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Abstract 9 

Many metagenomics classification tools have been developed with the rapid growth of the 10 

metagenomics field. However, the classification of closely related species remains a challenge for 11 

this field. Here, we compared MetaPhlAn2, kallisto and Kraken for their performances in two 12 

metagenomics settings, human metagenomics and environmental metagenomics. Our comparative 13 

study showed that kallisto demonstrated higher sensitivity than MetaPhlAn2 and Kraken and better 14 

quantification accuracy than Kraken at the species level. We also showed that classification tools 15 

that run on full reference genomes misidentified many species that were not truly present. In order 16 

to reduce false positives, we introduced marker genes from MetaPhlAn2 into our pipeline, which 17 

uses kallisto for the classification step, as an additional filtering step for species detection.  18 

 19 

Introduction 20 

The advent of shotgun metagenomic sequencing greatly facilitated the identification and 21 

classification of microbes by providing a means to detect phenotypically aberrant or unculturable 22 

microbes [1]. It allows a much faster and cheaper taxonomic profiling of microbial communities 23 

in different ecosystems such as the microbiome in human, soil and ocean. With the rising use of 24 
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shotgun metagenomic sequencing in the last decade, many microbial species classification tools 25 

have since been developed [2]. However, there still remains one of the main challenges in shotgun 26 

metagenomics analysis—the genomes similarity problem among closely related species in which 27 

it is hard to distinguish and classify ambiguous reads. [3]. For instance, Shigella dysenteriae and 28 

Escherichia coli that share relatively similar genomes complicate the taxonomic assignment at the 29 

genus, species and strain levels [4]. Several tools such as MetaPhlAn and MetaPhyler have been 30 

developed to profile microbial communities rapidly using a set of marker sequences. The use of 31 

markers can reduce ambiguous reads mapping to multiple genomes [5-8], but at the same time, not 32 

all sequencing reads can be classified. This poses a limit to perform a detailed analysis on the 33 

samples, such as gene content estimations [9].  Other tools such as Kraken [9]and Clark [10] also 34 

have been developed for high accuracy microbial sequence classification. These tools represent 35 

read-alignment free and k-mer based approach that can classify sequencing reads accurately and 36 

rapidly. Lindgreen et al. evaluated many of the widely used metagenomics classification tools and 37 

the comparison of the overall performances showed that Kraken performs best in terms of the 38 

speed and accuracy in identifying taxonomic distribution [11]. Interestingly, an RNA-seq 39 

quantification tool, kallisto, has also been tested and compared to Kraken in the metagenomics 40 

setting. Kallisto is a fast k-mer based pseudoalignment approach of RNA-seq reads to quantify 41 

isoform expression level using a transcriptome De Bruijn graph (T-DBG) method [12]. The 42 

comparison of Kraken and kallisto by Schaeffer et al. showed that kallisto outperforms Kraken in 43 

the metagenomics quantification at three taxonomic ranks: genus, species and strain [13]. However, 44 

no evaluations on other aspects such as the false discovery rates (FDR) and memory requirements 45 

have been reported in the study.  46 

 47 
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Here, we compared and evaluated different combinations of tools, including MetaPhlAn2, kallisto 48 

and Kraken, in terms of their detection and quantification performances, speed and memory 49 

requirement in microbial species level classification. We showed that the performance of kallisto 50 

is better than Kraken in terms of the quantification at the species level, which is consistent with 51 

the result showed by Schaeffer et al [13]. However, while kallisto uses expectation maximization 52 

(EM) algorithm to probabilistically handle ambiguous reads, the FDR still increases dramatically 53 

as the number of sequencing reads increases. Therefore, we incorporated a collection of species-54 

specific markers genes from MetaPhlAn2 into the kallisto quantification pipeline as an additional 55 

step to reduce the FDR. In addition, due to the very high memory requirement to build the T-DBG 56 

by kallisto, we also introduced another pipeline that build the index only on detected species from 57 

the kallisto run on marker genes to evaluate the performance of kallisto at a larger scale of 58 

reference genomes. Overall, we showed that the kallisto run on full microbial genome alone is not 59 

sufficient because it detected many other species that were not there. The use of marker genes is 60 

necessary to reduce the high false positives.  61 

 62 

Results 63 

Two different microbial community samples were simulated: (i) human-associated habitat 64 

microbial community samples that consist of 5% microbial reads, and (ii) samples that consist of 65 

only microbial reads. We tested five pipelines that use either MetaPhlan2, Kraken or kallisto 66 

