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Abstract 

Animal navigation is accomplished by a combination of landmark-following and dead reckoning based on estimates 
of self motion. Both of these approaches require the encoding of heading information, which can be represented as 
an allocentric or egocentric azimuthal angle. Recently, Ca2+ correlates of landmark position and heading direction, in 
egocentric coordinates, were observed in the ellipsoid body (EB), a ring-shaped processing unit in the fly central 
complex (Seelig and Jayaraman, 2015). These correlates displayed key dynamics of so-called ring attractors, 
namely: 1) responsiveness to the position of external stimuli, 2) persistence in the absence of external stimuli, 3) 
locking onto a single external stimulus when presented with two competitors, 4) stochastically switching between 
competitors with low probability, and 5) sliding or jumping between positions when an external stimulus moves. We 
hypothesized that ring attractor-like activity in the EB arises from reciprocal neuronal connections to a related 
structure, the protocerebral bridge (PB). Using recent light-microscopy resolution catalogues of neuronal cell types 
in the PB (Wolff et al., 2015; Lin et al., 2013), we determined a connectivity matrix for the PB-EB circuit. When 
activity in this network was simulated using a leaky-integrate-and-fire model, we observed patterns of activity that 
closely resemble the reported Ca2+ phenomena. All qualitative ring attractor behaviors were recapitulated in our 
model, allowing us to predict failure modes of the PB ring attractor and the circuit dynamic phenotypes of 
thermogenetic or optogenetic manipulations. Ring attractor dynamics emerged under a wide variety of parameter 
configurations, even including non-spiking leaky-integrator implementations. This suggests that the ring-attractor 
computation is a robust output of this circuit, apparently arising from its high-level network properties (topological 
configuration, local excitation and long-range inhibition) rather than biological nitty gritty. 

Keywords: ring attractor, head direction, navigation, central complex, protocerebral bridge, ellipsoid body, leaky-
integrate-and-fire model, bump 

Introduction 
An animal navigating in its environment relies on landmarks to 

estimate its orientation and position (Collett and Graham, 2004). In the 
absence of visual cues, many animals maintain a representation of their 
heading and position without landmarks by continuously tracking their 
own motion (Etienne and Jeffery, 2004). These representations are 
tuned by visual information but can be generated in the dark, without 
any visual feedback (Varga and Ritzmann, 2016; Taube, 2007; Seelig 

and Jayaraman, 2015), presumably by exploiting self-generated motion 
cues like efference copy (Kim et al., 2015). By integrating heading and 
distance traveled, an animal can estimate its current position 
(McNaughton et al., 2007). One of the key components of this 
computation is continuous tracking of heading. This requires the 
continuous tracking of variables in angular coordinates, a computation 
that can be accomplished by “ring attractor networks” (Solovyeva et al., 
2016; Skaggs et al., 1995; Zhang, 1996). 
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In theoretical models of ring attractor networks, neighboring nodes 
connect to form a topological ring. The value of an angular variable is 
encoded in the radial position of a “bump” of neural activity within this 
ring. This bump arises through the combined dynamics of short range 
excitation and global or long range inhibition between nodes of the ring 
attractor network (Knierim and Zhang, 2012; Skaggs et al., 1995; 
Zhang, 1996). Asymmetric excitation of neighboring nodes causes the 
bump to move in that direction as its previous position is inhibited. In 
mammals, ring attractors are thought to explain the dynamics of the 
head direction  (HD) cells, which are primarily found in the thalamus 
and cortical areas associated with the hippocampus (Taube, 2007). Each 
HD cell is tuned to a particular head orientation and the direction in 
which the cell fires maximally is referred to as its preferred direction. 
Different HD cells represent different allocentric directions and the 
motion of the bump through the network of functionally (though not 
physically) ring-shaped network of HD cells encodes head orientation. 
Studying dynamics in this circuit is difficult as these neurons are spread 
throughout relatively large areas in of the brain and not spatially 
organized according to their preferred directions, making simultaneous 
monitoring of their activity challenging. 

In insects, it was recently shown that a physically ring-shaped 
network of neuronal connections (neuropil) may function as a ring 
attractor (Seelig and Jayaraman, 2015) within the midline-spanning 
central complex (CX), of Drosophila melanogaster. Specifically, the 
Ellipsoid Body (EB) and Protocerebral Bridge (PB), appear to contain a 
neural circuit implementing a ring attractor. The EB neuropil has a 
closed ring shape in dipteran insects but is split ventrally and therefore 
roughly linear or bean-shaped in all other insect groups (Strausfeld, 
1976). Due to the evolutionary conservation of morphological cell types 
in the CX, it likely retains ring-shaped functional connections in all 
insects (Pfeiffer and Homberg, 2014). Furthermore, the linear EB 
structure has been shown to encode the angular position of the sun in 
locusts, a continuous variable in angular coordinates, suggesting ring-
like function without closed ring shape (Heinze, 2014; Homberg et al., 
2011; Heinze and Homberg, 2007). The compact size and physical ring 
shape of this neuropil uniquely facilitates the study of ring attractor 
dynamics in an complete and intact circuit that can be simultaneously 
imaged in an awake behaving animal (Seelig and Jayaraman, 2015).  

