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We introduce the contextual multi-armed bandit task as a framework to investigate learning
and decision making in uncertain environments. In this novel paradigm, participants repeat-
edly choose between multiple options in order to maximise their rewards. The options are
described by a number of contextual features which are predictive of the rewards through ini-
tially unknown functions. From their experience with choosing options and observing the
consequences of their decisions, participants can learn about the functional relation between
contexts and rewards and improve their decision strategy over time. In three experiments,
we find that participants’ behaviour is surprisingly adaptive to the learning environment. We
model participants’ behaviour by context-blind (mean-tracking, Kalman filter) and contextual
(Gaussian process regression parametrized with different kernels) learning approaches com-
bined with different choice strategies. While participants generally learn about the context-
reward functions, they tend to rely on a local learning strategy which generalizes previous
experience only to highly similar instances. In a relatively simple task with binary features,
they mostly combine this local learning with an “expected improvement” decision strategy
which focuses on alternatives that are expected to improve the most upon a current favourite
option. In a task with continuous features that are linearly related to the rewards, they combine
local learning with a “upper confidence bound” decision strategy that more explicitly balances
exploration and exploitation. Finally, in a difficult learning environment where the relation
between features and rewards is non-linear, most participants learn locally as before, whereas
others regress to more context-blind strategies.
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Introduction

Imagine you recently arrived in a new town and need
to decide where to dine tonight. You have visited a few
restaurants in this town before and while you have a current
favourite, you are convinced there must be a better restau-
rant out there. Should you revisit your current favourite
again tonight, or go to a new one which might be better, but
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might also be worse? This is an example of the exploration-
exploitation dilemma (e.g., Cohen, McClure, & Yu, 2007;
Laureiro-Martínez, Brusoni, & Zollo, 2010; Mehlhorn et al.,
2015): in order to benefit the most, should you exploit your
current but incomplete knowledge to pick an option you think
is best, or should you explore something new and improve
upon your knowledge in order to make better decisions in
the future? While exploration is risky, in this case it is not
blind. Over the years, you have visited many restaurants and
you know for instance that better restaurants generally have
more customers, a good ambiance, and are not overly cheap.
So you walk around town, noting of each restaurant you pass
how busy it is, how nice it looks, the price of the items on the
menu, etc. At the end of a long walk, you finally sit down
in a restaurant; one you never visited before but predicted to
be best based on numerous features such as neighbourhood,
clientéle, price, and so forth.

The exploration-exploitation dilemma tends to be studied
with so-called multi-armed bandit tasks, such as the Iowa

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 14, 2016. ; https://doi.org/10.1101/081091doi: bioRxiv preprint 

https://doi.org/10.1101/081091


2 SCHULZ, KONSTANTINIDIS & SPEEKENBRINK

gambling task (e.g., Bechara, Damasio, Tranel, & Damasio,
2005; Steyvers, Lee, & Wagenmakers, 2009). These are tasks
in which people are faced with a number of options, each
having an associated average reward. Initially, these aver-
age rewards are unknown and people can only learn about
the reward of an option by choosing it. Through experience,
people can learn which are the good options and attempt to
accumulate as much reward as possible over time. However,
as our restaurant example above shows, many real-life situ-
ations are richer than such simple multi-armed bandit tasks.
Options tend to have numerous features (e.g., number of cus-
tomers and menu prices in the restaurant example) which are
predictive of their associated reward. With the addition of
informative features, the decision problem can be termed a
contextual multi-armed bandit (henceforth CMAB; Li, Chu,
Langford, & Schapire, 2010). While these kinds of tasks are
ubiquitous in daily life, they are rarely studied within the psy-
chological literature. This is unfortunate, as CMAB tasks
encompass two important areas of cognition: experience-
based decision making (Barron & Erev, 2003; Hertwig &
Erev, 2009) and function learning (DeLosh, Busemeyer, &
McDaniel, 1997; Kalish, Lewandowsky, & Kruschke, 2004).
Both topics have been studied extensively (see e.g., Newell,
Lagnado, & Shanks, 2015, for an overview), but in isolation.