(Figure 9 and Figure 10) for the classification of reads at the species level and evaluated their 67 

performances in terms of sensitivity, FDR, rate of false negative and memory requirement.  68 

 69 

(i) Human-associated habitat microbial community samples  70 
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For datasets that mimic samples extracted from human-associated habitat, we first filtered out 71 

human reads before running the classification step. Sensitivity measures how well the pipelines 72 

detect species that were truly present in the samples. Pipelines that include kallisto (Figure 9 B1-73 

D1) in the classification step demonstrated the highest sensitivity, followed by Kraken (Figure 9 74 

E1) and MetaPhlAn2 (Figure 9 A1, Figure 1a). MetaPhlAn2 performed poorly at low number of 75 

microbial reads due to the use of only marker genes and not full genomes. FDR measures the 76 

number of species that were detected but not in the samples. It increases dramatically as the number 77 

of reads increases when full microbial genomes were used in the reference database (Figure 1b). 78 

In contrast, pipelines that involve additional filtering step using species-specific marker genes from 79 

MetaPhlAn2 (C1 and D1) and MetaPhlAn2 itself (A1) demonstrated lower FDR (<0.05) compared 80 

to the pipelines that only classify reads using full microbial genomes. Rate of false negative refers 81 

to the frequency of not detecting species that were present in the samples. Pipelines that include 82 

kallisto (B1-D1) showed the lowest rate of false negative, followed by Kraken (E1) and 83 

MetaPhlAn2 (A1) (Figure 1c). Although kallisto performed well in the detection of species, the 84 

downside of it is that it requires high memory in the index and quantification steps. Specifically, 85 

kallisto quantification (B1 and C1) with a database that consists of 3511 fasta sequences (~5.6GB) 86 

consumed approximately 300 GB of memory (Figure 1d). Therefore, out of the five pipelines that 87 

we tested, we included one that index only genomes that were detected in the marker genes 88 

detection step (D1), in order to reduce the size of the database used in the final quantification. In 89 

this case, the memory requirement will vary depending on the number of species detected. The 90 

number of genomes in our simulated dataset was 315 and kallisto required approximately 38GB 91 

of memory for the quantification step. In addition, the run time also varies between different 92 

pipelines (Figure 2a-e). On a 16-core server, MetaPhlAn2 demonstrated the shortest run time due 93 
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to its small database that consist of only marker genes. Kraken pipeline had the second shortest 94 

run time, followed by the three kallisto pipelines, with B1 and C1 that run on the full microbial 95 

genome having the longest run time. Similar to the memory requirement by the D1 pipeline, the 96 

run time that involves building a kallisto index and running on a reduced database will vary 97 

depending on the number of species detected.  98 

 99 

Figure 1: (a) Sensitivity, (b) false discovery rate, (c) rate of false negative and (d) memory 100 

requirement for simulated microbial reads extracted from human-associated habitat 101 

 102 

We excluded MetaPhlAn2 from the comparison of quantification accuracy because not all reads 103 

are used in the estimation of microbial composition. The kallisto pipeline (D1) that has a filtration 104 

step with species-specific markers demonstrated the highest accuracy in estimating species counts 105 

as the number of reads increases, followed by the other two kallisto pipelines (C1 and B1), and 106 
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then Kraken (E1) (Figure 5a). In summary, we showed that the D1 pipeline demonstrated the most 107 

optimal combination of all parameters tested although it takes a longer time to run compared to 108 