In a closed-loop behavioral setup, Ca2+ activity in putative 
dendritic processes of one neuronal population within the EB was 
shown to encode relative angular position of a vertical stripe on a 2-D 
LED screen (Seelig and Jayaraman, 2015). Seelig and Jayaraman noted 
several features of their circuit that are typical of ring attractor networks 
(Haferlach et al., 2007; Knierim and Zhang, 2012; Arena et al., 2013). 
The Ca2+ activity in the E-PGs was localized in a single bump at any 
one time and this bump moved in response to the animal changing its 
heading. Furthermore, the bump exhibited spatial stability, when it did 
fade after the fly had been stationary for long periods of time: it 
typically reappeared in the same location when the fly moved, an 
indication of storage of the bump in physiological pathways other than 
Ca2+, e.g. perhaps subthreshold voltages. The bump locked onto a single 
stripe when two competitor stripes were presented and was observed to 
jump between identical stripes from time to time.  

These neurons exhibiting these ring attractor-like dynamics 
connect two of the neuropil that make up the CX, tiling the EB with 
dendritic arbors and the PB with presynaptic boutons. They are called 
E-PGs (Ellipsoid Body-Protocerebral Bridge-Gall neurons, called 
PBG1–8.b-EBw.s-D/Vgall.b in Wolff et al (Wolff et al., 2015), EB.w.s 
or “wedge neurons” in Seelig and Jayaraman (Seelig and Jayaraman, 
2015) and EIP in Lin et al (Lin et al., 2013)), denoting the flow of 
information within them from the EB to the PB and Gall (a secondary 
structure immediately outside the CX). The EB and PB are notable for 
their division into columnar segments, known as glomeruli in the PB 
and wedges/tiles (Wolff et al., 2015) in the EB. These computational 
units contain many different neural cell types beyond those shown by 

Seelig and Jayaraman to encode angular position. In the PB, these have 
been recently characterized at the level of morphology using single-cell 
stochastic labeling methods(Lin et al., 2013; Wolff et al., 2015). The 
resulting catalogue revealed that of the approximately 18 classes of 
neurons within the PB, only three reciprocally connected the EB and the 
PB.  

We sought to test the hypothesis that PB neurons implement a ring 
attractor, based on their connectivity as enumerated in these these recent 
mapping papers. Using a leaky integrate and fire model and simple 
connectivity rules, derived from light-microscopy resolution neuronal 
morphologies, we have found that a simple model recapitulates the 
bump of Ca2+ activity and essentially all of the in vivo dynamics 
previously observed (Seelig and Jayaraman, 2015). Furthermore, we 
have found that this circuit is robust to variation in synaptic weights, 
behaving as a ring attractor under a wide variety of parameters, perhaps 
indicating that computing a ring attractor is the primary evolutionary 
function of the reciprocal connection between the EB and PB. 

Methods 
Simulations were run in MATLAB 2015a and 2016a (The 

Mathworks, Natick MA USA) using custom scripts. All code to 
recapitulate these results is available at: http://lab.debivort.org/
protocerebral-bridge-ring-attractor-model 

The circuit network structure was coded from the data in Wolff et 
al. (Wolff et al., 2015) per the rules described in the Results section 
below. Leaky-integrate-and-fire dynamics were implemented using 
Euler’s method to evaluate the following equation, with Δt = 10-4s: 

 !  
where Vi is the membrane voltage of neuron i, Iin is input current from 
neurons outside the PB circuit (0 in all neurons other than the E-PGs), 
Mj,i is the network connectivity matrix with entries equal to the synapse 
strength (in units of excitatory or inhibitory mini-postsynaptic currents 
(PSCs)), Ij is the output current of other neurons in the PB circuit, and 
Iect is simulated ectopic current (such as might be induced by 
thermogenetic or optogenetic manipulation). We used parameter values 
that correspond to a generic spiking neuron, but these values are 
consistent with various Drosophila measurements or measurements of 
PB neurons in other species.Cm is the membrane capacitance (0.002µF 
in all neurons, assuming a surface area of 10-3cm2; (Gouwens and 
Wilson, 2009)), V0 is the resting potential (-52mV in all neurons; c.f. 
(Rohrbough and Broadie, 2002; Sheeba et al., 2008)), Rm is the 
membrane resistance (10MΩ in all neurons; (Gouwens and Wilson, 
2009)), When a neuron’s voltage reached the firing threshold of -45mV 
(Vthr; c.f. (Gouwens and Wilson, 2009; Sheeba et al., 2008)), a 
templated action potential trace was inserted into its voltage time series. 
This trace was defined as follows:  

where Vmax is the (purely cosmetic) peak action potential voltage 
(20mV; c.f. (Rohrbough and Broadie 2002)), Vmin is the spike 
undershoot voltage (-72mV; c.f. (Nagel et al., 2015)), tAP is the length of 
an action potential (2ms; c.f. (Gaudry et al., 2013; Gouwens and 
Wilson, 2009)), Normpdf (a,b,c) is the probability density function of a 
Gaussian with mean a, standard deviation b at c, and 𝛼, 𝛽, 𝛾 and 𝛿 are 
normalization parameters so that the max and min of the Normpdf and 
sin segments are 1 and 0 respectively prior to scaling by the voltage 
terms. 
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The firing of an action potential also triggered the addition of a 
templated postsynaptic current (PSC) trace to the output current time 
series of the firing neuron. The PSC trace was defined as follows in 
terms of t in ms:  

where IPSC is the amplitude of a PSC (5nA; c.f. (Gaudry et al., 2013); 
excitatory and inhibitory PSCs were assumed to have the same 
magnitude but opposite sign), tPSC is the time constant of PSC decay 
(5ms; c.f. (Gaudry et al., 2013)), and 𝛼’, 𝛽’, 𝛾’ and 𝛿’ are normalization 
parameters so that the max and min of the sin and exponential terms are 
1 and 0 respectively prior to scaling by Imini. 

