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Abstract

Single-cell transcriptomic data has the potential to radically redefine our view of cell type identity. Cells
that were previously believed to be homogeneous are now clearly distinguishable in terms of their expression
phenotype. Methods that automatically identify cell types and their properties based on expression profiles
can be used to uncover processes involved in lineage differentiation as well as sub-typing. They can also be
used to suggest personalized therapies based on molecular signatures associated with pathology. We develop a
new method, called ACTION, for projecting cells onto the state space of functional profiles, classifying them
according to their principal functions, and reconstructing cell type-specific regulatory networks. Results on
sub-typing cancer cells in Melanoma patients reveal novel biomarkers along with their regulatory networks.

Background

Complex tissues consist of heterogeneous pop-
ulations of interacting cells that are special-
ized to perform different functions. With rapid
growth in single cell transcriptomic technolo-
gies, the observed diversity of known cell
types has greatly expanded. What were once
believed to be homogeneous groups of cells
can now viewed as ecosystems of varying cell
types [1]. In tumor microenvironments, for ex-
ample, immune, stromal, and cancerous cells
coexist, cooperate, and compete for resources.
The exact composition of these cells, as well
as their molecular makeup, have significant
impact on diagnosis, prognosis, and treatment
of cancer patients [2]. Single cell technologies
have already been proven useful for dissecting
this complex microenvironment [3]. Using the
rapidly growing datasets of single cell gene ex-
pression profiles, a key challenge is to identify
de novo cell types directly from genome-wide
transcriptomic phenotypes [4]. An important
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problem in cell type identification is the exis-
tence of rare but key cell types, such as circu-
lating tumor cells [5]. Beyond identifying cell
types, it is also import to identify factors that
distinguish them from other cell types.

We propose a new method, called Archetypal-
analysis for cell type identificaTION (ACTION), to
identify cell types from single cell expression
datasets. Our method is robust to biological
noise, identifies a wide range of cell types with
varying relative populations, and provides a
novel mechanism for constructing transcrip-
tional regulatory networks (TRN) that medi-
ate characteristic behaviors of each cell type.
At the core of our method is a biologically-
inspired metric for similarity of cells, as char-
acterized by their transcriptional profiles. This
metric accounts for specificity of marker genes
and defines a signature for each cell that is
robust to noise. At the same time, it is sensi-
tive enough to capture weak cell type-specific
signals. This metric helps us construct a geo-
metric representation for the space of principal
functions, which are groups of distinguishing
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Figure 1: Overview of ACTION. ACTION consists of five main steps: (i) A biologically-inspired metric for similarity
of cells. (ii) An automated mechanism for identifying the number of principal functions needed to represent
all cells. (iii) A geometric approach for identifying the set of principal functions. (iv) An orthogonalization
procedure for identifying markers for principal functions. (v) A statistical approach for identifying key
regulatory elements in the transcriptional regulatory network. These steps are grouped into the three main
components of ACTION.

functions that are uniquely performed by spe-
cialized cells. In this space, assigning cells to
their closest principal function accurately iden-
tifies cell types. Finally, we develop a statistical
framework to identify key marker genes, as
well as transcription factors that are responsi-
ble for mediating the observed expression of
these markers. We use these regulatory ele-
ments to construct cell type-specific transcrip-
tional regulatory networks.

Our method provides a flexible approach
for directly mapping characteristic transcrip-
tional regulatory networks of cells from the raw
transcriptomic data. We apply our method to
the problem of subtyping Melanoma patients
and identify a coherent subclass, which closely
resembles noninvasive tumors [6]. For this sub-
class, we characterized key marker genes, as
well as their underlying pathways. This anal-
ysis highlights a MITF-associated regulatory
network and suggests a potential mechanism
for distinguishing invasive and proliferative
types of melanoma.

Significance. A few methods have been pro-
posed for the problem of cell type identifica-
tion [7]–[13]. A common theme underlying
these methods is to cluster coherent cells as

putative cell types [4]. At the core of these clus-
tering methods is a similarity measure that de-
fines relationships among cells. A majority of
prior methods rely on classical measures such
as correlation or Euclidean distance to define
such relationships. However, this approach
is confounded by ubiquitously and highly ex-
pressed levels of housekeeping genes. Cell
type-specific markers, on the other hand, have
a weaker signal in comparison. This, in turn,
causes a majority of traditional techniques to
be driven by biological noise contributed by
housekeeping genes [14]. To overcome this,
methods – such as ACTION – that are robust
to biological noise but are sensitive enough to
identify cell type-specific signals are critically
needed. Once the identity of a cell has been
established, it is unclear what distinguishes it
from other cell types. Transcriptional regula-
tory networks (TRNs) are important aspects
of this differentiation process. Understanding
cell type-specific TRNs has the potential to ex-
plain distinguishing mechanisms underlying
observed transcriptional phenotypes. ACTION
is among the first set of methods to directly in-
fer cell type-specific networks from single cell
expression datasets.
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Results and discussion