Learning and decision making within contextual multi-
armed bandit tasks generally requires two things: learning
a function that maps the observed features of options to their
expected rewards and a decision strategy that uses these ex-
pectations to choose between the options. Function learning
in CMAB tasks is important because it allows one to gen-
eralize previous experiences to novel situations. For exam-
ple, it allows one to predict the quality of a new restaurant
from experiences with other restaurants with a similar num-
ber of customers and a similarly priced menu. The decision
strategy is important because not only should you attempt
to choose options that are currently most rewarding, but you
should also take into account how much you can learn in or-
der to make good choices in the future. In other words, you
should take into account the exploration-exploitation trade-
off, where exploration here means learning about the func-
tion that relates features to rewards.

In what follows, we will describe the contextual multi-
armed bandit paradigm in more detail and propose several
models to describe how people may solve these tasks. We
will then assess how participants perform within three differ-
ent variants of a CMAB task. We will show that participants
are able to learn within the CMAB and are best-described
by sensitive exploration-exploitation behaviour that adapts to
the situation at hand and by locally approximating the true
underlying function (Lucas, Griffiths, Williams, & Kalish,
2015; Srinivas, Krause, Kakade, & Seeger, 2009). In sum-
mary, we make the following 3 contributions:

1. We introduce the contextual multi-armed bandit as

a psychological paradigm combining both function
learning and decision making.

2. We model learning behaviour by parametrizing Gaus-
sian Processes with different kernel functions. Gaus-
sian Processes are a powerful tool for regression prob-
lems and generalize important psychological models
previously proposed.

3. We show that participants sensibly choose between
options according to their expectations while locally
learning about the underlying functions.

Contextual multi-armed bandits

A contextual multi-armed bandit task can be formalized
as a game in which on each round, an agent is presented
with a context (a set of features) and a set of options which
each offer an unknown reward. The context can contain gen-
eral features that apply to all options (e.g., the country the
restaurants are in) or specific features that apply to single
options (e.g., the exact menu and its price). The agent’s task
is to choose those arms that will accumulate the highest re-
ward over all rounds of the game. The rewards are stochas-
tic, such that even if the agent had complete knowledge of
the task, a choice would still involve a kind of gamble. In
this respect, choosing an option can be seen as choosing a
slot machine (a one-armed bandit) to play, or choosing an
arm of a multi-armed bandit. After choosing an option in a
round, the agent receives the reward of the chosen option but
is not informed of the rewards that could have been obtained
from the other options. The expected rewards associated to
each option depend on the context through an unknown func-
tion. For an agent who ignores the context, the task would
appear as a restless bandit task (e.g., Speekenbrink & Kon-
stantinidis, 2015), as the rewards associated with an arm will
vary over time due to the changing context. However, learn-
ing the function that maps the context to (expected) rewards
will make these changes in rewards predictable and thereby
choosing the optimal arm easier. In order to choose wisely,
the agent should learn about the underlying function. Some-
times, this may require her to choose an arm which is not
expected to give the highest reward on a particular round, but
one that might provide useful information about the function,
thus choosing to explore rather than to exploit.

Contextual multi-armed bandit tasks provide us with a
scenario in which a participant has to learn a function and
potentially maximize expected outputs of that function over
time by making wise choices. They are a natural extension of
both the classic multi-armed bandit task, which is a CMAB
with an invariant context throughout, and the restless ban-
dit task, which is a CMAB with time as the only contextual
feature. While the CMAB is novel in the psychological lit-
erature, where few tasks explicitly combine function learn-
ing and experience-based decision making, there are certain
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similarities with tasks used in previous research. For exam-
ple, recent studies in experience-based decision-making pro-
vided participants with descriptions about the underlying dis-
tributions that generate rewards (e.g., Lejarraga & Gonzalez,
2011; Weiss-Cohen, Konstantinidis, Speekenbrink, & Har-
vey, 2016). Just as in the CMAB, this presents a naturalis-
tic decision environment in which different sources of infor-
mation (e.g., descriptions and participants’ own experience)
need to be integrated in order to choose between alternatives
or courses of action.