MetaPhlAn2 and Kraken. It first filters out human reads using BWA-MEM, followed by a species 109 

level detection step using marker genes, and a quantification step on a selected full genome 110 

database based on detected species.  111 

 112 

Figure 2 Runtime (min) for samples extracted from human-associated habitat that consist of (a) 1 113 

million, (b) 3 million, (c) 10 million, (d) 30 million, and (e) 100 million total reads 114 

 115 

(ii) Samples of only microbial reads 116 
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The same five pipelines used in the first part of the study minus the human filtration step were 117 

evaluated for their performances in classifying samples with only microbial reads. The 118 

performances of each pipeline were similar to the first part of the study (Figure 3a-d), in which 119 

pipelines that include kallisto (Figure 10 B2-D2) in the classification step demonstrated the highest 120 

sensitivity, followed by Kraken (Figure 10 E2) and MetaPhlAn2 (Figure 10 A2). Pipelines that do 121 

not have a filtering step using species-specific marker genes (B2 and E2) demonstrated higher 122 

FDR as the number of reads increases. Kallisto pipelines (B2 and C2) are not practical because it 123 

requires memory as high as 300GB for a database of only 3511 microbial reference sequences 124 

(Figure 3d).  125 

 126 

Figure 3: (a) Sensitivity, (b) false discovery rate, (c) rate of false negative and (d) memory 127 

requirement for simulated samples that contain only microbial reads 128 
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 129 

In terms of the speed, MetaPhlAn2 (A2) had the shortest run time on a 16-core server. However, 130 

as the number of reads increases, Kraken (E2) outperformed MetaPhlAn2 in terms of the run time 131 

(Figure 4a-e) even though it runs on a full reference genome database. Kraken could classify 100 132 

million reads in about 30 minutes. Kallisto (B2 and C2) had the longest run time for microbial 133 

reads classification when full reference genomes database was used. 134 

The kallisto pipeline (B2) without the filtration step with species-specific markers demonstrated 135 

the highest accuracy in estimating species counts, followed by the other two kallisto pipelines (D2 136 

and C2), and then Kraken (E2). The downside of this B2 pipeline was that the FDR increases 137 

dramatically to as high as 0.76 with 100 million of microbial sequencing reads (Figure 3b). This 138 

indicates that kallisto quantification alone is not sufficient to accurately identify the species that 139 

are present in a sample and the use of marker genes is necessary to reduce the FDR. The additional 140 

marker genes filtration step will definitely require more run time than without one. The 141 

quantification step by kallisto also consumes a much longer time (10 times as long when 142 

quantifying 1 million microbial reads) when compared to Kraken (Figure 4a). Overall, in order to 143 

get an accurate quantification of microbial reads, yet the highest sensitivity and the lowest FDR, 144 

the D2 pipeline demonstrated the most optimal combination of all parameters tested, although the 145 

run time is not the best. The first step is the species level detection using marker genes to reduce 146 

the FDR, followed by a quantification step on a selected full genome database based on detected 147 

species. 148 
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 149 

Figure 4: Runtime (min) for simulated samples that consist of (a) 1 million, (b) 3 million, (c) 10 150 

million, (d) 30 million, and (e) 100 million microbial reads 151 
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 152 

 153 

Figure 5: RMSE of 292 organisms (a) from human-associated habitat and (b) of all microbial 154 

reads only, at the species level 155 

 156 

(iii) iMESS_Illumina simulated Illumina100 157 

In addition to our simulated sequencing reads, we also tested the D2 pipeline on the dataset that 158 

was used by Schaeffer et al. to test kallisto in a metagenomics setting. 56.9% of the reads are from 159 

strains found in our microbial reference genomes database, 34.1% of them are of other strains that 160 

can be classified into species found in the database, and the remaining 9% are not in any of the 161 

species found in the database. We wanted to test how well the D2 pipeline can classify when some 162 
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of the reads are not found in the database because this can mimic the problem in analyzing real 163 

dataset. The pipeline correctly identified 67 species out of the 85 species that were truly present in 164 

the dataset and misidentified 72 species. The quantification accuracy of this approach was shown 165 

in Figure 6 (Pearson r = 0.75). 166 

 167 

Figure 6: Quantification accuracy for Illumina100 dataset using the D2 pipeline 168 