Synapse strength parameters were explored manually to identify 
the baseline configuration in Figure 1. Thereafter parameter exploration 
was conducted as described in the Results. The overall magnitude of the 
synapse strength parameters shown in Figure 1 was the main free 
parameter of the model. The average synapse strengths of each synapse 
class are also free parameters, though we found that adjusting only the 
strengths of the Pintr>P-EG and Pintr>P-EN synapse classes was 
sufficient to recapitulate bump dynamics. 

Leaky-integrator dynamics were implemented using Euler’s 
method to evaluate the following equation, with Δt = 10-4s:  

where all variables and constants are as defined above, and Imax is the 
maximum postsynaptic current achievable in a synapse of strength 1 
within the PB circuit. First, the scaling parameter of the current-voltage 
tanh transfer function (20) was determined empirically. This value 
yielded dynamics that were the most bump-like, given the synapse 
strength parameters determined in the leaky-integrate-and-fire model. 
Then, synapse strength parameters that produced a fully functional 
bump were identified by adding Gaussian noise to the baseline 
parameters from the leaky-integrate-and-fire model. This noise had 
mean of zero and a standard deviation of 100% of the baseline value of 

each synapse parameter. The dynamics of approximately 200 such 
random configurations were examined manually, and those producing 
the best bump-like behavior were then iteratively refined using them as 
a new baseline, and then adding Gaussian noise with a standard 
deviation of 10% and then 5% of the respective baseline values. In 
order to break initial symmetry and allow the bump to move 
“spontaneously” random Gaussian noise with mean zero and standard 
deviation of 3x10-10V was added to each neuron in each time step.  

Bump position was estimated and visualized by convolving the 
action potential rasters of each neuron with a Gaussian kernel with a 
standard deviation of 24ms. This approximates a Ca2+ signal in these 
neurons. Bump position was determined by taking the centroid, modulo 
eight, of this convolved representation for the P-ENs in each 
hemisphere. The estimated centroid of each hemisphere’s P-ENs was 
averaged to produce the final centroid estimate. 

Circuit dynamics were captured for multidimensional analysis by 
simulating the network for 2 seconds, with inputs representing a 
rotating bar and two static competitors (setting parameters 
SweepBarBool and TwinBarBool equal to one in PBexperiment.m). 200 
time points of the Gaussian-convolved spike rasters for each neuron 
were retained (from two sets of 2,000 contiguous frames each pulled 
from 200ms during the rotating bar and 200ms during the competitor 
bars, 200 time points were retained by decimating the data 20:1). 
Dynamics from 10,000 networks with randomly dithered synapse 
strength parameters constituted data points in this 200x60=12,000 
dimensional space. To these the dynamics of networks in which a single 
synapse class parameter value was swept systematically from -9x to 10x 
its original value. The dynamics from these systematic sweeps were 
added to the dynamics from the randomly dithered networks and 
projected into two dimensions using PCA for visualization. Clusters of 
dynamics were enumerated using k-means clustering in the original 
4,000 dimensional space. Representative dynamics of each cluster were 
computed by averaging all of the Gaussian-convolved spike rasters 
receiving each k-means cluster label.  

Results 
To construct a circuit model of the PB we began with the 

catalogue of morphologically defined cell types in the PB (Wolff 
!  3

Figure 1 – The Protocerebral Bridge neural circuit – A) Diagram of the PB and EB, illustrating three out of four modeled neural subtypes, the E-
PGs, P-ENs and Pintrs. Not shown are the P-EGs which project from the PB to the EB. Axonal arbors are indicated with circular varicosities/
boutons. Dendritic arbors are intricate with fine linear branches. Overlap of an axonal arbor and a dendritic arbor within a single anatomical 
compartment (grey regions) is sufficient to postulate a synapse between neurons. Neurons with identical morphologies at the level of these 
anatomical compartments (e.g. the two dark blue E-PGs) are represented in the model as a single neuron. B) Matrix representation of the 
connectivity of the PB circuit. A filled rectangle in row i, column j indicates a synapse, with neuron i presynaptic, and neuron j postsynaptic. 
Different fill colors indicate different synapse classes, whose within-class strengths are drawn from a single distribution. In most implementations, 
the distributions of synapse strength associate with synapse classes have 0 variance, and means as shown at right. C) Graph, with node positions 
determined by a force-directed algorithm of the network with connectivity shown in B), which forms a ring with bilateral symmetry. Thick edges 
indicate lateral and reciprocal excitatory loops (local excitation) from neuron 38 (as an example) as well as excitatory connections to inhibitory 
neurons that target all glomeruli (long-range inhibition).  
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et al., 2015). This work enumerates all neuronal cell types within 
the PB, characterizing two cells as belonging to the same type if 
their pre- and postsynaptic arbors (as determined by MultiColor 
FlipOut imaging (Nern et al., 2015)) are in the same neuropil 
compartments. Compartments are defined as spatially distinct 
regions of the major glia-ensheathed neuropils of the central 
complex and associated regions. For example, the PB itself 
contains 18 glomerular compartments and the EB contains 16 
wedge and 8 tile compartments. We included in our model 1) 
any neuron with postsynaptic processes in the PB and 
presynaptic processes in other compartments (output neurons), 
provided there is a PB input neuron with a postsynaptic arbor 
overlapping the presynaptic arbor of that output neuron, and 2) 
any neuron with presynaptic processes in the PB and 
postsynaptic arbors that overlap presynaptic arbors of neurons 
projecting out of the PB (input neurons; Figure 1). This includes 
all the neuronal cell types catalogued in Wolff et al. (2015) 
except for 5 classes of fan-shaped body projecting neurons 
(output only) and two classes of PB input neurons from the 
posterior slope (input only). We assumed that all neurons could 
be cleanly divided into dendritic and axonal compartments, and 
that information flows exclusively from the former to the latter.  

