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Single-cell transcriptomic data has the potential to radically redefine our view of cell type identity.

Cells that were previously believed to be homogeneous are now clearly distinguishable in terms of

their expression phenotype. Methods for automatically characterizing the functional identity of cells,

and their associated properties, can be used to uncover processes involved in lineage differentiation

as well as sub-typing cancer cells. They can also be used to suggest personalized therapies based on

molecular signatures associated with pathology. We develop a new method, called ACTION, to infer

the functional identity of cells from their transcriptional profile, classify them based on their domi-

nant function, and reconstruct regulatory networks that are responsible for mediating their identity.

Using ACTION, we identify novel Melanoma sub-types with differential survival rates and therapeutic

responses, for which we provide biomarkers along with their underlying regulatory networks.

Complex tissues typically consist of heterogeneous populations of interacting cells that are specialized

to perform different functions. A cell’s functional identity is a quantitative measure of its specialization in

performing a set of primary functions. The functional space of cells is then defined as space spanned

by these primary functions, and equivalently, the functional identity is a coordinate in this space. Recent

advances in single cell technologies have greatly expanded our view of the functional identity of cells. Cells

that were previously believed to constitute a homogeneous group are now recognized as an ecosystem of
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cell types [1]. Within the tumor microenvironment, for example, the exact composition of these cells, as

well as their molecular makeup, have a significant impact on diagnosis, prognosis, and treatment of cancer

patients [2].

The functional identity of each cell is closely associated with its underlying type [3]. A number of

methods have been proposed to directly identify cell types from the transcriptional profiles of single cells [4–

9]. The majority of these methods rely on classical measures of distance between transcriptional profiles to

establish cell types and their relationships. However, these measures fail to capture weakly expressed but

highly cell type-specific genes [10]. They often require user-specified parameters, such as the underlying

number of cell types, which critically determine their performance. Finally, once the identity of a cell has

been established using these methods, it is often unclear what distinguishes one cell type from others in

terms of the associated functions.

To address these issues, we propose a new method, called Archetypal-analysis for cell type identifica-

TION (ACTION), for identifying cell types, establishing their functional identity, and uncovering underlying

regulatory factors from single-cell expression datasets. A key element of ACTION is a biologically inspired

metric to capture cell similarities. The idea behind our approach is that the transcriptional profile of a cell is

dominated by universally expressed genes, whereas its functional identity is determined by a set of weak but

preferentially expressed genes. We use this metric to find a set of candidate cells to represent characteristic

sets of primary functions, which are associated with specialized cells. For the rest of the cells, that perform

multiple tasks, they face an evolutionary trade-off– they cannot be optimal in all those tasks, but they attain

varying degrees of efficiency [11]. We implement this concept by representing the functional identity of

cells as a convex combination of the primary functions. Finally, we develop a statistical framework to iden-

tify key marker genes for each cell type, as well as transcription factors that are responsible for mediating
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the observed expression of these markers. We use these regulatory elements to construct cell type-specific

transcriptional regulatory networks.

We show that the ACTION metric effectively represents known functional relationships between cells.

Furthermore, using the dominant primary function of each cell to estimate its putative cell type, ACTION

outperforms state-of-the-art methods for identifying cell types. Furthermore, we report on a case study of

cells collected from the tumor microenvironment of 19 melanoma patients [12]. We identify two novel,

phenotypically distinct subclasses of MITF-high patients, for which we construct the transcriptional reg-

ulatory networks and identify regulatory factors that mediate their function. These factors provide novel

biomarkers, as well as potential therapeutic targets for future development.

Results

The ACTION framework consists of three major components, shown in Figure 1: (i) a robust, yet sensitive

measure of cell-to-cell similarity, (ii) a geometric approach for identification of primary functions, and

(iii) a statistical framework for constructing cell-type specific transcriptional regulatory networks (TRNs).

Our framework starts by defining a cell similarity metric that simultaneously suppresses the shared but

highly expressed genes and enhances the signal contributed by preferentially-expressed markers. The next

component of our method is a geometric approach for identifying primary functions of cells. Each of these

primary functions is represented by a corner of the convex hull of points defined within the functional space

of cells. We refer to these corners as archetypes and the functional identity of each cell is represented

by a convex combination of these archetypes. Finally, ACTION uses a novel method to orthogonalize

archetypes, find key marker genes, and assess the significance of each transcriptional factor in mediating
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the transcriptional phenotype associated with each archetype. Finally, we use this method to construct the

characteristic transcriptional regulatory network (TRN) of each cell type. In what follows, we describe,

validate, and discuss each component in detail.

The ACTION metric outperforms other metrics in representing functional relationships be-

tween single cells

A fundamental component of many methods for identifying cell types is a measure for quantifying the sim-

ilarity between individual cells. Most prior methods rely on traditional measures, such as linear correlation

that are not specifically targeted towards transcriptomic profiles. In contrast, we define a similarity metric, or

formally a kernel, specifically designed for measuring the similarity between single cell transcriptomes [10].

Our approach is illustrated in Figure 2 and the mathematical models underlying the metric are described in

the Methods section, Component 1. In summary, we first adjust the raw transcriptional profiles of cells to

remove the effect of universally-expressed genes by projecting them onto the orthogonal space relative to

the universally-expressed profile. We then boost the contribution of cell type-specific genes using an in-

formation theoretic approach. The final similarity is then a weighted inner-product kernel between these

adjusted profiles.

To establish the superiority of our metric, we compare it against an alternate measure specifically

designed for single cell analysis, SIMLR [13]. SIMLR combines a number of distance metrics to learn a

joint similarity score that maximizes the block diagonal structure of the resulting matrix. We also compare

ACTION with the normalized dot product resulting from two nonlinear dimension-reduction techniques:

multidimensional scaling (MDS) and Isomap. While ACTION is a non-parametric method, the other meth-
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ods have one or more parameters that need to be specified by the user. For SIMLR, we need to specify

the true number of cell types. For all methods other than ACTION, we must specify the dimension of the

low-dimensional subspace. To give them the best chance at competing with ACTION, we evaluate ten dif-

ferent values for the dimension of projected subspace (from 5 to 50 with increments of 5) and report the best

results obtained over all configurations.

To assess the quality of computed similarities between cells, we used each metric with kernel k-means,

starting from 100 different initializations, in order to comprehensively assess their ability to identify discrete

cell types. We apply this technique to four different datasets (see Methods, Datasets). These datasets are

derived from different single cell technologies, have hundreds to thousands of cells, and span a wide range

of normal and cancerous cells. We compare the predicted cell types against the annotated cell types in the

original dataset using three different measures, namely Adjusted Rand Index, ARI, F-score, and Normalized

Mutual Information, NMI.

Figures 3 present the performance of the cell type identification technique when operating with dif-

ferent similarity measures. In summary, our results demonstrate that in all cases the ACTION metric either

outperforms or is jointly the best among competing metrics, except in the Brain dataset in which case SIMLR

performs better when looking at all measures combined. A detailed analysis of the underlying distributions

and the significance of differences among the top-ranked versus the runner-up methods is provided in the

Supplementary Text 3. Additionally, for the CellLines dataset, which is specifically designed to evaluate

cell type identification methods, we report the heatmap of marker genes for identified cell types to facilitate

the visual assessment of the clustering differences, which is also available in Supplementary Text 4.

To assess whether ACTION kernel can extract weak cell-type specific signals with increasing levels
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of dropout, we focus on the CellLines dataset that is specifically assayed to evaluate different cell type iden-

tification methods. We created a series of simulated expression profiles, seeded on the CellLines dataset,

to mimic different levels of dropout. We iteratively removed nonzero elements at random, with the proba-

bility of removal being inversely proportional to the expression value, following previous work [14]. More

specifically, the probability of removing each element is 1
26x

, where x is the expression value. For each case,

we generated 10 independent replicas and used each of them to compute different cell similarity metrics.

Finally, we used each metric with kernel k-means and traced changes in the quality of clustering, which is

presented in Figure 4. The ACTION method has the most stable behavior (RSS of the linear fit) with a minor

downward trend as density goes below 10%. Furthermore, in each data point, ACTION has lower variation

among different replicas. Other methods start to fluctuate unpredictably when density goes below 15%.