(iv) Stool and saliva sequence data from the HPFS cohort 169 
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 170 

Figure 7: Gut and oral microbiome from the HPFS cohort.  171 

We obtained stool and saliva samples from eight healthy Health Professionals Follow-Up Study 172 

(HPFS) subjects and analyzed using the D1 pipeline. There was a clear clustering structure (Figure 173 

7 ) between the oral and the gut microbiome of the eight HPFS subjects. The most distinctive 174 

species composition that distinguish between the oral and the gut microbiome were members from 175 

the Prevotella genus and the Bacteroides genus (Figure 8a). Members in the Prevotella genus such 176 

as Prevotella histicola, Prevotella melaninogenica, Prevotella pallens and Prevotella sp. C561 177 

were found in all eight oral samples but not in any of the gut sample (FDR < 3.6 x 10-16). In contrast, 178 

species in the Bacteroides genus such as Bacteroides sp. 9 1 42FAA, Bacteroides sp. HPS0048, 179 

Bacteroides xylanisolvens, and Bacteroides nordii were not found in the oral samples but were 180 
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found in the gut samples (FDR < 3.1 x 10-5). In addition, we also identified two species, Veilonella 181 

sp. HPA0037 and Streptococcus salivarius with at least 1000 counts per million (CPM), in both 182 

the gut and the oral samples from the same individual, in at least two of them. The link between 183 

the oral and the gut microbiome from the same dataset has previously been shown in [14] and our 184 

finding on Streptococcus salivarius and the Veilonella genus was consistent with their result.  185 

 186 

Figure 8: (a) Comparison of the species composition in gut and oral samples. The largest 187 

distinction between the oral and the gut microbiome were from several members in the Prevotella 188 

and Bacteroides genus. (b) Link between the oral and the gut microbiome. Two species with > 189 

1000 CPM were found in the oral and the gut samples from the same individual (of at least two 190 

individuals): Veillonella sp. HPA0037 and Streptococcus salivarius. 191 
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Discussion 192 

The classification of homologous sequences from closely related species can be challenging in 193 

shotgun metagenomics sequencing analysis because this can lead to many misidentifications of 194 

species. In addition, samples deriving from a host may contain many contaminating host DNA, 195 

thus complicating the data analysis [15]. In recent years, many metagenomic reads classification 196 

tools have been developed with the rising use of shogun metagenomics sequencing. While most 197 

of the studies have been focusing on bacterial communities, there is also a rising use of shotgun 198 

sequencing in viral community setting [16]. In this study, we tested different pipelines with 199 

existing metagenomics and RNA-seq data analysis tools on two different microbial communities, 200 

one that mimics samples deriving from human-associated habitat, and another one that consists of 201 

only microbial reads.  202 

In the pipelines involving the use of kallisto for quantification, we first filter out human reads using 203 

BWA-MEM. The reason why we did not use kallisto for the human filtration step was because the 204 

index could not be built from the hg19 genome due to memory issue, as kallisto is specifically 205 

designed for transcriptome. With the same set of marker genes as the reference database, kallisto 206 

was shown to outperform MetaPhlAn2 in identifying the correct species. We introduced this 207 

marker genes filtration approach in our pipeline as a species detection step to reduce false positives. 208 

We showed that without this step, many species that are not truly present were detected. However, 209 

the drawback of this pipeline is the runtime. Kallisto is a fast pseudoaligner for transcriptome [12], 210 

but it takes a much longer time for metagenome sequence classification when compared to Kraken, 211 

an ultrafast metagenomics analysis tool. However, kallisto outperformed Kraken in terms of 212 

quantification accuracy. Overall, D1 (with human filtration) and D2 pipelines demonstrated the 213 

most optimal combinations of the performance parameters that we tested.  214 
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To further test the pipelines, we applied the D2 method on iMESSi simulated DNA sequencing 215 

reads. Due to the absence of reference genomes to half of the reads present in the simulated sample, 216 

the sensitivity was not ideal. This can mimic the problem in analyzing real dataset in which there 217 

is still a problem in classifying reads extracted from unknown species. In addition, many species 218 

under the same genus were misidentified, including the Bacillus genus, the Thermus genus and the 219 