Another related paradigm is multiple cue probability
learning (MCPL, Kruschke & Johansen, 1999; Speekenbrink
& Shanks, 2008) in which participants are shown an array of
cues that are probabilistically related to an outcome and have
to learn the underlying function mapping the cues’ features
to expected outcomes. Especially when the outcome is a cat-
egorical variable, such as in the well-known “Weather Pre-
diction Task” (Gluck, Shohamy, & Myers, 2002; Speeken-
brink, Channon, & Shanks, 2008) where participants predict
the state of the weather (“rainy” or “fine”) based on a set of
“tarot cards”, making a prediction is structurally similar to a
decision between multiple arms (possible predictions) that
are rewarded (correct prediction) or not (incorrect predic-
tion). Just as in the CMAB, multiple-cue probability learn-
ing and probabilistic category learning tasks require people
to learn a function which maps multiple cues or features to
expected outcomes. An important difference however is that
in these latter tasks there is a strong dependency between
the arms: there is only one correct prediction, and hence
there is a perfect (negative) correlation between the rewards
for the arms. Whether a current choice was rewarded or
not thus provides information about whether the non-chosen
arms would have been rewarded. This dependency weakens
the need for exploration, especially when the outcome is bi-
nary, in which case there is no need for exploration at all.
In CMAB tasks, there is more need for exploration as the
rewards associated to arms are, conditional on the context,
generally independent. Knowing that a particular arm was
rewarded does not provide immediate information whether
another arm was rewarded. Another major difference is that
MCPL tasks generally require participants to learn the whole
function. In CMAB tasks, learning the function is only nec-
essary insofar as it helps to make better decisions. To solve
the exploration-exploitation dilemma, it may suffice to learn
the function well only in those regions that promise to pro-
duce high rewards. Moreover, as we will see later, each arm
can be governed by its own function relating context to re-
wards. To our knowledge, simultaneous learning of multiple
functions has not previously been investigated.

Another area of related research comes from the associa-
tive learning literature, where it has been shown that context
can act as an additional cue to maximize reward (cf Bouton &
King, 1983; Gershman, Blei, & Niv, 2010). In one example

of this, Gershman and Niv (2015) showed how the general-
ization of context (the average reward of options in an envi-
ronment) can explain how participants react to novel options
in the same environment, where a context of high rewards
leads to a positive response to novel options, and a context
with low reward rates to low responses to novel options. The
CMAB paradigm introduced here is similar to such tasks but
adds the additional feature of having to learn an underlying
contextual function.

Models of learning and decision making

Formally, the CMAB is a game in which on each round
t = 1, . . . ,T , an agent observes a context st ∈ S from the set
S of possible contexts and has to choose an arm at ∈ A from
the set A of all arms of the multi-armed bandit. Afterwards,
the agent receives a reward

yt = f (st, at) + εt

and it is her task to choose those arms that will produce the
highest accumulated reward R =

∑T
t=1 yt over all rounds. The

function f is initially unknown and can only be inferred from
the reward received after choosing an arm in a particular con-
text.

To perform well in a CMAB task, an agent needs to learn
a model of the function f from experience and use this model
to predict the outcomes of available actions and choose the
arm with the best outcome. We can thus distinguish be-
tween a learning component, formalized as a learning model
which takes previous observations to estimate the outcomes
of a function, and a decision or acquisition component that
uses the learned model to determine the best subsequent de-
cisions. These work together as shown in Algorithm 1 (see
also Brochu, Cora, & De Freitas, 2010).

Algorithm 1 General CMAB-algorithm. A learning model
M tries to learn the underlying function f by mapping
the current expectations and their attached uncertainties to
choices via an acquisition function acq.

Require: A modelM of the function f , an acquisition func-
tion acqM, previous observationsD0 = {∅}

for t = 1, 2, . . . ,T do
Choose arm at = arg maxa∈A acqM (a|st,Dt−1)
Observe reward yt = f (st, at) + εt

Update Augment the data Dt = (at, st,Dt−1) and up-
date the modelM end for

This formalization of an agent’s behaviour requires us to
capture two things: (a) a representation or model M of the
assumed underlying function that maps the given context to
expected outcomes and (b) an acquisition function acqM that
evaluates the utility of choosing each arm based on those
expected outcomes and their attached uncertainties. Here,
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the model defines the learning process and the acquisition
function the way in which outputs of the learned model are
mapped onto choices. In the following, we will describe a
number of instantiations of these two components.