The ACTION framework consists of three major
components, shown in Figure 1: (i) A robust
measure of cell-to-cell similarity, (ii) A geo-
metric approach for identification of principal
functions, and (iii) a statistical framework for
constructing cell-type specific transcriptional
regulatory networks (TRNs). Our cell-to-cell
similarity metric is rooted in the notion that
functional roles of a cell form an embedded hi-
erarchy, with successively refined set of tissue-
specific functions. When used with a classic
clustering algorithm such as k-means, ACTION
metric surpasses all other measures of cell sim-
ilarity in identifying cell types. The next com-
ponent of our method is a geometric approach
for identifying principal functions of cells, each
represented by an archetype (corner) of the con-
vex hull in the functional space of cells. Finally,
ACTION uses a novel method that utilizes the
geometric view of cell functions to construct
the transcriptional regulatory network (TRN)
that mediates characteristic behavior of each
cell type. In what follows, we describe, vali-
date, and discuss each component in detail.

Component 1: Measuring cell-to-cell
similarity

An essential component of any method for
identifying cell types is the ability to quantify
similarity between individual cells. Most prior
methods rely on traditional measures, such as
Euclidean distance, that are not specifically tar-
geted towards transcriptomic profiles. In con-
trast, we define a similarity metric, or formally
a kernel, specifically designed for measuring
similarity between cells [14]. Our approach
is based on the observation that housekeep-
ing genes, while not informative of cell type
identity, significantly impact traditional mea-
sures of cell similarity due to their ubiquitous
and high expression levels. Suppressing these
genes significantly enhances the signal-to-noise
ratio (SNR) in expression profiles, allowing us
to extract a stronger cell type-specific signal.

Novel methodology Our method starts by
projecting transcriptional signatures to the or-
thogonal subspace spanned by housekeeping
genes. We then boost the contribution of cell
type-specific genes using an information theo-
retic approach. Finally, we combine these two
measures to define a robust measure of cell-
to-cell similarity. This approach is illustrated
in Figure 2. The mathematical models under-
lying the metric are described in the Methods
section.

Validation To establish the superiority of our
metric, we compare it against one measure
specifically designed for single cell analysis,
SIMLR, and two general measures: multidimen-
sional scaling (MDS), and Isomap. SIMLR [15],
combines a number of distance metrics to learn
a joint similarity score that maximizes the
block diagonal structure of the resulting ma-
trix. Both MultiDimensional Scaling (MDS) and
Isomap are nonlinear dimension reduction tech-
niques. The former method projects points
into a low-dimensional space, such that dis-
tances between samples are preserved to the
extent possible. The latter method first com-
putes the nearest neighborhood graph of data
points. It then uses shortest path between ver-
tices as a measure of distance between them.
Finally it uses MDS to embed these distances
in a low-dimensional space. After projecting
the data to a lower dimension space in either
MDS or Isomap, one can use linear correla-
tion in the transformed subspace to measure
similarity between cells. While ACTION is a
non-parametric method, other methods need
additional input. For SIMLR, we need to pro-
vide the true number of cell types. In order to
give the other methods the best chance at com-
peting with ACTION, we evaluate them using
ten different values for dimension of projected
subspace (from 5 to 50 with increments of 5)
and report the best results obtained over all
configurations.

To assess the quality of computed similarities
between cells, we use each of the four measures
to cluster cells and identify cell types. Each
cluster is assumed to represent a unique cell
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Figure 2: Evaluation of ACTION Similarity Metric. (a) Workflow of ACTION metric. (b) Performance of
ACTION in terms of Normalized Mutual Information (NMI). (c) Performance of ACTION with respect to
Adjusted Rand Index (ARI) measure. (d) Overall running time of different methods, in log-scale. Both NMI
and ARI values in panels (b) and (c) are between zero and one with larger values indicating better results.
Performance of similarity measures is evaluated in the context of a kernel k-means clustering technique
applied to each of the computed kernels. Green cells show cases where a method performs better than others
for a given dataset.

type, and the clusters are determined using the
commonly used kernel k-means algorithm. We
compare the computed cell types with the true
(known) cell types in terms of Normalized Mu-
tual Information (NMI) and Adjusted Rand Index
(ARI). Normalized Mutual Information is an
information theoretic measure that is zero for
random clustering (when the identified clus-
tering contains no information about true cell
types), and one for a clustering that perfectly
matches a given gold standard. The ARI mea-
sure is also between zero and one; however,
it evaluates the cases in which a given pair of
cells are either co-clustered in both true and
identified, or classified separately in both.

In each case, we perform 100 independent
clusterings with random initialization and re-
port the average of NMI and ARI scores as

quality measures (relative ordering of results is
robust with respect to other aggregating func-
tions, such as median or max). These experi-
ments are independently performed for each
dataset. Figures 2b-d present the performance
of the cell type identification technique oper-
ating with different similarity measures, both
in terms of their clustering quality (NMI and
ARI) and total running time.