Overall, these results establish the ACTION metric as a fast, nonparametric, and accurate method for

computing similarity among single cells. We use this measure throughout the rest of our study.

The ACTION method successfully uncovers functional identity of single cells

Using the ACTION metric as a measure of similarity between cells, we develop a new method for character-

izing the functional identity of cells in a given experiment. Our method is based on a geometric interpretation

of cellular functions. In this view, each cell corresponds to a data-point in a high-dimensional space. Our

method identifies “extreme” corners, or archetypes in this space, each of which represents a primary func-

tion. The functional identity of each cell is subsequently characterized as a convex combination of these

primary functions. (A convex combination is a linear combination of points, such that all coefficients are

non-negative and sum to 1.) The choice of the number of primary functions or archetypes is based on a
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novel non-parametric statistical procedure. See Methods section, Component 2 for a detailed description.

Discrete view of cell types To approximate discrete cell types from the primary functions identified using

ACTION, we assigned each cell to a single dominant function, as determined by its closest archetype. We

compare our method to five recently proposed methods: Seurat (v2.2) [15], SNNCliq [7], BackSPIN [16],

single-cell ParTI [8, 17], and TSCAN [9] (see Supplementary Text 1 for a brief description of these methods)

to predict annotated cell types on the same four datasets (see Methods, Datasets). For the Melanoma dataset,

SNNCliq did not terminate after 72 hours, after which we stopped the experiment.

We report the results of each method applied to each dataset. In addition, to further validate these

results, we select 90% of cells in each dataset, proportional to the total cell type counts, and run each method

on each of these 10-folds, and report mean and standard deviation of these results. In all cases, we observe

that ACTION performs as well or better than the other methods. For the Melanoma dataset, however, there

is no consensus among the top-ranked methods. This can be attributed, in part, to the extent of available

annotations in this dataset and the varying resolution of different methods. We further investigate our results

on this dataset in the following sections.

In terms of computational time, graph-based techniques, such as SNNCliq and Seurat, perform better

than ACTION for smaller datasets; however, ACTION scales more gracefully as the size of the dataset in-

creases (see Supplementary Text 8 for the details). Also, an example heatmap for the results of the CellLines

dataset is provided in the Supplementary Text 5 for an illustration of the benefits of our approach.

In Supplementary Text 9, we study the robustness of ACTION in presence of noise and outliers, as

well as its sensitivity to identify rare cell types. We found that preconditioning the adjusted expression
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profiles significantly enhances the accuracy of predictions, while relaxing the pure pixel assumption further

stabilizes these predictions. Furthermore, we show that our method is sensitive enough to identify rare cell

types with 2% of the total population. Below this population, they are characterized as noise and outlier

cells.

Overall, these experiments show that ACTION, while designed to explore the continuous functional

space of cells, is successful in identifying discrete cell types as stable states in this space.

Continuous view of cell states While the functional identities of cells can be discretized to define cell

types, they can also be explored in the continuous space of all primary functions. To illustrate this continuous

view, we perform a case study on the Melanoma dataset (Figure 6). Each point corresponds to a cell. Given

the functional profile of cells, defined in a k-dimensional space, with k being the number of archetypes,

we map cells to a two-dimensional plane using the Stochastic Neighbor Embedding (SNE) method with a

deterministic initialization (see Supplemental Text 10). Our non-parametric method selected 8 archetypes

for the Melanoma data, each is marked with a text label (A1, . . . , A8) and assigned a unique color. We

interpolate the color of each cell using its distance from all archetypes to highlight the continuous nature

of the data. We use markers from LM22 dataset [18] to distinguish different subtypes of T-cells. For the

tumor cells, we perform further analysis of active transcription factors, as described in the next section and

the methods section, to identify key driving regulators that distinguish each archetype.

Figure 6 demonstrates the ability of our method to identify both isolated cell-types with specialized

primary functions, as well as the ones with a mixed combination of functions. As an example, T-cells consti-

tute a continuous spectrum across functional space of cells, which is consistent with previous studies [19].
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Subclasses of melanoma cells, on the other hand, exhibit distinct separation and have unique phenotypic

behaviors and survival rates. In what follows, we identify key marker genes for each subclass, transcrip-

tion factors that are significantly associated with regulating these genes, and construct their gene regulatory

network.

The ACTION method constructs accurate models of the regulatory networks that drive func-

tional identity of cells

We propose a new method for constructing regulatory pathways responsible for mediating the phenotypes

associated with each archetype. We first perform an archetype orthogonalization to compute a residual

expression and identify marker genes that are unique to each archetype. We then assess the role of each

transcription factor (TF) in controlling these marker genes. Significant TFs, together with their top-ranked

target genes (TGs), constitute the underlying transcriptional regulatory network (TRN) that is responsible

for mediating a given primary function, and consequently, the phenotype associated with cells dominantly

associated with that function (see Methods, Component 3, and Figure 7a for additional details).

To evaluate the quality of top-ranked genes identified after orthogonalizing each archetype, we se-

lected the top 20 genes and marked the ones that are known markers (according to the original paper) for

the cell type that is enriched for the archetype. Supplementary Text 11 presents a complete table of these

top-ranked genes, where known marker genes are in bold typeface. Upon initial observation, a large fraction

of these genes appear to be associated with known markers. To systematically assess the significance of this

event, we created a label vector for each archetype according to its sorted list of genes after orthogonaliza-

tion. Then, we use mHG p-value to assess the enrichment of markers among top-ranked genes, which are
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presented in the last row in the table. It is notable that all archetypes are highly significant with respect to

the enrichment of marker genes among their top-ranked residual genes, with the exception of CD4 T-cell

and tumor subclass A. After further examination, we observed that the majority of T-cell markers provided

in the paper are for CD8 T-cell and provided tumor markers in this dataset are for MITF over-expressed

melanoma tumors. Thus, the corresponding columns have less significant results that the others.

Next, to distinguish different subclasses of tumor cells, we computed the transcription factors that

are significantly associated with regulating the top-ranked marker genes for each archetype, as well as the

particular subset of target genes that they regulate. We found that both subclasses B and C are associated with

SOX10 and MITF, two of the most well-characterized markers for “proliferative” melanoma tumors [20].

Further analysis of these factors, however, reveals that while both of these subclasses are MITF-associated,

the degree of association is higher for subclass C. Examining downstream targets of MITF that are activated

in each subclass (see Supplementary Text 13), we identified that GPNMB, MLANA, PMEL, and TYR are

shared between two subclasses, whereas ACP5, CDK2, CTSK, DCT, KIT, OCA2 and TRPM1/P1 are unique

to subclass C. To validate these targets, we used a comprehensive list of down-regulated genes in response

to MITF knockdown in 501Mel melanoma cells [21]. The overlap of identified MITF target genes and

the set of down-regulated targets was significant for subclasses B and C (hypergeometric test p-values of

7.5 × 10−5 and 1 × 10−6, respectively). This further validates that our method is identifying not only the

right transcription factors, but also the right set of target genes for them. Among other distinguishing TFs,

subclass B is significantly associated with BRCA1 and TP53, whereas subclass C is associated with MYC.

Factors BRCA1 and TP53 are both tumor-suppressors, whereas MYC is a proto-oncogene. Activation of

these transcriptional factors, in turn, can differentially regulate downstream targets that may contribute to

worse outcome in subclass C.
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Based on these observations, we propose the hypothesis that subclass C should have worse outcome

than subclass B. To support this hypothesis, we construct subclass-specific transcriptional regulatory net-

works (TRN) for these two subclasses. (The complete TRNs for each of the 8 archetypes are available for

download, see Supplemental Text 14). The set of transcription factors in these networks have a total of 51

and 91 distinct target genes, respectively, that are functionally active. In order to understand how the differ-

ence among these genes contribute to the overall survival of patients, we assessed the association between

identified genes in each network and survival rate of Melanoma patients in the TCGA dataset, measured

via multivariate Cox regressions [22]. We note that genes in subclass C significantly deviate from the null

distribution of Cox coefficients for all genes (Kolmogorov-Smirnov test; p-val = 5.4 × 10−10), whereas

genes in subclass B do not (p-value = 0.31), which translates into worse prognosis for subclass C. These

observations are summarized in Figure 6.