Models of learning

Technically, a function is a mapping from a set of input
values to a set of output values, such that for each input value,
there is a single output value (also called a many-to-one map-
ping as different inputs can provide the same output). Psy-
chological research on how people learn such mappings has
generally followed a paradigm in which participants are pre-
sented with input values and asked to predict the correspond-
ing output value. After their prediction, participants are pre-
sented with the true output value, which is often corrupted by
additional noise. Through this outcome feedback, people are
thought to adjust their internal representation of the under-
lying function. In psychological theories of function learn-
ing, these internal representations are traditionally thought
to be either rule-based or similarity-based. Rule-based the-
ories (e.g., Carroll, 1963; Koh & Meyer, 1991) conjecture
that people learn a function by assuming it belongs to an
explicit parametric family, for example linear, polynomial
or power-law functions. Outcome feedback allows them to
infer the parameters of the function (e.g., the intercept and
slope of a linear function). This approach attributes a rich set
of representations (parametric families) to learning agents,
but tends to ignore how people choose from this set (how
they determine which parametric family to use). Similarity-
based theories (e.g., Busemeyer, Byun, Delosh, & McDaniel,
1997) conjecture that people learn a function by associating
observed input values to their corresponding output values.
When faced with a novel input value, they form a prediction
by relying on the output values associated to input values that
are similar to the novel input value. While this approach is
domain general and does not require people to assume a para-
metric family a priori, similarity-based theories have trouble
explaining how people readily generalize their knowledge to
novel inputs that are highly dissimilar to those previously en-
countered.

Research has indicated that neither approach alone is suf-
ficient to explain human function learning. Both approaches
fail to account adequately for the finding that some functional
forms, such as linear ones, are much easier to learn than
others, such as sinusoidal ones (McDaniel & Busemeyer,
2005). This points towards an initial bias towards linear func-
tions, which can be overcome through sufficient experience.
They also fail to adequately predict how people extrapolate
their knowledge to novel inputs (DeLosh et al., 1997). In
order to overcome some of the aforementioned problems,
hybrid versions of the two approaches have been put for-
ward (McDaniel & Busemeyer, 2005). One such hybrid is
the extrapolation-association model (EXAM, DeLosh et al.,

1997), which assumes a similarity-based representation for
interpolation, but extrapolates using simple linear rules. Al-
though EXAM effectively captures the human bias towards
linearity and predicts human extrapolations over a variety
of relationships, it fails to account for the human capacity
to generate non-linear extrapolations (Bott & Heit, 2004).
The population of linear experts model (POLE, Kalish et al.,
2004) is set apart by its ability to capture knowledge parti-
tioning effects; based on acquired knowledge, different func-
tions can be learned for different parts of the input space.
Beyond that, it demonstrates a similar ordering of error rates
to those of human learners across different tasks (McDaniel,
Dimperio, Griego, & Busemeyer, 2009). Recently, Lucas et
al. (2015) proposed Gaussian process regression as a ratio-
nal approach towards human function learning. Gaussian
process regression is a Bayesian non-parametric approach
which unifies both rule-based and similarity-based theories
of function learning. Instead of assuming one particular
functional form, Gaussian process regression is based on a
model with a potentially infinite number of parameters, but
parsimoniously selects parameters through Bayesian infer-
ence. As shown by Lucas et al., it can explain many of the
previous empirical findings on function learning. Following
this approach, we will conceptualize function learning in a
CMAB as Gaussian process regression. We contrast this with
context-blind learning which tries to directly associate an op-
tion to an expected reward without taking the contextual fea-
tures into account.

Contextual learning through Gaussian process regres-
sion. A Gaussian process (GP) is a stochastic process such
that the marginal distribution of any finite collection of ob-
servations drawn from it is a multivariate Gaussian (see
Rasmussen, 2006). Gaussian process regression is a non-
parametric Bayesian approach (Gershman & Blei, 2012) to-
wards regression problems and can be seen as a “rational”
way to learn functions that adapts its own complexity to the
data encountered (see Griffiths, Lucas, Williams, & Kalish,
2009). In the following, we will assume that the agents learns
a separate function f j(s) that maps contexts s to rewards y
for each arm j. A GP defines a distribution p( f j) over such
functions, parametrized by a mean function m j(s) and a co-
variance function, also called kernel, k j(s, s′):

m j(s) = E
[
f j(s)

]
(1)

k j(s, s′) = E
[
( f j(s) − m j(s))( f j(s′) − m j(s′))

]
(2)