Discussion of results on similarity metric
To evaluate performance of each similarity met-
ric, we analyzed four different datasets, which
are listed in Section . These datasets have dif-
ferent number of cells, ranging from hundreds
to thousands, span a wide range of normal
and cancerous cells, and are measured using
different single cell technologies.
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For both MouseBrain and Pollen datasets, AC-
TION metric significantly outperforms other
metrics in terms of both NMI and ARI mea-
sures. For the Melanoma dataset, ACTION has
significantly better NMI, but there is a tie be-
tween ACTION, MDS, and SIMLR with respect
to the ARI measure. Finally, for the Immune
dataset, there is a tie between ACTION, MDS,
and SIMLR for both measures. In all studies,
t-test with p-val ≤ 10−2 has been used to assess
significance of difference between observed
NMI/ARI values. In summary, our results
demonstrate that in all cases ACTION metric
is either significantly better or at least as good
as any other methods. Thus establishes the
ACTION metric as a fast, nonparametric, and ac-
curate method for computing similarity among
single cells. We use this measure throughout
the rest of our study. We note however, that
our overall framework is flexible with respect
to choice of other similarity metrics.

Component 2: A geometric view to
identify discrete cell types

Novel methodology Using the ACTION met-
ric as a measure of similarity between cells, we
develop a new method for identifying de novo
cell types in a given experiment. Our method
is based on a geometric interpretation of cel-
lular functions. Each cell is a data-point in a
high-dimensional space. Our method identifies

“extreme” corners in this space, and each cell is
characterized by its distance to every corner.
The corners identified by ACTION represent
“pure” cells that are specialized to perform a
principal function. This is in contrast to meth-
ods such as unsupervised clustering (e.g., k-
medoids) that identify the most common centers.
Our focus on identifying the extreme points
(and thus, principal functions), allows us to
better identify rare cell types.

Validation. Each corner or archetype repre-
sents a principal function. We first validate
these by considering each archetype as a char-
acteristic cell type. We then identify the type of
each cell by determining the closest archetype

and assigning this type. We compare our
method to four recently proposed methods:
SCUBA [7], SNNCliq [10], single-cell ParTI [11],
[12], and TSCAN [13]. Details of these methods
are given in the methods section. Clique size
and density of quasi cliques of SNN_Cliq are
left as default parameters (k = 3 and r = 0.7).
Increasing clique size k did not improve per-
formance, but significantly increased the run-
ning time. With these parameters, SNNCliq
did not terminate in 72h for the largest dataset
(Melanoma), after which we stopped the ex-
periment. We present a comprehensive analy-
sis of the results for all other combinations of
datasets/methods.

Discussion of results on cell-type identifi-
cation. Figure 3 shows comparative perfor-
mance of different methods in predicting cell
types in various datasets. In all cases, except
ARI for the Melanoma dataset, ACTION yields
superior results compared to the state-of-the-
art methods for cell-type identification. In
general, NMI measure exhibits lower range
of variation across methods, whereas ARI has
a higher range of variability. To further inves-
tigate the difference between ParTI and AC-
TION on the Melanoma dataset, we manually
evaluated each archetype identified in these
methods. Our results indicate that the source
of difference is that ACTION identifies more
refined subtypes of T-cells and subclasses of
tumor cells, whereas ParTI combines these
subtypes/classes. These subgroup details are
missing from the annotations provided for the
dataset by authors. Combining cell types that
are classified as different subtypes of T-cells
or subclasses of tumor cells significantly en-
hances the computed performance measures of
ACTION in this dataset. This is shown using
gray boxes in the corresponding figure.

Analysis and validation of the principal func-
tions. While cells can be classified based on
their closest archetype, they can also be viewed
on a continuum [12]. To illustrate this con-
tinuous view, we use the distance from each
archetype as a low-dimensional embedding of
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Figure 3: Performance of ACTION in identifying cell types. Each cell type is identified by assigning it to its
dominant function, represented by its closest principal function. (a) Normalized Mutual Information (NMI)
of cell type identification. (b) Adjusted Rand Index (ARI) performance measure. In both (sub)figures,
performance of SNNCliq for the Melanoma dataset is left blank, as it did not finish in the given time. NMI
and ARI measures are computed against the true cell types from sample annotations. Gray bars for the
Melanoma dataset show the difference in performance of ACTION after aggregating T-cell subtypes and
tumor subclasses into a joint archetype.

the cells. We use the Fielder embedding, fol-
lowed by adjustment using Stochastic Neigh-
bor Embedding (SNE) method to visualize this
low-dimensional embedding in Figure 4. Each
archetype is marked with a text labeled (A1,
. . . , A11) point and assigned a unique color.
Each point corresponds to a cell. We interpo-
late its color using its distance to all archetypes
to highlight the continuous nature of the data.
The labels for the groups are based on three
sources. First, we perform enrichment anal-
ysis on the cells assigned to each archetype.
Then, we use markers provided in the original
datasets to identify the cell type-specific expres-
sion in each archetype. Finally, we use markers
from LM22 dataset [2] to classify subtypes of
immune cells.

Figure 4 illustrates the ability of our method
to identify both isolated cell-types with special-
ized principal functions, as well as cells with a
combination of functions. As an example, dif-
ferent subclasses of T-cell constitute a spectrum
with the corners (or archetypes) representing
specialized functions that are performed by a
pure T-cell subtype. In addition to given cell
types, we also find an additional archetype, A6,
which links between T-cells and B-cells and we
hypothesize to be a lymphocyte progenitor.