To further study the underlying regulatory mechanisms that drive this poor-outcome phenotype for

subclass C, we focus on only the most significant transcription factors (those with functional activity p-

values ≤ 10−3, rather than ≤ 0.05 above) and construct their associated regulatory network. Figure 7a

shows the interaction network among highly significant TFs and their major targets in subclass C. While

some of these factors, and their target genes, were previously directly or implicitly associated with Melanoma,

this network provides a novel systems view of the interactions, and highlights new regulatory interactions.

For instance, amplification of the MYC oncogene has been long associated with poor outcome in Melanoma

patients [23]. Also, E2F1 is a critical transcription factor that is involved in cell cycle transition from G1

to S phase, and its overexpression is commonly associated with poor patient survival in high-grade tu-

mors [24]. The LEF1 factor has a dual role. On one hand, it acts as a downstream effector of the Wnt

signaling pathway and is associated with phenotype switching in Melanoma cells between proliferative and
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invasive states [25]. On the other hand, it has been suggested that LEF1 has a distinct, Wnt-independent,

role in activating E2F1 [26]. Finally, we note that LEF1 regulates both MITF and MYC. Collectively, we

hypothesize that LEF1 is a key TF that regulates phenotype switching from proliferative to invasive state in

subclass C, by controlling other transcription factors, including MITF, MYC, and E2F1.

To revisit the problem of survival analysis, and to recover genes that affect this prognostic change, we

project individual Cox coefficients for each gene onto the TRN of subclass C (Figure 7b). Two of the most

significantly associated genes, KIT and OCA2, are among MITF targets that are unique to subclass C but not

subclass B. The Kaplan-Meier plots for these two genes are visualized alongside the TRN. In addition, there

are multiple targets of MYC, LEF1, and E2F1 that are also associated with poor outcomes for melanoma

patients.

Finally, to assess the therapeutic indications of these subclasses, we used the pharmacogenomic pro-

filing of cancer cell lines [27]. There are 53 melanoma cell lines in this dataset. For each of these cell lines,

we have access to both their transcriptomic profile and drug response for 256 different drugs. We used the

top 100 genes in subclasses A-C to find cell lines that closely resemble each of these subclasses. We z-score

normalize each row of this submatrix and use mHG p-value to assess the the enrichment of marker genes

among top ranked genes. We use a p-value of 10−3 to ensure that selected cell lines are closely related

to original subclasses. This leaves us with 9, 6, and 15 cell lines for subclasses A, B and C, respectively,

and 23 unclassified cell lines. For cell lines associated with subclasses B and C, we used a t-test to assess

differences in the distribution of IC50 value between these two subclasses. We found that subclass C is

more sensitive to the drugs targeting ERK MAPK signaling, specifically Refametinib, CI-1040, PLX-4720,

SB590885, Selumetinib, AZD6482, PLX-4720, and Dabrafenib, among which PLX-4720 and Dabrafenib

are the most effective ones.
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Methods

Datasets

Single cell gene expression datasets For all our studies, we rely on the following datasets collected from

publicly available sources:

Brain (GEO: GSE67835) : This dataset contains 466 cells spanning various cell types in the human brain,

including astrocytes, oligodendrocytes, oligodendrocyte precursor cells (OPCs), neurons, microglia,

and vascular cells [28].

CellLines (GEO: GSE81861) : This dataset is recently published to benchmark existing cell type identifi-

cation methods. It contains 561 cells from seven different cell lines, including A549 (lung epithelial),

GM12878 (B-lymphocyte), H1 (embryonic stem cell), H1437 (lung), HCT116 (colon), IMR90 (lung

fibroblast), and K562 (lymphoblast). To assess the effect of batch effects, GM12878 and H1 are

assayed in two batches [29].

Melanoma (GEO: GSE72056) : This dataset measures the expression profile of 4,645 malignant, immune,

and stromal cells isolated from 19 freshly procured human melanoma tumors. These cells are classi-

fied into 7 major types [12].

MouseBrain (GEO: GSE60361) : This dataset contains the expression profile of 3005 cells from the

mouse cortex and hippocampus. These cells classify into seven major types, including astrocytes-

ependymal, endothelial-mural, interneurons, microglia, oligodendrocytes, pyramidal CA1, and pyra-

midal SS [16].
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Transcriptional Regulatory Network (TRN) We collect transcription factor (TF) – target gene (TG)

interactions from the TRRUST database [30]. This dataset contains a total of 6, 314 regulatory interactions

between 651 TFs and 2, 102 TGs.

Drug sensitivity in cell lines We downloaded processed gene expression and drug sensitivity data from

the Genomics of Drug Sensitivity in Cancer Project website [27]. This datasets consists of a total of 1,001

cell lines, spanning different types of cancer, 52 of which are melanoma cell lines that also have their gene

expression profile available. A total of 256 compounds were screened on these cell lines IC59 values for

each pair has been reported.

Component 1: Computing a biologically-inspired metric to represent functional relationships

between cells

The transcriptome of each cell consists of genes that are expressed at different levels and have different

specificity with respect to the underlying cell types. Universally-expressed genes correspond to the subset

of genes responsible for mediating core cellular functions. These functions are needed by all cells to function

properly, which result in ubiquitous expression of these genes across all cell types [31]. While fundamental

to cellular function, these genes are not informative with respect to the identity of cells. On the other

hand, cell type-specific genes are preferentially expressed in one or a few selected cell types to perform cell

type-specific functions. Unlike universally-expressed genes, cell type-specific genes are, typically, weakly

expressed, but are highly relevant for grouping cells according to their common functions. Our goal here is

to define a similarity measure between cells that suppresses universally expressed genes and enhances the

signal contained in cell type-specific genes.
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Suppressing universal but highly expressed genes To suppress the ubiquitously high expression of

universally-expressed genes, we adopt a method that we developed recently for bulk tissue measurements

and extend it to single cell analysis [10]. This method projects a standardized representation of expression

profiles of cells onto the orthogonal subspace of universally-expressed genes. Let us denote the raw ex-

pression profile of cells using matrix X ∈ Rm×n, where each row corresponds to a gene and each column

represents a cell. We use xi to denote the expression profile of ith cell. In addition, let us denote the signa-

ture vector of universally-expressed genes by v. As a first order estimate, a universally-expressed signature

is computed by taking the average expression over all cells: v = 1
n

∑n
i=1 xi; that is, vi is the average ex-

pression of gene i across all samples. This choice is motivated by the fact that highly expressed genes are

more consistently expressed, whereas lowly expressed genes show exhibit higher variability. To this end, by

orthogonalizing with respect to the mean value, we significantly reduce the effect of universally expressed

genes, while preserving the variation of lowly-expressed, but preferential ones [32]. After estimating this

baseline expression, we z-score normalize the profile of each cell: zi = xi−µi
σi

, where µi and σi are the

mean and sample standard deviation of the entries in the ith cell profile. Similarly, we z-score normalize

the signature vector of universally-expressed genes, v, to create a new vector zv. Finally, we project out the

impact of the universally-expressed gene expressions on each cell’s profile as follows:

z⊥i =
(
I− zvz

T
v

‖zv‖22

)
zi. (1)

This operation projects zi to the orthogonal complement of the space spanned by the universally-expressed

genes. We then concatenate the column vectors z⊥i to create a adjusted cell signature matrix Z⊥.

Enhancing signal from cell type-specific genes Next, to enhance the signal contributed by preferentially

expressed genes, we propose an information theoretic approach that is inspired by the work of Schug et

al. [33]. The main idea is to use Shannon’s entropy to measure the informativeness of genes. If a gene is
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uniformly utilized across cells, it contains less information as opposed to the case in which it is selectively

active in a few cells. To this end, we start with the positive projection of adjusted cell signatures, P(+)(Z⊥),

in which case we replace all negative values with zeros. Then, we normalize this matrix to construct a

stochastic matrix P (every row sums to one). Let pi be the row vector associated with the ith gene. We

compute the uniformity, or normalized entropy, of pi as: u(i) = −
∑

j pij log(pij)/ log(n), where pij is an

entry in the matrix P and n is the number of genes. This value is always between zero and one and is used as

a basis to boost contributions from the most informative genes. A detailed comparison of our entropy-based

method with dispersion and Gini index is provided in the Supplementary Text 2.