The broad classes of neurons that met this criterion were the 
P-ENs (PB output neurons with axons in the EB and No), P-EGs 
(PB output neurons projecting to the EB and Gall), E-PGs (PB 
input neurons with dendrites in the EB and output to the Gall), 
and Pintrs (PB intrinsic neurons with both dendritic arbors and 
presynaptic boutons in the PB). P-ENs and P-EGs comprise 16 
types each, defined by which PB glomerulus contains their 
dendrites. E-PGs comprise 18 types, defined by which PB 
glomerulus contains their axons (unlike “wedge” neurons (Seelig 
and Jayaraman, 2015) E-PGs also include neurons innervating 
the first and last glomeruli of the PB G9L and G9R (Wolff et al., 
2015)). The Pintrs comprise 10 types, defined by which PB 
glomerulus contains their axons. If their projections were 
identical at the level of the 60 types described above, individual 
neurons were considered identical, and represented by a single 
neuron in the model. Lastly, we assumed that neurons formed no 
autapses. The connectivity of the network thus defined is shown 
in Figure 1B. We examined the topological arrangement of this 
network by using a force-directed algorithm (Fruchterman et al., 
1990; Webb and Stone pers. comm.) to arrange nodes 
representing neurons. The connectivity present in this network 
has a ring-like topology, with bilateral symmetry (Figure 1C).  

Circuit dynamics were implemented using leaky-integrate-
and-fire (Stein, 1967) neuronal models, with values for the 
membrane capacitance, resistance, resting potential, undershoot 
potential, and postsynaptic current (PSCs) time constants and 
magnitudes, chosen to reflect generic neuronal properties. The 
important free parameters of the model were the strengths and 
signs of the synapses between each type of neuron. We assume 
that the strengths of all synapses between two classes of neurons 
(a “synapse class;” e.g. all synapses between P-ENs and E-PGs) 
were identical. 

Strength of synapses was implemented as the number of 
PSC equivalents per action potential. Excitatory neurons induced 
positive, depolarizing currents in their postsynaptic partners and 
inhibitory neurons negative currents. We assumed all neurons 
were excitatory unless we had evidence otherwise. The Pintrs are 

glutamatergic (Gelfand et al., 2008) and possess connectivity 
similar to other inhibitory local neurons in spatially 
compartmentalized neuropils, e.g., the antennal lobe (Chou et 
al., 2010) and lateral horn (Fişek and Wilson, 2014), therefore 
we assumed they are inhibitory (Liu and Wilson, 2013).  

To deliver inputs to the circuit, we assumed that information 
flows in first into the EB (this assumption has no bearing on our 
qualitative conclusions). Therefore, for each run of the model, 
the timing of action potentials in not-explicitly-simulated 
neurons upstream of the E-PGs was determined. These action 
potentials induced in the EBs excitatory currents with a strength 
equivalent of one PSC each. We assumed that background 
activity in these upstream neurons produced a Poisson-process 
sequence of action potentials with a mean rate of 5Hz. On top of 
this, Poisson-process spikes at higher rates (peaking at 120Hz) in 
subsets of E-PG types represented sensory-like input into the PB 
(Figure 2A), e.g. the azimuthal angle of light polarization 
(Heinze, 2014; Bockhorst and Homberg, 2015) or the retinotopic 
position of a landmark (Seelig and Jayaraman, 2013; Seelig and 
Jayaraman, 2015).  

As a start of our characterization of circuit dynamics, we 
assumed, rather arbitrarily, that all synapse classes had a strength 
of 20 PSCs. With a small amount of manual parameter 
searching, we found that if the inhibitory synapses between the 
Pintrs and the P-ENs and those between the Pintrs and P-EGs 
had strengths of 15, circuit activity recapitulated several key 
phenomena that have been observed in Ca2+ recordings of the E-
PGs (Figure 2B,C; Movie 1): 1) a stable “bump” of activity 
appeared at one position in the glomerular axis of the PB and the 
corresponding EB position, as observed by Seelig and 
Jayaraman (2015). This bump was almost always distributed 
over two or three glomeruli/tiles (25% to 38% of the azimuthal 
axis), corresponding roughly to the size of the Ca2+ bump they 
imaged (Seelig and Jayaraman, 2015). 2) The bump jumped or 
slid to the position of a novel sensory cue (i.e. a vertical bar), 
represented as increased firing rate in the neurons upstream of a 
single E-PG. 3) When the position of this input activity 
processed across adjacent glomeruli (moved in its azimuthal 
position), the bump followed. 4) When two competing vertical 
bars were provided in the form of firing-rate-matched activity 
upstream of two non-adjacent E-PGs, the bump moved to the 
position of one of the cues. 5) Occasionally, during the 
presentation of competitor bars, the bump would switch 
positions from one cue to the other. These characteristics were 
present for a wide range of synapse strength parameters (see 
stability analysis below).  