In terms of tumor cells, many of the patients
form their own archetypes. The two excep-
tions to this rule, A5 and A10, define a “MITF
axis”, which is shown in the subfigure (MITF
is one of the transcription factors known be
related to various types of Melanoma [6], [16]).
Archetype A5 is enriched in five patients with
varying degrees of expression for MITF from
mid to high. We collectively refer to patients
in Archetype A5 as MITF-associated patients.
Archetype A10, on the other hand, contains
patients 81 and 82, both of who have low lev-
els of MITF. In what follows, we construct the
transcriptional regulatory network responsible
for mediating observed phenotype of MITF-
associated patients in A5.

Component 3: Constructing subclass-
specific transcription regulatory net-
work of MITF-associated patients

Novel Methodology We propose a new
method to construct regulatory pathways re-
sponsible for mediating phenotypes associated
with each archetype. To this end, we first per-
form an archetype orthogonalization (details de-
scribed in Section ), to compute residual expres-
sion and identify marker genes that are unique
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Figure 4: A continuous view of cell types in the Melanoma dataset identifies subclasses of immune cells
and highlights a MITF-related “axis” Each archetype, representing a principal function, is illustrated
using a textual label. Each small dot represents a cell. Cells are color coded based on their proximity to
archetypes. All data points are projected on to a 2D plane using Fielder embedding followed by Stochastic
Neighbor Embedding (SNE). Each archetype is analyzed and annotated using three separate sources.

to the archetype. Then, we rank all genes ac-
cording to their residual expression. Finally, we
project these scores to the transcriptional regu-
latory network (TRN) to find key transcription
factors (TFs) responsible for mediating the ob-
served transcriptional phenotype. For each
TF, we assess the over-representation of its tar-
gets among top-ranked genes (according to the
residual expression score). We use a dynamic
programming algorithm [17] to assign exact p-
values to each TF. For each TF, its “top ranked”
target genes, according to the cut that yields

the minimum hypergeometric score, are also
selected as part of the regulatory network.

We apply this technique to identify regula-
tory pathways of MITF-associated samples. A
p-value threshold of 0.05 is used to identify
significant TFs. The final constructed network
is presented in Figure 5. This network consists
of six key transcription factors (in yellow), 85
target genes (in green/purple). Purple nodes
are target genes that are jointly regulated by
two TFs. We marked enriched functions of
each group in the figure, accordingly, and high-
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lighted elements that are already known to be
associated with Melanoma.

Validation MITF is one of the best-
characterized markers for Melanoma, and
is also used in the original paper to classify
patients [16]. It is notable here that our
method identified MITF directly using data
from the activity of its targets. Furthermore,
since these transcription factors are identified
based on the activity of their target, they
are “related” to the subclasses, however, the
mechanism of their control can be diverse.

Among other factors, BHLHE40 has the high-
est number of activated targets. This factor,
among other functions, regulates M-MITF, a
melanocyte-restricted isoform of MITF, and
potently reduces expression of MITF under
hypotoxic conditions [18]. Angiogenesis, or
growth of blood vessels, is a hallmark of can-
cer. MEOX2 plays multiple roles in this pro-
cess. At low levels, it activates nuclear factor-
κB (NK-κB), a proangiogenic signaling path-
way, whereas in high doses, it has an inhibitory
role [19]. Similarly, TSG101 plays different
roles depending on the context. In fibroblasts,
it acts as a tumor suppressor gene, whereas
it has a tumor-enhancing role in some epithe-
lial tumors. This bidirectional regulation is
postulated to be through expression of MMP-
9in different cell types [20]. The role of other
factors is less-studied.

Experimental evidence To further validate
our results, we use the transcriptome of 10 pa-
tients with invasive and proliferative melanoma
subtypes from Verfaillie et al. [6]. Prolifera-
tive subtype is characterized by high levels of
MITF, as well as SOX10 and PAX3. In con-
tract, invasive subtype is known to have low
levels of MITF and high levels of epithelial-to-
mesenchymal (EMT) transcription factor ZEB1,
and is associated with metastatic dissemination.
Nodes in our MITF-associatied TRN resemble
the proliferative subtype. Thus, we use marker
genes for this class to validate our results.
There are a total of 770 marker genes for the
proliferative subtype and among 91 total genes

in our network, 8 genes coincide with them
(p-value = 0.01). These genes include DCT,
MITF, PAX3, PPFIBP2, PRKCZ, TP53, TYR, and
TYRP1, all of which have high residual expres-
sion compared to all other nodes. Beside the
MITF subnetwork, TP53, PRKCZ, and PPFIBP2
are also enriched in this set. Interestingly, a key
factor involved in the invasive subtype, MEOX2,
is also identified as a node in our network. As
mentioned earlier, depending on the level of its
expression, this gene can play different roles
for proliferative versus invasive subclasses.

Collectively, these results illustrate the effec-
tiveness of the ACTION in identifying novel
cancer subtypes, their underlying regulatory
network, and characteristic markers. This, in
turn, presents new avenues for diagnosis and
prognosis of melanoma patients, as well as new
therapeutic targets for further investigation.