To scale genes according to their specificity, we compute a coefficient that controls the contribution

of each gene. This coefficient is greater than one (scales up) for cell type-specific genes and less than one

(scales down) for universally expressed genes, respectively. To do so, we note that the distribution of the

entropy values follows a bimodal distribution, with separate peaks for the cell type-specific and universally-

expressed genes. To identify the critical point where these two population separate from each other, we fit

a mixture of two Gaussians over the distribution of the values and use it to identify this transition point,

denoted by u∗, which is the point of equal probability from each Gaussian.Then for each gene i, we define

a scaling factor as wi = u∗/u(i). Finally, we compute the kernel matrix as follows:

K = (Z⊥)Tdiag(w2)Z⊥ (2)

In this formulation, if we denote Y = diag(w)Z⊥, then K is a dot-product kernel defined as YTY. We

will refer to Y as the adjusted transcriptional profile of cells, and K as the cell similarity kernel, or ACTION

metric.
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Component 2: Fitting a geometric construct to characterize functional identity of cells

Due to evolutionary constraints, biological systems, including cells, that need to perform multiple primary

functions, or tasks, can not be optimal in all those tasks; thus, these systems evolve to be specialized in

specific tasks [11]. The functional space of cells then can be represented by a low-dimensional geometric

construct, such as a polytope, the corners of which correspond to the set of specialized primary functions.

The convex hull of a given set of points is the minimum volume polytope that encloses all points. This can be

envisioned as a rubber band fitting to the outermost points. Constructing the convex hull in high-dimensional

space is computationally expensive and susceptible to noise and overfitting. As an alternative, we seek a

limited number of points on the convex hull that enclose as many points as possible, while being resilient

to noise and outliers. Each point here represents a cell and each corner, or archetype, of this polytope is a

candidate cell that best represents a unique primary function. To find these candidate cells, we use a modified

version of the successive projection algorithm (SPA) combined with a novel model selection technique to

identify an optimal number, k, of candidate cells on the approximate convex hull that best represent distinct

pure cells with specialized primary functions. Finally, we use the principal convex hull algorithm (PCHA)

to relax these corners to allow others cells to contribute to the identity of each archetype/corner.

Identifying the best k representative cells Formally, given a matrix Y representing the adjusted tran-

scriptional profile of cells, we aim to construct an optimal set S of k columns such that each selected column

is an ideal representative of the cells that perform a given primary function. Let us assume that matrix Y can

be decomposed as Y = Y(:,S)H + N, where S is the selected column subspace of matrix Y, H is non-

negative with column-sums equal to one, and N represents bounded noise, where ‖N(:, j)‖2 ≤ ε. That is,

we can select |S| = k columns from matrix Y to represent rest of the columns, with consideration for noise.
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A matrix satisfying this condition is called near-separable and is known as the near-separable nonnegative

matrix factorization (NMF) when Y is nonnegative. For a matrix satisfying near-separability, there is an

efficient algorithm, with provable performance guarantees, that can identify columns in S. Furthermore,

premultiplying matrix Y with a nonsingular matrix Q preserves its separability, but if chosen carefully, can

enhance the conditioning of the problem and accuracy of results. To find the optimal preconditioning matrix

Q, we use a theoretically-grounded method based on identifying a minimum volume ellipsoid at the origin

that contains all columns of Y (Supplementary Text 6).

Estimating the optimal number of cells to represent primary functions Given that SPA selects k

columns of Y, given k, the next issue is how to find the optimal value of k that captures most variation in data

without overfitting. We devised a novel monitoring technique that assesses the current k-polytope to see if

there is any evidence of oversampling the cell-space. If so, it stops the algorithm. Otherwise, it continues by

adding new archetypes. Informally, oversampling happens when we start adding new archetypes to regions

in the space that are already well-covered by other archetypes, in which case the newly added archetype

would be significantly close to one or more other archetypes, compared to the rest of the archetypes. Given

that each archetype is a candidate cell, we can measure relationship between them using the ACTION met-

ric. The distribution of similarities resembles a normal distribution; however, as we start to oversample,

the right tail of the distribution starts getting heavier. To distinguish the pairs of archetypes in this heavy-

tailed region, we z-score normalize pairwise similarities between archetypes and select all pairs whose

z-transformed similarity scores are above 1.96, which corresponds to 95% confidence level under Gaussian

assumption for the underlying distribution. Then, we build an archetype similarity graph using these pairs

of close archetypes. In this graph, oversampling can be identified by the emergence of dense local regions.

We use the Erdős-Rényi (ER) random graph model as a background to assess density of each sub-region,
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or connected component, in the archetype similarity graph [34, 35]. If we find at least one of the connected

components that is significantly dense, which is a sign of oversampling, then we terminate the algorithm

and choose the last value of k before oversampling happens.

Optimizing archetypes by relaxing the pure cell assumption After estimating k ideal candidate cells,

or pure cells, we use archetypal-analysis (AA) [36], which can be viewed as a generalization of near-

separability to relax corners by locally adjusting them to have contributions from multiple cells. Formally,

we can formulate AA as follows:

minimize
C,H,α

‖Y −YCH‖

subject to ‖C(:, i)‖1 = 1.

‖H(:, i)‖1 = 1.

0 ≤ C, 0 ≤ H

(3)

Near-separable non-negative matrix factorization is a special case of AA in which Y is non-negative,

C has exactly k nonzeros, and none of the columns have more than one element. We use an efficient

algorithm, called Principal Convex Hull Analysis (PCHA), to solve the above problem to a local optima.

The matrix A = YC then stores the archetypes. Column stochasticity of C indicates that archetypes

are convex combinations of data points, and column stochasticity of H indicates each data point can be

represented as convex combination of archetypes.

A complete pseudo-code fitting all these components together is provided in Supplementary Text 7.
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Component 3: Constructing the driving transcriptional regulatory network for each archetype

In order to understand what control mechanisms are responsible for mediating the transcriptional phenotype

of each archetype, we first have to identify key marker genes that distinguish a given archetype from the rest

of archetypes (see Figure 7a for an illustrative guide to this section). To this end, we first orthogonalize each

archetype with respect to all other archetypes. In this formulation, what remains, referred to as the residual

expression of genes, ranks genes according to their importance in a given archetype. Let matrix A = YC

represent the identified archetypes. Let A(+) = P(+)(A) be the projection to positive entries and let a(+)
i

stand for the column i of A(+). Moreover, let A(+)
−i denote the matrix without the ith column. Our goal is

to project a(+)
i into the subspace orthogonal to the columns spanned by A

(+)
−i . Then, the orthogonalization

step can be written as:

a⊥i =
(
I−A

(+)
−i (A

(+)
−i

T
A

(+)
−i )−1A

(+)
−i

T)
a
(+)
i (4)

Finally, we construct matrix A⊥+ where each column is a⊥i . Terms in this matrix are called residual expres-

sions and help identify distinguishing marker genes for each archetype.

Those genes with high residual expression in each archetype are controlled through regulatory net-

works within the cell. To uncover these relationships, we identify transcription factors that are significantly

associated with the expression of marker genes, which we will refer to as functionally active TFs. Functional

activity of TFs is inferred directly from the expression of their target genes; thus, these TF activities can be

controlled at different stages, ranging from transcriptional to post-translation regulations. To infer these ac-

tivities, we first need to classify their target genes as either active or inactive in a given context (archetype).

We partition genes according to their residual expression and declare top-ranked genes as active. We use the

minimum hypergeometric (mHG) method [37] to find the optimal partition of genes and assign a p-value to

it. The main step of this algorithm is similar to classic enrichment analysis: for a fixed size l, we use the
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hypergeometric p-value to assess the over-representation of target genes for a given TF among top-l markers

for an archetype. Then, we compute the same statistic for all 1 ≤ l ≤ m, where m is the total number

of genes. The minimum hypergeometric tail that is obtained, referred to as the mHG score, specifies the

best cut, l(best), and all target genes that are ranked higher than l(best) among marker genes are selected as

regulated targets for that TF. Finally, we use the obtained mHG score to assess the significance of the TF

itself. This can be accomplished using a dynamic programming algorithm that assesses the probability of

observing the same or more significant mHG score within the population of all binary vectors of sizem with

exactly r nonzeros, where r is the number of targets for the current TF. The set of all significant transcription

factors (TFs), together with their target genes (TGs) that fall above the cut that results in the mHG score, are

used to construct the final transcriptional regulatory network (TRN).