As reported by Seelig and Jayaraman (2015), the bump 
appeared to be fairly stable in the dark (i.e. with only baseline 
background activity present upstream of the input neurons). Our 
baseline synapse strength parameter values yielded a bump 
“spontaneous drift rate” comparable to those observed in vivo 
(approximately 1 glomeruli/s; Figure 2D). We observed that the 
angular position encoded by the position of the bump had a 
highly discretized distribution while drifting in the dark (Figure 
2E); the vast majority of the time, the bump was present in one 
of 15 azimuthal positions, and among these, ±5π/8 was the most 
abundant, followed by ±π/8. The distribution of bump speed 
during spontaneous motion (i.e. any motion in the dark) was 
trimodal (Figure 2F). These modes may correspond to staying in 
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position, sliding between adjacent positions, and jumping 
between non-adjacent positions. 

The emergence of a bump was remarkably robust, even a 
single action potential upstream of a single input E-PG was 
sufficient to induce a bump at the position of that action 
potential which would persist indefinitely (Figure 3A,B; Movie 
1). We observed that occasionally the bump, as encoded by 
action potentials, would disappear briefly (up to a few tens of 
milliseconds at a time; Figure 3C-E). During these periods, none 
of the PB neurons would fire any action potentials, even if there 
were occasional action potentials in the neurons upstream of the 
E-PGs. This implies that the bump can be “stored” in sub-
threshold potentials. These brief disappearances tended to 
happen when the bump was located at one of the less frequent 
azimuthal positions (e.g. ±7π/8). 

Several sets of neurons appeared to fire synchronously in 
the circuit (Figure 3E), specifically, those Pintrs that have axonal 
arbors in two PB glomeruli, bilaterally paired P-ENs and P-EGs, 
and bilaterally paired E-PGs (though this group of neurons is 
somewhat less synchronous by virtue of their being the input 
neurons that are stimulated at random times by upstream 
neurons). Leaky-integrator implementations (without action 
potentials) of this model could also produce a bump that 

persisted in the absence of sensory input, selected between 
competitor bars or formed a unitary bump after competitors were 
removed (Figure 3F,G). However, the bump in this 
implementation did not have the same rapid spontaneous bump 
formation, spatial precision, or strong selectivity between 
competitors seen in the leaky-integrate-and-fire implementation 
(though it did have weak selectivity between competitors). 

We next examined whether we had lucked out in finding 
synapse strength parameters that recapitulated so many 
experimental bump phenomena. We added random, Gaussian-
distributed noise (mean = 0, standard deviation = 20% of each 
parameter’s baseline value) to the synapse strength parameters 
and then stimulated these dithered circuits with inputs of 1) 
sequential bursts of activity in adjacent wedges representing a 
rotating bar and 2) elevated activity in two non-adjacent 
glomeruli representing stationary competitor bars (Figure 4A). 
For each of these configurations, the ensuing circuit activity in 
all neurons during diagnostic periods of this stimulation (200ms 
from the the rotating bar phase and 200ms from the beginning of 
the competitor bars) were treated as points in a high dimensional 
space of circuit behavior. These points were clustered and 
averaged within a cluster to provide an exhaustive catalogue of 
the modes of dynamics that this circuit topology can produce 
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Figure 2 – Bump-producing circuit dynamics – A) Input into the circuit is delivered as action potentials (raster marks) in neurons upstream of the E-
PGs, plotted vs. time. Various sensory stimuli can be represented, including rotating bars, and static competitors. In “dark” periods, the only input is 
Poisson-distributed background activity. Inputs are associated with the 8 tiles(Tanya Wolff et al., 2015) of the EB, and corresponding azimuthal 
angles in body coordinates are indicated. B) Activity of all 60 neurons in the circuit versus time. Plotted heatmap is a Gaussian-convolved raster of 
action potential times (standard deviation 24ms). Dotted lines demarcate left from right hemispheres within a neural subtype. C) Position of the 
bump (centroid of activity in B; blue line) versus time. * indicates “spontaneous” shifts in the position of the bump in darkness. † indicates the bump 
sliding to the position of a bar as soon as it appears, and then following it as it rotates. ‡ indicates the bump jumping to the position of a single 
competitor when two static competitors appear. ◊ indicates the bump spontaneously switching its position to that of the other competitor. D) Bump 
behavior in darkness vs time over a longer period in the left hemisphere E-PGs. E) Histogram of bump frame-by-frame centroid position over 383 
simulations of four seconds each in darkness. F) Histogram of spontaneous bump motion speed in the same dark simulations. 

� 	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2016. ; https://doi.org/10.1101/081240doi: bioRxiv preprint 

https://paperpile.com/c/x1HrQY/6sQ7
https://doi.org/10.1101/081240
http://creativecommons.org/licenses/by-nc/4.0/


Kakaria & de Bivort, 2016 – preprint version 

(Figure 4A,B). Of 15 modes, three feature sets of neurons with 
essentially no activity (modes 1-3) and five feature sets of 
seizing neurons (modes 11-15). Two of the remaining modes 
feature bumps exhibiting all the key properties observed 
experimentally (i.e. those shown in Figure 2; modes 4 and 5, 
which are distinguished largely by which competitor they 
select). Two modes have bumps that are stable on too-long 
timescales and extend over too many adjacent glomeruli, but 
otherwise show the key properties (modes 6 and 7). The 
remaining three modes (8-10) have some key bump properties, 
but are stable on too-long timescales, are too wide, and fail to 
select between competitor bars. Thus, it appears that bumps with 
the properties observed by Seelig and Jayaraman are a robust 
output of circuits with this topology under a wide range of 
synapse strength parameters. 