Materials and methods

Datasets

Single cell gene expression datasets For all
our studies, we rely on the following datasets
collected from publicly available sources:

Immune (from Supplementary Material)
: Comprehensive qPCR based assay of
1522 immune cells. This dataset spans 30
different types of stem, progenitor, and
fully differentiated cells [21].

Melanoma (GEO: GSE72056) : This dataset
measures the expression profile of 4,645
malignant, immune, and stromal cells iso-
lated from 19 freshly procured human
melanoma tumors. These cells are clas-
sified into 7 major types [16].

MouseBrain (GEO: GSE60361) : This dataset
contains the expression profile of 3005
cells from the mouse cortex and hippocam-
pus. These cells classify into 7 major types,
including astrocytes-ependymal, endothelial-
mural, interneurons, microglia, oligodendro-
cytes, pyramidal CA1, and pyramidal SS [8].
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Figure 5: The transcriptional regulatory network (TRN) for MITF-associated Melanoma patients highlights
a number of genes that have not previously been associated with Melanoma – along with some
known markers. The yellow nodes are Transcription Factors (TF), green nodes are Target Genes (TG), and
purple nodes are target genes that bridge different TFs. Genes marked with black border are known to be
involved in the proliferative subclass of Melanoma. Targets of each TF are used to annotate its dominant
function, which are visualized using blue circles.

Pollen (SRA: SRP041736) : This is a small,
but commonly used dataset that contains
different cell types in developing cerebral
cortex. It consists of 301 cells that classify
into 11 distinct cell types [22].

Immune subtype markers We collected im-
mune cell markers for 22 subclasses from a
recent paper [2]. This dataset contains a total
of 547 markers, spanning 7 different T-cell sub-
types, B-cells, NK cells, and myeloid derived
subclasses. This dataset is collected and heavily
curated from publicly available databases.

Transcriptional Regulatory Network (TRN)
We collect transcription factor (TF) – target
gene (TG) interactions from the RegNetwork
database [23], which aggregates data from 25
different databases. This dataset contains a to-
tal of 151, 214 regulatory interactions between
1, 408 TFs and 20, 230 TGs.

Overview of prior methods for cell-
type identification

Various methods have been developed to tackle
the problem of cell type identification. SNN-
Cliq [10] computes a similarity graph among
cells, referred to as shared nearest neighbor
(SNN). It then uses a graph-based cluster-
ing algorithm to identify dense subgraphs.
TSCAN [13] starts by grouping genes with sim-
ilar expression patterns into “modules” and
represents all cells in this reduced space. It
then performs principal component analysis
(PCA) over the module space to further reduce
dimensions. Finally, cells are clustered by fit-
ting a mixture of multivariate normal distribu-
tions to the data, with the number of compo-
nents estimated using the Bayesian Information
Criterion (BIC). SCUBA [7] first uses k-means
with gap statistic to cluster data along an ini-
tial binary tree by analyzing bifurcation events
for time-course data. Then,it refines the tree
using a maximum likelihood scheme. Back-
SPIN [8] is based on SPIN algorithm, which
permutes correlation matrix of cell types to ex-
tract its underlying structure. BackSPIN then
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couples it with a divisive splitting procedure
to identify clusters from the ordered similarity
matrix. Two methods are specifically designed
to identify rare cell types. RaceID [9] uses
k-means to first cluster cells, with the num-
ber of clusters identified using gap statistic.
Then, it identifies rare cell types as outliers
that are not explained by an appropriate noise
model, accounting for both biological and tech-
nical variations. GiniClust [24] aims to iden-
tify marker genes that are specific to rare cell
types using the concept of Gini index. Then, it
computes distances between cell types in this
reduced subspace and uses DBSCAN cluster-
ing algorithm to identify cell types. In addi-
tion to these methods, there are approaches
that visualize cell types on a continuous spec-
trum in a given space. Haghverdi et al. [25]
proposed to use diffusion maps to model the
continuous spectrum of cells. On the other
hand, Korem et al. [11], adopted a previously
developed method, called Pareto task infer-
ence (ParTI) method [12], and applied it to
single cell datasets.

Overview and justification for AC-
TION’s components

In the following sections, we describe various
components of ACTION, as shown in Figure 1.
We first explain exactly how the metric, illus-
trated in Figure 2(a), is computed from a matrix
of raw cell expression profile data (Step 1 in
the overview). Next, we explain how ACTION
identifies the principal functions of a set of
cells, assuming it knows the number of princi-
pal functions (Step 3 in the overview). We use
an elbow method based on the quality of the
principal functions to choose the actual number
of principal functions (Step 2 in the overview).
Finally, we explain how to estimate the tran-
scriptional regulatory network for a specific
principal function (Step 5) by orthogonalizing
the functional space of cells (Step 4).