Data Availability

All materials and codes are readily available for download from http://compbio.mit.edu/ACTION.

References

1. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Research 25, 1491–1498

(Oct. 2015).

2. Jamal-Hanjani, M. et al. Translational Implications of Tumor Heterogeneity. Clinical Cancer Research

21, 1258–1266 (Mar. 2015).

3. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics.

Nature Biotechnology 34, 1145–1160 (Nov. 2016).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/081273doi: bioRxiv preprint 

http://compbio.mit.edu/ACTION
https://doi.org/10.1101/081273
http://creativecommons.org/licenses/by/4.0/


4. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Na-

ture Biotechnology 29, 886–891 (Oct. 2011).

5. Marco, E. et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape.

Proceedings of the National Academy of Sciences 111, E5643–E5650 (Dec. 2014).

6. Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525,

251–5 (Sept. 2015).

7. Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering

method. Bioinformatics 31, 1974–1980 (June 2015).

8. Korem, Y. et al. Geometry of the Gene Expression Space of Individual Cells. PLOS Computational

Biology 11 (ed Iakoucheva, L. M.) e1004224 (July 2015).

9. Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.

Nucleic Acids Research 44, e117–e117 (July 2016).

10. Mohammadi, S. & Grama, A. De novo identification of cell type hierarchy with application to com-

pound marker detection in Proceedings of the 7th ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics - BCB ’16 (ACM Press, New York, New York, USA,

2016), 251–260.

11. Shoval, O. et al. Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space.

Science 336, 1157–1160 (June 2012).

12. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.

Science 352, 189–196 (Apr. 2016).

13. Wang, B. et al. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity

learning. Nature Methods 14, 414–416 (2017).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/081273doi: bioRxiv preprint 

https://doi.org/10.1101/081273
http://creativecommons.org/licenses/by/4.0/


14. Lim, C. Y. et al. BTR: training asynchronous Boolean models using single-cell expression data. BMC

bioinformatics 17, 355 (2016).

15. Satija, R. et al. Spatial reconstruction of single-cell gene expression data. Nature Biotechnology 33,

495–502 (2015).

16. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.

Science 347, 1138–42 (Mar. 2015).

17. Hart, Y. et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nature Meth-

ods 12, 233–235 (Jan. 2015).

18. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nature

methods 12, 1–10 (2015).

19. Antebi, Y. E. et al. Mapping Differentiation under Mixed Culture Conditions Reveals a Tunable Con-

tinuum of T Cell Fates. PLoS Biology 11 (ed Bhandoola, A.) e1001616 (July 2013).

20. Verfaillie, A. et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of

the invasive cell state. Nature communications 6, 6683 (2015).

21. Laurette, P. et al. Transcription factor MITF and remodeller BRG1 define chromatin organisation at

regulatory elements in melanoma cells. eLife 4 (2015).

22. Anaya, J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer

Science 2, e67 (June 2016).

23. Kraehn, G. M. et al. Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and

melanoma metastases. British journal of cancer 84, 72–9 (Jan. 2001).

24. Alla, V. et al. E2F1 in melanoma progression and metastasis. Journal of the National Cancer Institute

102, 127–33 (Jan. 2010).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/081273doi: bioRxiv preprint 

https://doi.org/10.1101/081273
http://creativecommons.org/licenses/by/4.0/


25. Eichhoff, O. M. et al. Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype

switching. Pigment cell & melanoma research 24, 631–42 (Aug. 2011).

26. Zhou, F. et al. LEF-1 activates the transcription of E2F1. Biochemical and biophysical research com-

munications 365, 149–53 (Jan. 2008).

27. Haverty, P. M. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 533,

333–7 (2016).

28. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proceedings

of the National Academy of Sciences 112, 7285–7290 (2015).

29. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogene-

ity in human colorectal tumors. Nature Genetics 49, 708–718 (2017).

30. Han, H. et al. TRRUST: a reference database of human transcriptional regulatory interactions. Scien-

tific Reports 5, 11432 (June 2015).

31. Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited 2013.

32. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq

experiments with respect to biological variation. Nucleic Acids Research 40, 4288–4297 (2012).

33. Schug, J. et al. Promoter features related to tissue specificity as measured by Shannon entropy. Genome

biology 6, R33 (2005).

34. Magner, A., Mohammadi, S. & Grama, A. Combining Density and Overlap (CoDO): A New Method

for Assessing the Significance of Overlap Among Subgraphs. CoRR abs/1605.06167 (2016).

35. Koyutürk, M., Szpankowski, W. & Grama, A. Assessing significance of connectivity and conserva-

tion in protein interaction networks. Journal of computational biology : a journal of computational

molecular cell biology 14, 747–64.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/081273doi: bioRxiv preprint 

https://doi.org/10.1101/081273
http://creativecommons.org/licenses/by/4.0/


36. Cutler, A. & Breiman, L. Archetypal Analysis. Technometrics 36, 338 (Nov. 1994).

37. Eden, E. et al. Discovering motifs in ranked lists of DNA sequences. PhD thesis (Technion - Israel

Institute of Technology, Mar. 2007), 77.

38. Jiang, L. et al. GiniClust: detecting rare cell types from single-cell gene expression data with Gini

index. Genome Biology 17, 144 (Dec. 2016).

39. Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of

differentiation data. Bioinformatics 31, 2989–2998 (Sept. 2015).

40. Gillis, N. & Vavasis, S. A. Semidefinite Programming Based Preconditioning for More Robust Near-

Separable Nonnegative Matrix Factorization. SIAM Journal on Optimization 25, 677–698 (Jan. 2015).

41. Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nature Meth-

ods 11, 333–337 (Jan. 2014).

Acknowledgements This work is supported by the NSF Center for Science of Information STC (CCF-0939370),

NSF Grants BIO 1124962, NSF IIS-1546488, NSF CCF-1149756, IIS-1422918, the DARPA SIMPLEX program, the

Sloan Foundation, and NIH Grants 5R01AI114814-02 and 5U01CA198941-03.

Author Contributions SM conceived the idea, designed and implemented the method, ran the experiments, ana-

lyzed the results, and drafted the manuscript. VR performed initial experiments that led to the final method. DG and

AG helped design the method, analyzed results, and assisted with the writing. All authors read and approved the final

manuscript.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence All correspondences should be addressed to S.M. (mohammadi@broadinstitute.org) or

A.G. (ayg@purdue.cs.edu).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/081273doi: bioRxiv preprint 

mohammadi@broadinstitute.org
ayg@purdue.cs.edu
https://doi.org/10.1101/081273
http://creativecommons.org/licenses/by/4.0/


Figure 1: Overview of ACTION. ACTION consists of five main steps: (i) A biologically-inspired metric

to capture similarity among cells. (ii) A geometric approach for identifying the set of primary functions.

(iii) An automated mechanism for identifying the number of primary functions needed to represent all cells.

(iv) An orthogonalization procedure for identifying key markers for each primary function. (v) A statistical

approach for identifying key regulatory elements in the transcriptional regulatory network. These steps are

grouped into three main components in the ACTION method that are each discussed in the methods section.
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Figure 2: Workflow of ACTION cell-to-cell similarity metric. The ACTION metric is defined as a com-

bination of two factors: (i) an adjusted transcriptional profile, in which the effect of universally-expressed

genes has been masked out, and (ii) a gene specificity vector that assigns weights to each gene based on

its informativeness. Finally, ACTION kernel is computed as the weighted dot-product of adjusted transcrip-

tional vectors.
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Figure 3: Performance of ACTION Similarity Metric. Various extrinsic measures of clustering quality

for different cell similarity scores. (a) Adjusted Rand Index (ARI), (b) F-score, and (c) Normalized Mutual

Information (NMI). All of these measures are upper-bounded by one with larger values indicating better

results. The results in the table are the mean value over 100 individual runs of kernel k-means clustering

with different initializations. The ACTION metric has no tunable parameters. For the other methods, we

tested a range of parameters and report the best results. For each dataset, the corresponding row has been

color-coded such that the darker green indicates better performance. Except for the Brain dataset, ACTION

is either the best, or jointly the best. For Brain, the SIMLR metric is slightly better in an aggregation over

all three measures.
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Figure 4: ACTION Kernel Robustness. A series of expression profiles with varying degrees of dropout has

been simulated from the CellLines dataset. For each simulated network, we compute different metrics and

use kernel k-means to identify cell types. The quality of cell type identification is assessed with respect to

known annotation from the original paper using three different extrinsic measures. These results show that