To understand the contribution of each synapse class to 
circuit function, we systematically varied the strength of each 
synapse class from -9x to 10x its original value (Figure 4C). 
Converting excitatory drive from the PB to the EB into 
inhibition (by reversing the sign of either the P-EN>E-PG or P-
EG>E-PG synapses) eliminated input-independent bump activity 
in the P-EGs (mode 3). Increasing the strength of that excitatory 

drive led to too-stable bumps without competitor selectivity 
(modes 9 and 10) and eventually seizure across the circuit (mode 
11). Increasing inhibition of P-ENs (by either reversing the 
excitatory E-PG>P-EN synapses or amplifying the strength of 
the inhibitory Pintr>P-EN synapses), not surprisingly, eliminated 
activity in the P-ENs (mode 1). Conversely, the opposite 
manipulations resulted in a too-stable bump (mode 10) and 
eventually seizure of the P-ENs (and E-PGs and Pintrs; modes 
12 and 15). Increasing inhibition of P-EGs (by either reversing 
the excitatory E-PG>P-EG synapses or amplifying the strength 
of the inhibitory Pintr>P-EG synapses), not surprisingly, 
eliminated input-independent bump activity in the P-EGs (mode 
3). Conversely, the opposite manipulations resulted in a too-
stable bump (mode 8) and eventually seizure of the P-EGs (and 
E-PGs and Pintrs; mode 13). Increasing inhibition of Pintrs (by 
either reversing the excitatory E-PG>Pintr synapses or 
amplifying the strength of the inhibitory Pintr>Pintr), resulted in 
too-stable bumps (mode 7), bumps with no competitor 
selectivity (mode 10) and eventually seizure in P-ENs, P-EGs, 
and E-PGs (mode 14). The opposite manipulations eliminated 
input-independent bump activity in the P-ENs (mode 2) and 
eventually all activity in P-ENs and P-EGs (mode 1).  
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Figure 3 – Relationships between the bump and action potentials – A, B) Input of a single action potential in an E-PG (red raster mark) is sufficient 
to induce a stable bump in the circuit. B) Gaussian-convolved raster of neural activity in all neural subtypes (axes and color scale as in Figure 2B). 
C) Circuit input via the E-PGs corresponding to 250ms of darkness. D) Corresponding dynamics of all neurons in the circuit revealing a ~20ms 
window (shaded grey) in which the bump disappears is not represented in action potentials, but reappears in the same position after the window 
(axes and color scale as in Figure 2B). E) Corresponding voltage trace. For clarity, the trace of every other neuron has been removed. F) 
Depolarizing currents representing input into the E-PGs in a leaky-integrator implementation of the circuit, versus time. Synapse strength 
parameters used were that provided dynamics most closely approximating a bump. G) Corresponding voltages in the entirety of the circuit. Symbols 
indicate elements of canonical bump phenomenology, as in Figure 2C. * indicates “spontaneous” shifts in the position of the bump in darkness. † 
indicates the bump jumping to the position of a bar as soon as it appears, and then following it as it rotates. ‡ indicates the bump jumping to the 
favoring one of two competitors (the lower competitor, most clearly discernible in the left hemisphere — the top half of each neuron type). 
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This systematic variation of synapse class strength 
parameter values also provides evidence of the robustness of the 
bump phenomenon in this circuit. Increasing or decreasing the 
strength of a synapse class by up to 50% of its baseline value, 
for example, seldom changes the mode of circuit dynamics 
(Figure 4C). Thus, it seems a sizable parameter subspace around 
the baseline values can produce bump phenomena. This analysis 
allows us to assess how much of the parameter space around the 
baseline produces bumps, not how much of the total space can 
produce bumps. To discover more distant parameter 
configurations that might also work, we added a substantial 
amount of Gaussian noise to all parameters simultaneously 
(mean = 0, standard deviation = 100% of each parameter’s 

baseline value; this reverses the sign of a parameter 16% of the 
time). The vast majority of circuits with these more broadly-
sampled random parameter configurations seized or were silent 
in at least one neural subtype but a small portion (~1.5% of 
24,000 random parameter configurations) exhibited correct 
bump phenomena. These were identified and pooled by k-means 
clustering of circuit dynamics.  