Step 1: A biologically-inspired metric
for similarity of cells

Justification The transcriptome of each cell
consists of genes that are expressed at differ-
ent levels and have different specificity with
respect to the underlying cell types. Housekeep-
ing genes are the subset of genes responsible for
mediating core cellular functions, such as trans-
lation, transcription, and DNA repair. These
functions are needed by all cells to function
properly, which result in ubiquitous expres-
sion of these genes across all cell types [26].
While fundamental to cellular function, these
genes are not informative with respect to the
identity of cells. That is, the fact that a house-
keeping gene is expressed in a cell does not
provide any information regarding its cell type.
On the other hand, cell type-specific genes
are preferentially expressed in one or a few
selected group of cell types to perform cell
type-specific functions. Unlike housekeeping
genes, cell type-specific genes are highly rele-
vant for grouping cells according to their com-
mon functions. Our goal here is to define a sim-
ilarity measure between cells that suppresses
the noise contributed by housekeeping genes
and enhances the signal contained in cell type-
specific genes.

Suppressing housekeeping genes To sup-
press the ubiquitously high expression of
housekeeping genes, we adopt a method that
we developed recently for bulk tissue measure-
ments and extend it to single cell analysis [14].
The core of this method is to project a stan-
dardized representation of expression profiles
of cells onto the orthogonal subspace of house-
keeping genes. Let us denote given expression
profiles of cells using matrix X ∈ Rm×n, where
each row corresponds to a gene and each col-
umn represents a cell. We use the shorthand
xi to denote the expression profile of ith cell.
In addition, let us denote the signature vec-
tor of housekeeping genes by v. As a first
order estimate, housekeeping signature is com-
puted by taking the average expression over
all cells: v = 1

n ∑n
i=1 xi. This choice is optimal
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in a least-square sense when the chance of ob-
serving a gene is uniform across all cells. Then,
we z-score normalize the profile of each cell:
zi =

xi−µi
σi

, where µi and σi are the mean and
sample standard deviation of the entries in the
ith cell profile. Similarly, we z-score normalize
the signature vector of housekeeping genes, v,
to create a new vector zv. Finally, we project
out the impact of the housekeeping gene ex-
pressions on each cell’s profile as follows:

z⊥i =
(

I− zvz
T
v

‖zv‖2
2

)
zi. (1)

This operation projects zi to the orthogonal
complement of the space spanned by the house-
keeping genes. We then concatenate the col-
umn vectors z⊥i to create a matrix Z⊥.

Enhancing signal from cell type-specific
genes Next, to enhance the signal con-
tributed by preferentially expressed genes, we
propose an information theoretic approach,
which in essence is similar to the one used pre-
viously for marker detection [27]. The idea is to
use Shannon’s entropy to measure the informa-
tiveness of gene expressions. If a gene is uni-
formly expressed across cells, it contains less
information as opposed to the case in which
it is selectively expressed in a few cells. To
this end, we first shift all entries of Z⊥ by its
minimum value to ensure positivity. Then, we
normalize this shifted matrix to construct a
new matrix P, in which every row has sum
one. Let pj be the row vector associated with
the jth gene. Then, we compute the entropy
of pj as: H(j) = −∑j pji log(pji), where pji is
an entry in the matrix P. Finally, we use these
entropy values as a basis to boost contribu-
tions from the most informative genes. To this
end, we compute a scaling factor for each gene
as follows. First, we partition genes as either
informative or noninformative by finding the
location of the most rapid shift in uniformity
values, which resembles a L-shaped curve. Let
us denote the entropy of the gene on the edge
of this partition by H∗. Then for each gene j,
we define a scaling factor as sj = H∗/H(j). Fi-
nally, we compute the kernel matrix as follows:

K = (Z⊥)Tdiag(w)Z⊥ (2)

where function diag() creates a diagonal ma-
trix from elements of a given vector, and each
entry wi = s2

j . In this formulation, if we de-

note Q = diag(c)Z⊥, then K = QTQ defines
a dot-product kernel.

Steps 2 and 3: A geometric approach
to identify principal functions (repre-
senting pure cell types)

Transcriptional profiles of cells that perform
multiple functions can be represented using a
limited repertoire of principal functions. The
functional space of cells, thus, can be repre-
sented by a low-dimensional geometric con-
struct.

The convex hull of a given set of points is
the minimum volume polytope that encloses
all points. This can be envisioned as a rub-
ber band fitting to the outermost points. The
functional space of cells that perform multiple
functions can be represented using a limited
repertoire of principal functions, which has
recently been shown to be embedded within
a reduced convex hull [12]. The corners, or
archetypes, of this space represent principal
functions, associated with specialized groups
of cells. Identifying the enclosing convex hull
in high-dimensional space is computationally
expensive and susceptible to noise and over-
fitting. As an alternative, we seek a limited
number of points on the convex hull that en-
close as many points as possible, while being
resilient to noise and outliers. To this end, we
first use the successive projection algorithm (SPA)
to identify k transcriptional profiles as initial
corners for the covering convex hull, each of
which corresponds to a pure cell that is spe-
cialized to perform a set of unique principal
functions. Then, we use principal convex hull
algorithm (PCHA) combined with our distance
kernel to adjust these corners by allowing oth-
ers cells to contribute to the identity of each
archetype/corner. This is combined with a
standard model selection technique to estimate
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the number of principal functions.
A quick sketch of our procedure is as follows.