ACTION and MDS have the most stable performance over dropout.
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Figure 5: Performance of ACTION in identifying discrete cell types. ACTION identifies cell types by

classifying cells according to their dominant primary function (closest archetype). Performance is measured

via various measures with respect to the cell types provided with the data: (a) Adjusted Rand Index (ARI),

(b) F-score, and (c) Normalized Mutual Information (NMI) of cell type identification. Larger values are

better, and the perfect score (upper bound) is one. Lighter shades are the actual results when using all

cells/ samples, whereas the darker bar and the error bar indicates a 10-fold test to estimate the variability

and stability of predictions for each method. In the CellLines dataset, which was originally created to

benchmark cell type identification methods, ACTION outperforms other methods with respect to ARI and

NMI measures, and ties with Seurat in terms of F-score. In the MouseBrain dataset, ACTION significantly

outperforms other methods in all three measures. In the Brain datasets there is a competition between

ACTION and Seurat, whereas in the Melanoma there is more variability among different methods. This is

particularly associated with the level of annotations in this dataset (lack of annotations for T-cell subclasses

and tumor subtypes, for example) and the varying resolution of different methods.
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Figure 6: A continuous view on the space of primary functions in the Melanoma dataset
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Figure 6 (previous page): Each archetype, representing a primary function, is illustrated using a textual label

(A1-A8). Each small dot represents a cell. Cells are color coded based on their proximity to archetypes.

All data points are projected onto a 2D plane using a carefully initialized Stochastic Neighbor Embedding

method (SNE, see Supplemental Text 10). The functional space of cells exhibit a mix of cell state continuum,

such as in the case of T-cells, as well as discrete cell types. Three subclasses of melanoma tumor cells are

marked accordingly in the map. Subclasses B and C are both MITF-associated. Among them, genes that

participate in the transcriptional regulatory network (TRN) for subclass B do not show any significant shift

in Cox coefficient, compared to the background of all genes, whereas in subclass C they do. In this sense,

high-expression of genes in the TRN of subclass C is significantly associated with worse outcome in the

melanoma patients.
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Figure 7: The transcriptional regulatory network (TRN) for MITF-associated Melanoma patients

highlights a number of genes that have not previously been associated with Melanoma – along with

some known markers.
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Figure 7 (previous page): (a) Main steps involved in the construction of archetype-specific TRNs: (1)

Orthogonalize archetypes with respect to each other, (2) Sort genes based on their residual expression, (3)

Map gene targets for TFs to the sorted list genes, (4) Enrichment analysis for fixed cut size l, (5) Find

optimal cut size and compute minimum HyperGeometric (mHG) score, and (6) Assess significance of the

mHG score using Dynamic Programming (DP). (b) A subset of the TRN of subclass A induced by using

only the most significant TFs. The yellow nodes are transcription factors (TF), the purple nodes are target

genes (TG), and green nodes are target genes that bridge different TFs. Genes marked with black border

are known to be involved in the proliferative subclass of Melanoma. (c) The TRN of subclass A with genes

color-coded according to their Cox coefficient. Red genes are the ones whose high expression is associated

with worse outcome, and brightness of the color relates to the severity of the outcome. Kaplan-Meier plots

for two of the targets of MITF that are unique to subclass A but not subclass C are shown on the plot.
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Supplementary Material

1. Overview of prior methods for cell-type identification

Various methods have been developed for cell type identification. SNNCliq [7] computes a similarity graph

among cells, referred to as shared nearest neighbor (SNN). It then uses a graph-based clustering algorithm

to identify dense subgraphs. Seurat [15] was originally designed for spatial reconstruction of scRNA-Seq

data. Since then, it has been extensively updated and used for cell-type identification. In more recent

versions (v2.2), Seurat adopted a graph-based approach similar to SNNCliq with extensive modifications

that deviate from the original version. TSCAN [9] starts by grouping genes with similar expression patterns

into “modules” and represents all cells in this reduced space. It then performs principal component analysis

(PCA) over the module space to further reduce dimensions. Finally, cells are clustered by fitting a mixture of

multivariate normal distributions to the data, with the number of components estimated using the Bayesian

Information Criterion (BIC). SCUBA [5] first uses k-means with gap statistic to cluster data along an initial

binary tree by analyzing bifurcation events for time-course data. Then, it refines the tree using a maximum

likelihood scheme. BackSPIN [16] is based on the SPIN algorithm, which permutes correlation matrix of

cell types to extract its underlying structure. BackSPIN then couples it with a divisive splitting procedure to

identify clusters from the ordered similarity matrix. Two methods are specifically designed to identify rare

cell types. RaceID [6] uses k-means to first cluster cells, with the number of clusters identified using gap

statistic. Then, it identifies rare cell types as outliers that are not explained by an appropriate noise model,

accounting for both biological and technical variations. GiniClust [38] aims to identify marker genes that

are specific to rare cell types using the concept of Gini index. Then, it computes distances between cell types

in this reduced subspace and uses DBSCAN clustering algorithm to identify cell types. In addition to these
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methods, there are approaches that visualize cell types on a continuous spectrum in a given space. Haghverdi

et al. [39] use diffusion maps to model the continuous spectrum of cells. In another direction, Korem et

al. [8], adopted a previously developed method, called Pareto task inference (ParTI) [17] and applied it to

single cell datasets. The latter method itself is based on the original work of Shoval et al. [11]. While ParTI

uses a similar notion non-convex archetypal analysis as what we do, our method begins with the separable

NMF method, the solution of which can be formulated as a convex problem, to pick “ideal” candidate cells

as archetypes. Then, it uses the non-convex PCHA procedure to refine these primary archetypes by sparse

local averaging to combat noise in the data. Furthermore, our method is founded on a biologically-inspired,

kernel-based approach, has a novel method to identify the number of cell types, and last but not the least, a

statistical method to construct regulatory circuits that uniquely distinguish each cell type.

2. Comparison of Entropy-based marker detection method with Gini index and dispersion

In order to compare the performance of different methods to identify cell type-specific genes, we focused on

the Melanoma and the MouseBrain datasets, for which the original paper provided curated markers for cell

types. For each dataset, we ranked genes according to each measure, both before and after adjustment for the

effect of universally-expressed genes. Then, for each cell type, we created a true-positive vector based on its

curated markers and assessed the over-representation of these markers among top-ranked genes from each

method. Finally, we combined each of these over-representation p-values using Fisher’s method. Figure 8

illustrates the results for each dataset. As can be seen from the figure, in both datasets, the dispersion method

is superior before adjustment, whereas Gini index and Entropy-based methods excel after adjustment. As a

general trend, we observe that dispersion methods outperform in predicting markers for the most frequent

cells in the dataset (T and tumor cells in the Melanoma dataset, and S1Pyramidal, CA1Pyramidal, and
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Figure 8: Performance of different marker detection methods before/after correction for the effect of univer-

sally expressed genes.

Oligodendrocyte in the MouseBrain datasets), whereas the other two methods significantly outperform

dispersion for the rest of cell types, including rare cell types.

Next, to evaluate the extent of overlap among top-ranked genes, we focused on the top 1,000 genes

in each method. Figure 9 shows the Venn diagram for the overlap of datasets. The Gini index and entropy

based methods have the highest agreement with each other, while the entropy-based method has a higher

overlap with dispersion method than Gini index.

3. Distribution of clustering measures and significance of differences between different cell

similarity metrics

In Figure 3 in the main text, we reported a mean over 100 trials of kernel k-means with the four kernels:

ACTION, IsoMap, MDS, and SIMLR. Figure 10 shows the actual distribution of different quality measures
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Figure 9: Overlap among top-ranked 1,000 genes predicted using dispersion, Gini index, and entropy-based

methods.

for each kernel k-means run. The figure also reports a t-test between the first and second-best method. As in

the main figure, ACTION performs equally well or better than other metrics, with the only exception being

F-score for the Brain dataset.