Burkholderia genus. This suggests that some of the markers were not truly unique to the species 220 

even after filtering out quasi-markers from MetaPhlAn2. 221 

We also tested the D1 pipeline on real metagenomics sequence reads from the HPFS cohort (eight 222 

healthy males at the Boston area). We showed that the highest distinction between the gut and the 223 

oral samples came from members of two genus, Bacteroides and Prevotella. Several members in 224 

the Bacteroides genus was found in the gut but not in the oral samples and vice versa for the 225 

Prevotella genus. This is in agreement with previous result indicating that Bacteroides species in 226 

the gut microbiome is associated with an animal-protein based modern western diet whereas 227 

Prevotella species in the gut is associated with a carbohydrate-based rural diet [17] . We also found 228 

several Prevotella species that were found only in the oral site but not in the gut samples. This is 229 

consistent with the result in which Prevotella genus was previously shown to significantly 230 

associate with the tongue dorsum [18]. 231 

Methods 232 

Generation of simulated DNA sequencing data 233 

We simulated DNA sequencing paired-end reads to represent two different microbial communities: 234 

(i) microbial reads extracted from human host (consist of human reads and ~ 5% of microbial reads) 235 

and (ii) reads that consist of only microbial reads. To generate these reads, we used wgsim by 236 
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Heng Li (https://github.com/lh3/wgsim) with hg19 genome and 315 microbial genomes (292 237 

species: 74 bacteriophages, 69 viruses and 149 bacteria) from the NCBI RefSeq database [19]. We 238 

used the default options in wgsim except for a rate of mutation of 0.003, for the generation of 239 

microbial reads. For the simulation that contains microbial reads from human host, we generated 240 

five sets of them progressively, with approximately a total of 100 million reads (94,999,998 human 241 

reads + 5,000,001 microbial reads), 30 million reads (28,500,000 human reads + 1,499,999 242 

microbial reads), 10 million reads (9,500,000 human reads + 499,993 microbial reads), 3 million 243 

reads (2,849,998 human reads + 149,987 microbial reads) and 1 million reads (949,997 human 244 

reads + 49,997 microbial reads). For the simulation that contains only microbial reads, we also 245 

generated five sets of reads progressively, which contain approximately 100 million reads 246 

(99,999,999), 30 million reads (30,000,001), 10 million reads (10,000,003), 3 million reads 247 

(2,999,998) and 1 million reads (999,994). 248 

IMESS_Illumina simulated Illumina100 249 

In addition to our simulated sequencing reads, we also evaluated the D2 approach on the dataset 250 

that was used by Schaeffer et al. to test kallisto in a metagenomics setting [13]. This dataset was 251 

simulated using iMESS_Illumina and contains 100 bacterial genomes [20].  252 

Quantification of microbial reads 253 

We compared MetaPhlAn2, kallisto/0.42.2 and kraken/0.10.5-beta for their performance in 254 

microbial reads quantification. For the simulated microbial sample of human origin, we first 255 

filtered out reads mapping to hg19 genome [21], with the exception when using MetaPhlAn2 for 256 

classification. No prior filtration is required for MetaPhlAn2 due to the use of microbial species-257 

specific markers database. For the approach involving Kraken (E1), we directly used Kraken to 258 
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filter out human reads with the options, --quick, -- min-hits 5 --unclassified-out, with hg19 genome 259 

as the reference genome. Next, we ran Kraken on the unclassified reads output against the full 260 

microbial reference genomes database. For the approaches using kallisto, we compared three 261 

different ways (B1-D1) to classify microbial reads. In the first approach (B1), we ran BWA-MEM 262 

[22] against hg19 genome to filter out human reads. Then, we classify unmapped reads with the 263 

full microbial reference genomes database using kallisto. In the second approach (C1), we ran an 264 

additional step of kallisto on hg19 unmapped reads with species-specific markers from 265 