We expand on this description in subsequent
sections. For each k = 1, . . . , Kmax, (i) identify
potential “pure” cells: use SPA on the raw ex-
pression data X to find k pure cells that are near
extreme points of the functional space; and (ii)
adjust the corners: initialize PCHA using the
profiles of those k cells and iterate using the
kernel K. Then let V(k) be the PCHA objec-
tive function with k archetypes. Finally after
all models have been adjusted, (iii) estimate
the number of cell types from V(k) such that
it balances the number of cells and the total
explained variance.

Estimating “pure” cells as extreme corners of
the functional subspace of cells

Given a raw expression matrix X, we aim to
identify an “optimal” set S of k “pure cells.”
These cells can be viewed as extreme corners
of the convex hull of the functional space of
cells, and all other samples can be written as
convex combinations of these basis vectors. Un-
der a strict assumption, known as separabil-
ity, we seek to identify k columns such that
X = X(:,S)H, where S is the selected column
subspace of matrix X and H is non-negative.
This means that every column of X is a non-
negative linear combination of a subset S of
all columns. In terms of cells, this means
that every cell’s expression profile is a com-
bination of a few cells. However, this is a
very strong assumption that rarely holds in
real data. A relaxation of this assumption,
referred to as near-separability, seeks to esti-
mate X ≈ X(:,S)H + N, where the noise is
bounded: ‖N(:, j)‖2 ≤ ε. This decomposition
is known as near-separable Nonnegative Matrix
Factorization (NMF). The Successive Projection
Algorithm (SPA) is an efficient algorithm for
solving near-separable NMF with provable per-
formance guarantees [28]. If ε satisfies the tech-

nical condition ε ≤ O
(

σmin(W)√
kκ2(W)

)
, then:

min
0≤H
‖X− X(:,S)H‖ ≤ O

(
εκ2(W)

)
(3)

More recently, other techniques have been
developed to enhance the robustness of SPA
to noise [29]. These methods are based on
the fact that premultiplying matrix X by an
orthogonal matrix Q preserves its separability.
Thus, by carefully choosing matrix Q, we can
enhance the conditioning of the problem. Here,
we use the prewhitening technique, which uses
SVD decomposition of matrix X to estimate
a noise-reduced approximation matrix. Algo-
rithm 1 presents the SPA algorithm combined
with prewhitening technique that we use to
estimate a set of k cells.

Algorithm 1 SPA algorithm with prewhitening

Input: X ∈ Rm×n: expression profile of cells
Output: S : selected subset of columns in ma-

trix X
1: [Uk, Σk, Vk] = SVD(X, k)
2: X̃ = Σ−1

k UT
k︸ ︷︷ ︸

Q

X = VT
k {Prewhitening}

3: S = {}, R = X̃ ⇒ Initialize
4: for i = {1, · · · , k} do
5: α = argmaxj ‖rj‖2 {rj is the jth column}
6: β = R(:, α)

7: R← (I− ββT

βTβ
)R {Orthogonal Projection}

8: S ← S ∪ {β}
9: end for

Adjusting selected corners to allow contribu-
tions from all cells

Archetypal-analysis (AA) [30] can be viewed as
a generalization of near-separable NMF. While
in near-separable NMF all columns are repre-
sented using k columns in X, in AA this con-
straint is relaxed to be a convex combination of
all columns in X. Formally, we can formulate
AA as follows:

minimize
C,H,α

‖X− XCH‖

subject to ‖C(:, i)‖1 = 1.

‖H(:, i)‖1 = 1.

0 ≤ C, 0 ≤ H

(4)
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Figure 6: Example of running PCHA algorithm. Light
blue points are the data points, dark blue points
are corners of the convex hull of data, the
green lines represent the convex hull, and red
points are the positions of archetypes selected
by PCHA for k=5.

Near-separable NMF is a special case of AA in
which C has exactly k nonzeros and none of
the columns have more than one element. The
matrix W = XC here stores the archetypes. Joint
column stochasticity of C and H indicates that
archetypes are convex combinations of data
points, and each data point can be represented
as convex combination of archetypes.

There is an algorithm, called Principal Con-
vex Hull Analysis (PCHA), to solve the above
problem. The intuition behind PCHA is to fit
a polytope to the data points, which approxi-
mates the optimal polytope containing as many
data points as possible. Figure 6 illustrates this
phenomena.

We use a kernelized version of PCHA algo-
rithm that minimizes the objective:

trace(−XTXCH−HTCTXTX+HTCTXTXCH)
(5)

in which we directly provide the ACTION ker-
nel K as XTX and initialize C based on the
solution to SPA.

Estimating the total number of
archetypes needed to represent all cell
types

A key challenge in all parametric methods is
to identify the optimal configuration for associ-
ated parameters. In our formulation, the total
number of archetypes (corner points) must be
provided by the user or directly estimated from
the data. To automatically identify this num-
ber, one can use various measures of “goodness”
to assess overall performance as we increase
the number of archetypes. A balance between
the number of archetypes and the goodness
of solution provides an optimal compromise.
We use variance explained by the fit as a mea-
sure to find the optimal number of archetypes.
For each archetype count (up to a max value),
we fit a convex hull to the data and compute
explained variance.