4. Detailed analysis of cell types identified using different similarity metrics – case study in

the CellLines dataset

The CellLines data contains measurements from seven distinct cell-lines: A549, GM12878, H1, H1437,

HCT116, IMR90, K562. We used this dataset to assess the results from kernel k-means for all of the

different metrics. The goal was to use a standard algorithm and compare the results as we vary the type of

cell-similarity. Figure 11 shows the subspace of cell line-specific markers, sorted according to the identified

cell types in different methods. In all cases, there exists a predicted cell type that mistakenly mixes samples

from the H1437 cell line with one or more other cell lines. In case of ACTION, it almost identifies H1437
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Figure 10: Performance of cell similarity metrics
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Figure 10 (previous page): For each extrinsic measure on each dataset, the distribution of values for kernel k-

means runs is presented. In each case, the p-value of t-test between the top-ranked versus runner-up methods

has been reported. (a) Brain dataset, (b) CellLines dataset, (c) Melanoma dataset, (d) MouseBrain dataset.

perfectly, with marginal contamination from from the K562 and IM90 cell lines. This, however, is not

surprising since all three of these cell lines are based on lung tissue.

5. Detailed analysis of cell types identified using different cell type identification methods –

case study in the CellLines dataset

Our next study is similar to the previous one (Supplemental Text 4). In this study, the goal is to com-

pare cell-type identification methods rather than similarity metrics. (Figure 12 shows the marker subspace

of identified cell types based on different different cell type identification methods, all of which are non-

parametric methods (in the sense that they automatically estimate the number of cell types). Among these

methods, ACTION that has the highest score and identifies almost all cell types correctly, except that it

mixes IMR90 with one of the batches of GM128787. In BackSPIN, all cell lines are either split between

two predicted cell types or are mixed with each other. This situation is somewhat better for ParTI, for which

the first batch of GM128787 and the H1 cell lines are predicted correctly. However, all other predicted

cell types are a mix of different cell lines. SNNCliq splits the cells into too many types. Finally, TSCAN,

which performs the second best, mixes parts of K562 and GM128787, and also splits H1 between separate

predicted classes. Overall, ACTION shows the highest consistency with the true annotation of cell types,

followed by TSCAN.
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Figure 11: Heatmap of predicted cell types using kernel k-means with different similarity metrics (a)

original, (a) Original, (b) ACTION, (c) IsoMap, (d) MDS, (e) SIMLR
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Figure 12: Heatmap of predicted cell types using different cell type identification methods applied to

the CellLines dataset (a) original, (a) Original, (b) ACTION, (c) BackSPIN, (d) ParTI, (e) SNNCliq, (f)

TSCAN
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6. Performance of SPA with preconditioner

Let Y = WH, where matrix W is defined as Y(:,S), with S being the selected column subspace of matrix

Y, and H is a non-negative matrix with column-sums equal to one. Moreover, let matrix Ỹ = Y + N,

where the noise is bounded: ‖N(:, j)‖2 ≤ ε. Then, the performance of the SPA algorithm has the following

upper bound guarantee:

max
1≤j≤k

min
s∈S
‖ Ỹ(:, s)−W(:, j) ‖≤ O

(
εκ2(W)

)
(5)

More recently, other techniques have been developed to enhance the robustness of SPA to noise [40].

These methods are based on the fact that premultiplying matrix Y by a nonsingular matrix Q preserves its

separability. In this case, the upper bound limit changes to: O
(
εκ(W)κ3(QW)

)
. Thus, by carefully choos-

ing matrix Q, we can enhance the conditioning of the problem. Ideally, if Q = W−1, then κ3(QW) = 1

and we reduced the upper bound from quadratic to linear. While W−1 is not accessible, we can approximate

W−1 using a minimum volume ellipsoid centered around the origin that contains all columns of the original

matrix X. Formally, this can be solved using the following SDP to identify matrix A∗:

A(∗) = argmax
A∈Sk+

det(A)

s.t.: Y(:, j)TAY(:, j) ≤ 1;∀j

Since AT is symmetric positive definite, we compute AT = QTQ using Cholesky factorization and use it

as a preconditioner.

7. Pseudo-code for fitting a geometric construct over single cells

See Algorithm 1.
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Algorithm 1 SPA algorithm with prewhitening
Input: Y ∈ Rm×n: adjusted expression profile of cells

Output: A ∈ Rm×k: primary functions, H ∈ Rk×n+ : functional identity of cells

1: Solve minimum volume ellipsoid problem to identify preconditioner Q.

2: K = YTY,R = QY,S = {}

3: for i = {1, · · · ,maxk} do

4: α = argmaxj ‖rj‖2 {rj is the jth column}

5: β = R(:, α)

6: R← (I− ββT

βTβ
)R {Orthogonal Projection}

7: S ← S ∪ {β}

8: Construct archetype similarity graph from G = K(S,S)

9: if subgraphdensity(G) is significant then

10: break

11: end if

12: end for

13: Initialize C0 using selected columns in S, and run kernel PCHA with K to estimate matrices C and H

14: A = YC
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Figure 13: Time-wise, smaller values are the better. It can be seen that ACTION scales better as the datasets

grow.

8. Computational runtime analysis

In terms of timing, the most time-consuming part of ACTION is the preconditioning using minimum volume

ellipsoid method, which depends on the solver being used. Using CVX with Mosek solver, timings are as

reported in Figure 13. For larger datasets, it can be seen that ACTION scales more gracefully compared to

other methods.

9. Robustness of ACTION method in presence of noise and outliers

To further evaluate the effect of preconditioning convex Non-negative Matrix Factorization (NMF), as well

as relaxing it with Principal Convex Hull Analysis (PCHA), we performed a simulation to assess the impact

of outliers on these methods, as well as to find the critical point at which an outlier becomes a rare cell

type. To this end, we again focus on the CellLines dataset. In this case, H1 cell line (embryonic stem

cell) is the farthest from the rest of cell lines. We set up an experiment in which we held out H1 and

gradually introduced different percentages of H1 cells, varying from one to ten percent. For each case,
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we tried 10 individual replicas. Figure 14a-c presents the performance of each method in identifying cell

types, measured with respect to known cell types. In each case, we observe that preconditioning (Pre-SPA)

significantly enhances the quality of results compared to Successive Projection Algorithm (SPA) alone.

However, this makes the results unstable (has a high variance). Applying PCHA on top (PreSPA+PCHA)

smooths out these variations. In order to assess the performance of these methods in identifying rare cell

types, we used bipartite matching in each case to find the closest predicted cell type to H1 and then used

hypergeometric p-value to assess the overlap of these two sets. These results, presented in Figure 14d, show

that both PreSPA, and PreSPA+PCHA are sensitive enough to identify rare cell types. However, PreSPA is

sensitive to low percentages of introduced H1, whereas PreSPA-PCHA considers percentages less than 2%

to be noise/outlier and after that starts to identify it as a rare cell type.

10. Visualizing the functional space of cells

Unlike the conventional application of t-distributed stochastic neighbor embedding (tSNE), which is used

to project the transcriptional profile of cells into a lower dimensional space, we propose a framework that

captures the distribution of cells around archetypes. To this end, we focus on the functional identity of cells

with respect to our archetypes, which is computationally represented by the matrix H. Each column in

this matrix is a stochastic vector (sums to one) that represents the extent to which a cell is close to a given

archetype. To visualize this continuous functional space, we first initialize the solutions using the Fiedler

embedding (as opposed to tSNE that uses random initialization). Then, we use tSNE to update the initial

coordinates. The following pseudo-code illustrates the proposed projection.

1. Take H from the PCHA as input.
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Figure 14: Robustness of ACTION method in presence of noise and outliers (a)-(c) Different measures

of cell type identification quality as a function of introduced noise, (d) Analysis of the critical point of

transitioning from noise to rare cell type.
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2. Set H̃ = [H; I]

3. Let h̃i be the ith column of H̃, and compute entries of the matrixDij = ‖h̃i− h̃j‖2 (that is, Euclidean

distance between vectors h̃i and h̃j).

4. Convert Distances to Similarity following Network Similarity Fusion [41] affinity matrix construction

(a) Let d∗i be the average distance from ith cell to its top k = round(n/10) closest neighbors, with

n being the total number of cells. (If you sort columns of the matrix D, this is just the top k

entries.)