The distributions of each parameter within this pool of 
bump producing circuits are shown in Figure 4D. Each 
parameter can evidently take on a wide range of values, and with 
the right corresponding changes in other parameters, support 
bump function. Notably, almost all parameters could even have 
their sign reversed from excitatory to inhibitory or vice versa, 
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Figure 4 – Robustness of bump dynamics – A) Modes of circuit dynamics. Each plot is an average of Gaussian-convolved action potentials rasters 
(as in Figure 2B). Constituent plots going into each average were identified by k-means clustering of circuit dynamics (B). For each synapse 
strength parameter configuration, the E-PG input shown in the inset was given. The resulting dynamics from the intervals marked in yellow were 
sub-sampled and clustered in 12,000 dimensions (200 timepoints for each of 60 neurons). Yellow regions are diagnostic of bump behavior since they 
include regions where the bump should follow a rotating bar and choose among competitors. B) Scatter plot of the first two principal components of 
circuit dynamics in the yellow intervals of A). Each point represents the dynamics of a circuit with synapse strength parameters equal to either 1) the 
baseline parameters (Figure 1B) plus Gaussian noise with mean = 0 and standard deviation = 20% of baseline value, or 2) the baseline parameters, 
with one parameter varied adjusted by -9x to 10x of its baseline value. Colors indicate 15 k-means clusters computed prior to PCA. Mean dynamics 
of all points within each cluster shown in A). C) Systematic variation of each of the eight synapse class strength parameter away from their 
respective baseline values. Black lines represent 10 different parameter value sweep replicates, and the thick color-mapped line their average, color 
coded by the shift of each respective parameter. D) Distributions of synapse parameters that support proper bump function. Gaussian noise from the 
solid grey distribution was sampled and added to each synapse class independently. This was repeated 24,000 times and the resulting circuit 
dynamics were k-means clustered into 400 clusters. 6 clusters were identified that had proper bump dynamics comparable to modes 4 and 5 of A). 
The distribution of offsets represented in these clusters is shown for each synapse class strength parameter. 
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and still contribute to a bump-producing circuit. The exceptions 
were the Pintr>P-EN and Pintr>P-EG synapses, which could be 
silenced but not converted into excitatory synapses, and still 
produce a bump. In general, however, the random noise that was 
added to the parameters in bump-producing circuits was 
positive, meaning that excitatory synapses could generally be 
made more excitatory, and inhibitory synapses more inhibitory, 
without loss of bump function. Several parameter distributions 
appeared to be multimodal, notably P-EG>E-PG, E-PG>P-EG, 
E-PG>Pintr, and Pintr>Pintr, suggesting there may be discrete 
(or non-linear manifolds of) synapse strength configurations that 
support bumps. 

This framework allowed us to predict the effect of 
thermogenetic or optogenetic perturbation of neural populations. 
We computationally injected varying amounts of current into 
each neural subtype as defined by Wolff et al. (2015), i.e. 
distinguishing between E-PG and Pintr subtypes (Figure 5), and 
projected the ensuing circuit dynamics into the same space 
where we defined the dynamics modes (Figure 4B). In general 
the predicted effects matched the effects of changing the 
corresponding synapse class parameters. For example, injecting 
depolarizing current into the P-ENs had the same effect as 
increasing the strength of the excitatory E-PG>P-EN synapse 
class (or decreasing the strength of the inhibitory Pintr>P-EN 
synapse class). Injecting even relatively large (±5nA) currents 
into the gall-tip-projecting subset of E-PGs or the P6-8-P9 subset 
of Pintrs had little effect, presumably because these neural 
subtypes are less numerous in our model, represented by only 2 
neurons each. 

Discussion 

Ring attractor networks are an attractive explanation for the 
storage and updating of continuous variables in the brain 
(Knierim and Zhang, 2012; Taube, 2007; Skaggs et al., 1995; 
Zhang, 1996) and may play a role in visual attention (de Bivort 
and van Swinderen, 2016). We have shown ring attractor 
dynamics arise in a network of generic spiking neurons with 
connectivity inferred from light-resolution microscopy and few 
other assumptions. The neurons in this network represent classes 
of neurons that are morphologically identical down to the level 
of independent computational units (glomeruli/wedges) defined 
in recent efforts to catalogue all neurons in the protocerebral 
bridge of the central complex (Wolff et al., 2015). The model 
produces a number of key behaviors that are predicted by ring 
attractor theory (Taube, 2007; Song and Wang, 2005) and 
observed by Seelig and Jayaraman (2015) in by Ca2+ activity in 
the E-PG neurons. In particular, a broad bump of activity (about 
90-120° wide) tracks a simulated cue as it moves. We found that 
this bump may slide or jump to novel cues and chooses only a 
single cue if multiple competitors are provided (occasionally 
spontaneously jumping between them). Furthermore, we found 
that even when there is a pause in the representation of the bump 
by action potentials, it will reappear in the same position, as seen 
in Seelig and Jayaraman (2015). This suggests the bump is 
stored in subthreshold voltages.  

Interestingly, our model suggests that there are discrete 
positions in the network in which this bump of activity prefers to 
reside as it moves through the network. Whether this is true of 
the circuit in vivo is not yet known, but it has been reported that 
startled cockroaches turn and run at angles that are multimodally 
distributed (Domenici et al., 2008). The modes of these escape 
angles are separated by approximately 30°, which is nearly 
matched by the 13 modes of bump position that we observed 
(Figure 2E). Perhaps discretized bump position tendencies 
underlie this distribution of escape angles. The distribution of 
bump speeds (Figure 2F) is also consistent with theoretical work 
predicting distinct types of bump motion: sliding between 
adjacent positions and jumping between non-adjacent positions 
(Zhang, 1996). Additionally, angular position vectors can be 
coded not only by which neurons are active, but also by which 
pairs of neurons have synchronous activity (Ratté et al., 2013). 
In our circuit we found that neurons tended to fire synchronously 
(Figure 3E), indicating that perhaps the PB could conceivably 
participate participates in a synchrony-based code. 