The explained variance has an elbow-shape,
meaning that it starts increasing rapidly, then
it plateaus. The corner of this L-curve is an
optimal choice for the number of archetypes.
To find this point automatically, we fit a piece-
wise linear model to the data with two split
points. This allows us to distinguish both rapid
and more gradual shift patterns in the L-curve.
Formally:

f (c) =


m1c + b1, for 0 ≤ c < ci

m2c + b2, for ci ≤ c < cj

m3c + b3, for c < cj ≤ cmax

(6)

where c is the archetype count and ci and
cj are two free parameters. We evaluate every
pair of (ci, cj); 1 ≤ ci < cj ≤ cmax and fit a
minimum least squares fit to each piece. The
configuration with minimum overall error is
selected as cbest

i and cbest
j . For this specific con-

figuration, let m2 and m3 represent the slope
of the second and the third linear fits. Then,
if m2

m3
is less that or equal to a user-defined pa-

rameter thresholdmin, then we select the first
split point (cbest

i ). Otherwise, we have a rapidly
shifting curve and the slopes of second and
third segments are very close. Thus, we select
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the second split point as the choice of k. Fig-
ure 7 illustrates an example of fitting process.
The pink dots represent the explained variance
for archetypal fits with increasing number of
archetypes. Green lines show the piecewise
linear fit to the data. The optimal number of
archetypes is selected according to bestj in this
case, which is nine.
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Figure 7: Illustration of identification of total number of
functions for the Pollen dataset

Steps 4 and 5: Constructing the tran-
scriptional regulatory network corre-
sponding to each archetype

Each archetype represents a principal func-
tion performed by a group of cells. However,
what makes these functions unique and the
functional specializations they represent is not
clear from the archetype signatures. To iden-
tify marker genes in each archetype, and to
shed light on the underlying network regulat-
ing the observed transcriptional phenotype, we
developed a novel approach based on orthogo-
nalizing the space of principal functions.

Archetype orthogonalization to identify cell
type-specific markers

A key factor in analyzing principal functions
represented by each archetype is to identify
what distinguishes one archetype from others.
To identify shared and unique aspects repre-
sented by each archetype, we present a new
method, called arechetype orthogonalization. The

idea is to remove effects that are shared with
any other archetypes before analyzing a given
archetype.

Recall the result of PCHA is C and H. The re-
sult XC represents the archetypes in the space
of gene expression profiles. Let us denote the
vector representation of archetype i by ai and
let A be the matrix of all archetypes. Let A−i
denote the matrix of archetypes without the ith
column. Then our goal is to project ai into the
subspace orthogonal to the columns spanned
by A−i. This can be computed as:

a⊥i =
(

I−A−i(A
T
−iA−i)

−1AT
−i

)
ai (7)

For each archetype, we can sort all genes ac-
cording to their “residual expression” after or-
thogonalization.

Identifying cell type-specific transcriptional
regulatory network (TRN)

Given residual expression vectors for each
archetype, we can identify key regulatory cir-
cuits responsible for the observed transcrip-
tional phenotype. We construct induced sub-
graphs of the global transcriptional regulatory
network (TRN), which drive characteristic be-
havior of each cell type. First, we order all
genes according to their residual expression for
a given archetype. Then, for each transcription
factor (TF), we identify the over-representation
of its target genes (TGs) among top-ranked
genes with respect to that archetype. To this
end, we use minimum hypergeometric (mHG)
p-value. This method is nonparametric, in the
sense that we do not need to predefine a fixed
cut. Let us represent the total number of genes
by m. Given a set of target genes, of size T,
we construct a binary vector of true positives
(targets) as λ = [λ1, λ2, ...λm] ∈ {0, 1}m. Let
the random variable Z denote the number of
target genes among a fixed number of l top-
ranked genes, if we distribute genes randomly.
In this formulation, we can express the p-value
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in terms of the hypergeometric distribution:

p-value(Z = bl(λ)) = Prob(bl(λ) ≤ Z)

= HGT(bl(λ)|m, T, l)

=
min(T,l)

∑
x=bl(λ)

(T
x)(

m−T
l−x )

(m
l )

(8)

where HGT is the tail of hypergeometric dis-
tribution and bl(λ) = ∑l

i=1 λi counts the to-
tal number of true positives in top-l observa-
tions. The drawback of this approach is that we
still need a predefined cutoff value, l. To rem-
edy this, Eden et al. [17] proposed a two-step
process for computing the exact enrichment
p-value, called mHG p-value, without the need
for a predefined cutoff value of l. First, an op-
timal cutoff value is chosen among all possible
values of 1 ≤ l ≤ N. The computed value
for this optimal cutoff is called the minimum
hypergeometric (mHG) score, and is defined as:

mHG(λ) = min
1≤l≤m

p-value(Z = bl(λ)) (9)

Next, a dynamic programming (DP) method
is used to compute the exact p-value of the
observed mHG score, in the state space of all
possible λ vectors of size m having exactly T
ones.

We use this formulation to identify signifi-
cant transcription factors based on the number
of target genes (TGs) with high residual expres-
sion. This, in turn, splits TGs of each TF into
top vs bottom-ranked genes. We then select all
significant TFs, together with their top-ranked
target genes and construct a node-weighted
induced subgraph of the global TRN, which
represents the cell type-specific TRN.
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