(b) Set Σi,j = (d∗i + d∗j + 2ε+Dij)/3, where ε is 2−52.

(c) Set Σ̃i,j =


Σi,j + ε Σi,j ≥ ε

ε Otherwise.

(d) Set Wi,j to be the probability that a normally distributed random variable with mean 0 and

standard deviation Σ̃i,j has value Di,j .

5. Set G = (W + WT )/2 be the weighted graph between cells.

6. Set L = diag(G · ones(n, 1))−G (that is, L is the combinatorial Laplacian of G).

7. Compute the three smallest eigenvalues and eigenvectors of L, (v1, λ1), (v2, λ2), (v3, λ3). Note that

λ1 is zero because of the Laplacian structure.

8. Set x = v2/
√
λ2

9. Set y = vy/
√
λ3

10. Run t-SNE to update x,y coordinates.

11. Final map represents the distribution of cells around each archetype.
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11. List of 20 top-ranked genes for each archetype in the Melanoma dataset

See Table 1

12. List of functionally active transcription factors

The following table lists all transcription factors (TFs) that are either significant in subclass B, archetype 5,

subclass C, archetype 4, or both. Second and third columns of the table are the p-values of the functional

activity of TFs. These factors are sorted according to the relative importance in these subclasses B and C.

Green rows are the ones that are significant in both. TP53 and MYC, marked in red, are used in conjunction

with MITF to distinguish these two classes.

TF Subclass B Subclass C

MITF 0.00E+00 2.14E-04

E2F1 5.18E-06 7.62E-01

LEF1 3.19E-04 3.83E-01

MYC 8.39E-04 3.03E-01

TFEB 2.30E-04 2.63E-02

E2F4 1.32E-02 5.11E-01

TCF7 3.32E-02 1.00E+00

CNBP 4.05E-02 1.00E+00

FUBP1 4.05E-02 1.00E+00

RBL1 4.05E-02 1.00E+00

SRSF1 4.05E-02 1.00E+00
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TBL1X 4.05E-02 1.00E+00

SNIP1 1.30E-02 2.90E-01

MTA1 4.05E-02 6.36E-01

HOXA1 1.30E-02 1.96E-01

OTX2 3.32E-02 1.71E-01

ONECUT2 4.05E-02 1.31E-01

SOX9 2.84E-03 4.57E-03

NFIB 3.60E-01 3.14E-02

TBP 4.62E-01 2.52E-02

USF1 4.62E-01 2.49E-02

KLF5 7.85E-01 3.97E-02

POU4F2 3.60E-01 1.73E-02

ATF3 1.00E+00 4.54E-02

PAX3 3.59E-01 1.62E-02

ESR1 1.07E-01 4.57E-03

MYF6 1.00E+00 4.02E-02

HDAC7 1.00E+00 3.97E-02

MAML1 1.00E+00 3.97E-02

NKX2-3 1.00E+00 3.97E-02

PPARG 1.00E+00 3.87E-02

LCOR 6.33E-01 2.45E-02

SMAD4 7.85E-01 2.63E-02

GTF2I 1.00E+00 3.14E-02
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TAF1 1.00E+00 3.00E-02

SOX10 1.03E-02 3.00E-04

ETS2 9.57E-01 2.63E-02

ETS1 1.00E+00 2.53E-02

MYF5 1.00E+00 2.49E-02

HOXA7 8.15E-01 1.50E-02

EGR2 8.24E-01 1.39E-02

STAT3 1.00E+00 1.47E-02

JUND 9.48E-01 1.39E-02

KLF4 1.00E+00 1.24E-02

TWIST2 6.52E-01 7.91E-03

KLF6 8.10E-01 8.97E-03

TP53 3.11E-01 3.06E-03

TFCP2 8.15E-01 7.30E-03

ESR2 1.00E+00 7.30E-03

PARP1 1.00E+00 7.30E-03

ETV4 1.00E+00 4.57E-03

PPARD 1.00E+00 4.57E-03

CTNNB1 3.50E-01 1.58E-03

AR 1.00E+00 1.58E-03

BRCA1 1.00E+00 2.14E-04
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1-T 2-B 3-T/Unresolved 4-Tumor 5-Tumor 6-Tumor 7-Macro 8-Endo/CAF

NKG7 MS4A1 UGDH-AS1 DCT APOC2 SAA1 TYROBP IGFBP7

CD8A CD79A ROCK1P1 PMEL APOD TF FCER1G EFEMP1

CST7 HLA-DRA TMEM212 LHFPL3-AS1 SERPINA3 SFRP1 CD14 CCL21

GZMA BANK1 HERC2P4 CTSK MIA MAGEA4 IFI30 BGN

CD3D CD79B ASTN2 TYRP1 A2M RGS5 C1QC THY1

CCL4 IGLL5 SHISA9 TUBB4A SERPINE2 MAGEC2 C1QA TFPI

IL32 IRF8 ORC4 SCD TYR PDK4 AIF1 CLDN5

GZMK CD37 SPC25 GPM6B APOE C2orf82 C1QB PDLIM1

PRF1 CD19 LOC643406 RAB38 IFI27 ALDH1A3 S100A9 COL1A1

CD2 CD74 LOC646214 PIR TRIML2 CAMP FCGR3A C1R

KLRK1 CXCR4 ODF2L KIT MFGE8 SERPINA3 CSF1R RARRES2

ITM2A SELL ABCC9 CA14 NSG1 C1QTNF3 MS4A6A CYR61

RGS1 VPREB3 L2HGDH BCAN RDH5 ANGPTL4 IGSF6 DCN

PDCD1 HLA-DPA1 LYZ SNAI2 SLC26A2 ERRFI1 HCK C1S

CD27 TCL1A LOC286437 GSTO1 CAPN3 COL1A2 PILRA NNMT

TIGIT HLA-DQB1 MAB21L3 MLANA MT2A MRPL36 VSIG4 CXCR7

LCK BCL11A KCNQ1OT1 SLC45A2 SPP1 FN1 IL1B IGFBP4

CTSW LTB ARHGEF26-AS1 GPR143 TM4SF1 HAPLN1 TMEM176B ECSCR

IL2RG NAPSB FBLIM1 TRPM1 PMEL SAA2 CD163 GNG11

SIRPG CD22 GLIPR1L2 CDK2 CDH19 MGP FCN1 CLU

7.7× 10−67 3.5× 10−59 1.6× 10−3 2.5× 10−22 4.8× 10−53 5.0× 10−05 2.4× 10−176 5.9× 10−98

Table 1: Table of the top 20 residual genes after orthogonalization. Each archetype is also annotated with its

enriched cell type. Bolded genes are the genes that coincide with known markers provided by the original

paper. The last row is the p-value of enrichment of markers among all genes sorted after orthogonalizing

each archetype.
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13. Regulated downstream targets of MITF factor in Subclasses B and C

The following table lists the full set of significant downstream targets of MITF in both subclasses B & C.

Genes GPNMB, MLANA, PMEL and TYR are shared between two subclasses, whereas the rest of targets

are unique to one of them. For genes that have significant effect on the survival rate, their Cox coefficient

is presented in the table. A positive Cox coefficient indicates that high expression of the given genes is

associated with poor survival.
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Target Subclass B Subclass C Cox Coefficient

ACP5 X -

CDK2 X 0.218

CTSK X -

DCT X -

KIT X 0.3214

OCA2 X 0.3038

TRPM1 X 0.188

TYRP1 X 0.2422

GPNMB X X -

MLANA X X -

PMEL X X 0.2765

TYR X X -

BEST1 X -

BIRC7 X -

FOS X -

MET X -

14. Regulatory networks

We provided transcriptional regulatory networks (TRNs) for all eight archetypes in the Melanoma dataset.

There are two files per network, one edge list file and one node annotation file, both in plain text (txt) format.

The former contains edges in form of ”TF name tab TG name,” whereas in the second file there is a row
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for each node (either TF or TG) that provides additional information about it. This information includes: (i)

type (TF or TG), (ii) -log10 of the functional activity p-value, if node is a TF, or zero otherwise, (iii) residual

expression of genes (either TF or TG) after orthogonalization of archetype, (iv) heuristic importance of node

(for visualization purposes only), and (v) cox survival coefficient.
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