We found that a large range of synaptic strength parameters 
can result in apparently proper ring attractor dynamics (Figure 
4). Moderate levels of noise in the synaptic strengths within the 
circuit often still produced dynamics consistent with 
experimental observations. In our analysis we were able to 
characterize potential failure modes of the network, which 
include an inability to sustain the bump, low responsiveness, low 
or no competitor selectivity and/or network seizures. By 
systematically varying the synaptic weights of each class of 
connections, we explored the space of failure modes to evaluate 
the robustness of our model. Our model predicts that perturbing 
certain synaptic or neuronal classes could have larger impacts on 
this network than others. In general, neuronal classes with fewer 
neurons could be perturbed more dramatically before causing a 

!  8

Figure 5 – Prediction of circuit dynamics after neuronal subtype 
physiological manipulations – Circuit dynamics projected into two 
dimensions using the same input stimulus, diagnostic intervals, 
subsampling and linear projection as Figure 4B. Labeled neuronal 
subtypes were “injected” with ectopic currents as might be brought 
about by thermogenetic or optogenetic manipulation. Black lines 
represent 10 different current sweep replicates, and the thick color-
mapped line their average. E-PGtip refers to the subset of E-PGs that 
project to the Gall tip. Pintr(P6-8-P9) refers to intrinsic PB neurons that 
project from glomerulus 6-8 to glomerulus 9 and Pintr(PΔ7) that tile the 
PB with boutons while projecting dendrites throughout the PB. 
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breakdown in bump dynamics. At the same time, all the synaptic 
or neuronal classes could be dramatically perturbed (or even 
reversed in sign) and still produce a proper bump, provided 
appropriate compensatory changes in other classes were made. 
Going forward, our model may be able to provide a quantitative 
framework for understanding variability in individual differences 
in navigation, such as locomotor handedness (Ayroles et al., 
2015; Buchanan et al., 2015). 

It is important to consider which assumptions made in this 
model might not be realistic. The information flow of each 
neuron class is inferred from the overlap of “dendritic” and 
“axonal” cellular compartments determined by light-microscopy. 
Despite being unipolar, neurons in Drosophila generally have 
polarized information flow (Rolls, 2011), however, common 
axo-axonal, dendro-dendritic and perhaps even dendro-axonal 
synapses (Schneider-Mizell et al., 2016) paint a more complex 
picture. Electrical coupling, which can lead to synchronized 
neuronal firing, is also common in insect neurons (Pereda, 
2014), but we have not included any in our model. Furthermore, 
we have assumed that every neuron has the same integration and 
firing dynamics despite the fact that the dynamics can vary 
significantly based on specific ion channel expression levels 
(Berger and Crook, 2015; Marder, 2011). We also make the 
assumption that if an axon and dendrite overlap in a 
compartment then they are connected, but this is not necessarily 
the case. Neurons that are adjacent with the resolution provided 
by light microscopy may not come into physical contact 
(Feinberg et al., 2008). Moreover, axons and dendrites which are 
in contact do not necessarily form functional synapses (Kasthuri 
et al., 2015). Due to these caveats, it is remarkable that our 
model recapitulates so many of the experimental observations of 
Ca2+ of E-PG neurons. The core computation of this circuit may 
be robust to many categories of biological detail, emerging 
instead from high-level connectivity of the sort that can be 
inferred from light microscopy. 

Despite the conspicuous ring shape of the EB and its large 
number of inhibitory neurons with horizontal morphologies 
spanning all azimuthal positions (Martín-Peña et al., 2014; 
Kottler et al., unpublished), neither of these qualities is 
necessary to bring about ring attractor dynamics in our model. 
Instead, our model generates global inhibition using intrinsic PB 
neurons (the PBintrs; Figure 1). The EB has been shown to 
receive spatiotopic information about visual features from the 
bulbs (Seelig and Jayaraman, 2013) and is involved in visual 
place learning (Ofstad et al., 2011). These observations suggest 
that the EB encodes spatial information about landmarks in the 
environment which could be used to correct accumulated error in 
the position of a bump. While inhibitory circuitry within the EB 
is not required for ring attractor dynamics in the PB-EB circuit, 
we have no evidence that the inhibitory circuitry in the EB does 
not participate in a separate ring attractor. It is possible that both 
the Pintrs in the PB and the ring neurons (Martín-Peña et al., 
2014) of the EB implement long-range inhibition for the 
production of two distinct ring attractors, which could interact to 
perform more sophisticated computations. 

The egocentric heading correlate present in the PB-EB 
circuit is likely transmitted to other regions of the CX, 
particularly the fan-shaped body (FB). This neuropil could be a 
site of integration of navigational with internal state and sensory 
information for adaptive decision making. In addition to the PB-

EB circuit neurons described here, the PB contains many 
columnar neurons projecting into the FB that have postsynaptic 
arbors in individual PB glomeruli and presynaptic boutons in 
different layers and columns of the FB (Wolff et al., 2015). Thus, 
it is likely that the FB inherits a bump or vertical band of activity 
from the PB. The FB is hypothesized to gate the selection of 
different behaviors in a state-dependent fashion (Weir and 
Dickinson, 2015) and activation of a single side of the FB 
induces ipsilateral turning (Guo and Ritzmann, 2013). 
Horizontal dopaminergic neurons in the FB have been shown to 
mediate sleep and arousal (Pimentel et al., 2016). The FB 
receives direct horizontal input from the visual system via the 
optic glomeruli (Ito et al., 2012) and also from many known 
modulatory neuropeptidergic neurons (Kahsai et al., 2012; 
Kahsai and Winther, 2011). The columnar projection neurons 
coming from the FB likely interact with these horizontal 
modulatory neurons. Therefore, it is appealing to hypothesize 
that the FB contains its own bump, downstream of the PB-EB 
bump, that it uses to integrate navigational information with 
neuromodulatory signals encoding internal states and sensory 
inputs. 
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