” in the 315

color dimension, and hence, is trivial. 316

Training details. 317

The network was trained for 100 epochs using stochastic gradient descent with standard 318

parameters: 0.9 momentum, a fixed learning rate of 0.01 up to epoch 85 and of 0.001 319

afterwards as well as a slightly regularizing weight decay of 0.0005. Training took 320

around 7 h and was stopped manually by inspecting convergence cross-entropy. 321

Implementation. 322

For the results presented in this paper, we implemented DeepFlow using the MxNet 323

framework [25] on a NVIDIA Titan X GPU. MxNet is lightweight, fast and memory 324

efficient and available from https://github.com/dmlc/mxnet. Due to the fast 325

progress in the development of deep learning software packages, in the meanwhile, we 326

have also implemented and successfully tested our architecture using TensorFlow, which 327

is available from https://github.com/tensorflow/tensorflow. The user might 328

choose the software package according to personal preferences. 329

Nonlinear dimension reduction. 330

We use the tSNE implementation of Ref. [17] available from 331

https://lvdmaaten.github.io/tsne. 332

Bleed through. 333

The data acquired using the ImageStream was fully compensated using typical control 334

images (see Ref. [26]) so the image tiffs would have minimal bleed through between 335

channels. We could not detect even a slight indication of bleed through in the Jurkat 336

cell data, neither upon inspection by eye, nor upon correlating the integrated intensity 337

of each fluorescence channel with the integrated intensity of bright and darkfield 338

channels, respectively. We then checked the existence of bleed through in the Cytometer 339

used for data generation by switching off the light source of the brightfield channel, 340

while keeping the fluorescence excitation on. We would then expect zero intensity in the 341
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brightfield images, but instead measured a slight intensity stemming from the 342

fluorescence channels. This common technical aspect of IFC measurements merits an 343

own investigation and will appear elsewhere. Here, our aim is to compare methodologies 344

rather than to claim absolute levels of accuracy. 345
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