MetaPhlAn2 as the reference genomes. This step is introduced to reduce the FDR and it is used to 266 

detect the presence or the absence of a species, and not for quantification purpose. If a species is 267 

detected here, the estimated read count will be obtained from the earlier step that uses full 268 

microbial genomes database. In the third kallisto approach (D1), we again ran BWA-MEM against 269 

hg19 genome for human reads filtration. The unmapped reads were classified using kallisto, with 270 

species-specific markers from MetaPhlAn2 as the reference genomes to detect the presence of a 271 

species. After identifying species that were present in the sample, we proceeded to build a kallisto 272 

index on full microbial genomes only on these selected species. The quantification step was ran 273 

with this reduced database.  274 
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 275 

Figure 9: Flowchart of analysis pipelines for samples extracted from human-associated habitat. 276 

Five pipelines (A1-E1) were evaluated and compared for their overall performances. 277 

For the second microbial community that contains only microbial reads, we ran MetaPhlAn2, 278 

kallisto and Kraken exactly the same way as we ran them in the first microbial community found 279 

in human-associated habitat, but without the filtration step to remove human reads.  280 

 281 

Figure 10: Flowchart of analysis pipelines for samples that consist of only microbial reads. Five 282 

pipelines (A2-E2) were evaluated and compared for their overall performances. 283 
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 284 

Reference genomes 285 

The hg19 reference genome was obtained from UCSC Genome Bioinformatics, University of 286 

California, Santa Cruz [23]. Due to the very high memory requirement by kallisto, we included 287 

only finished microbial sequences in our reference database based on available species-specific 288 

markers from MetaPhlAn2 for the comparisons between five pipelines [6]. 3508 finished microbial 289 

sequences that made up of  2616 microbial species, including phages, archaea, bacteria and viruses, 290 

were obtained from the NCBI RefSeq database [19] and used in kallisto and Kraken pipelines. For 291 

pipelines that involve the use of markers database, we included only markers that are found in the 292 

3508 finished microbial sequences. Quasi-markers and the set of markers that were excluded by 293 

MetaPhlAn2 were not included in our marker database. A quasi-marker was identified as having 294 

at least one external genome where it maps to. The same set of marker genes were used in our 295 

MetaPhlAn2 pipeline. For the analysis of dataset from iMESS_Illumina simulated Illumina100 296 

[20], we used all species-specific marker genes available at the species level from MetaPhlAn2 as 297 

our first step of analysis. These markers are from 109985 microbial reference sequences (4868 298 

bacterial, viral and fungal species). The subsequent step of building a reduced database (Figure 9 299 

D1 and Figure 10 D2) uses sequences from 109985 fasta entries.  300 

Stool and saliva sequence data from the HPFS cohort 301 

The stool and saliva whole genome shotgun sequencing data from eight healthy HPFS male 302 

participants were obtained from the Sequence Read Archive (accession number: PRJNA188481) 303 

[14]. 304 

Quality Control 305 
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To extract high quality reads, we filtered iMESSi-generated reads and the DNA sequencing reads 306 

from the HPFS cohort using prinseq v0.20.4 [24] with options -min_len 40, -trim_qual_left 10, -307 

trim_qual_right 10, -min_qual_mean 18.  308 

Evaluation of performance  309 

We evaluated the five different classification approaches for their performances in terms of (i) 310 

false discovery rate (total number of species detected that were not in the dataset, out of the total 311 

number of species detected), (ii) sensitivity (total number of species detected, out of the total 312 

number of species truly present), (iii) rate of false negative (number of species that were in the 313 

dataset but not detected, out of the total number of species truly present) (iv) accuracy (correlation 314 

between estimated counts and ‘ground truth’ that is represented by RMSE) (v) memory 315 

requirement, and (vi) runtime.  316 

Statistical analysis 317 

For the analysis of metagenomic data from the HPFS cohort, we used estimated counts from 318 

kallisto to calculate log2CPM using the EdgeR package [25]. The heatmap was generated with 319 

log2CPM.  320 

  321 
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