In the following, we will focus on the computations for a
single option and suppress the subscripts j. Suppose we have
collected rewards yt = [y1, y2, . . . , yt]> for arm j in contexts
st = {s1, . . . , st}, and we assume

yt = f (st) + εt εt ∼ N(0, σ2) (3)
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Given a GP prior on the functions

f (s) ∼ GP
(
m(s), k(s, s′)

)
. (4)

the posterior over f is also a GP with

mt(s) = kt(s)>(Kt + σ2I)yt (5)

kt(s, s′) = k(s, s′) − kt(s)>(Kt + σ2I)−1kt(s′) (6)

where kt(s) = [k(s1, s), . . . , k(st, s)]> and Kt is the positive
definite kernel matrix [k(s, s′)]s,s′∈Dt . The posterior variance
can also be computed as

vt(s) = kt(s, s). (7)

This posterior distribution can also be used to derive predic-
tions about each arm’s rewards given the current context, that
are also assumed to be normally distributed.

A key aspect of a GP model is the covariance, or kernel
function k. The choice of a kernel function corresponds to
assumptions about the shape of the true underlying function.
Among other aspects, the kernel determines the smooth-
ness, periodicity, and linearity of the expected functions (c.f.
Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman,
2016). Additionally, the choice of the kernel also deter-
mines the speed at which a GP model can learn over time
(Schulz, Tenenbaum, Reshef, Speekenbrink, & Gershman,
2015). The kernel defines a similarity space over all pos-
sible contexts. As such, a GP can be seen as a similarity-
based (or exemplar) model of function learning. However,
by first mapping the contexts s via the kernel into a “feature
space”, it is possible to rewrite the posterior mean of a GP as
a linear combination of transformed feature values. From a
psychological perspective, a GP model can in this way also
be thought of as encoding “rules” mapping inputs to outputs.

A GP can thus be expressed as both an exemplar
(similarity-based) model and a feature (rule-based) model,
thereby unifying the two dominant classes of function learn-
ing theories in cognitive science (as described in Lucas et al.,
2015).

Different kernels correspond to different psychological as-
sumptions about how people approach function learning. We
will compare 4 different kernels that together span a reason-
able range of these assumptions. By choosing a linear kernel,
the model corresponds directly to Bayesian linear regression.
This kernel thus instantiates a relatively simple rule-based
way of learning the underlying function, assuming it has a
particular parametric shape, namely a linear combination of
the contextual features. On the other side of the spectrum,
an Ornstein-Uhlenbeck process kernel assumes very rough,
unsmooth functions, so that the structure of the underlying
function is effectively learned only very locally to the ob-
servations made. As this kernel hardly generalizes encoun-
tered features to other contexts, this kernel can be seen as in-
stantiating a form of exemplar-based learning combined with

sparse extrapolation. The Mátern kernel is parameterized to
represent an average level of smoothness of the underlying
function. Both the Mátern and Ornstein-Uhlenbeck kernels
can be seen as more general function approximators than the
linear kernel, but they differ in how local their inferences are.
In general, kernels with higher correlations between distant
points expect smoother functions, which means observing
one point provides more information about other points. The
radial basis function kernel (sometimes also called squared
exponential or Gaussian kernel) postulates infinitely smooth
functions and is probably the most frequently used kernel
within the Gaussian process literature. In our setting, each
kernel comes with 2 free parameters, a general scaling pa-
rameter θ1 and a length-scale parameter θ2 which determines
how quickly dependencies diminish as points are further re-
moved. The mathematical details of the 4 kernels, as well
as an illustration of the way in which the 4 different kernels
learn (i.e. update their prior distribution over functions to a
posterior distribution) are provided in Table 1.

Context-blind learning. To assess the extent to which
people take the context into account, we contrast the contex-
tual learning models above with three context-blind learning
models that ignore the features and focus on the average re-
ward (and possibly its attached uncertainty) of each option
over all contexts.

The random model picks each option with the same prob-
ability and constitutes as a simple baseline against which the
other models can be compared.

The Bayesian mean-tracking model assumes that the av-
erage reward associated to each option is constant over time
and simply computes a posterior distribution for the mean µ j

of each option j. Here, we will implement a relatively simple
version of such a model which assumes rewards are normally
distributed with a known variance but unknown mean and the
prior distribution for that mean is again a normal distribution.
This implies that the posterior distribution for each mean is
also a normal distribution:

p(µ j|Dt−1) = N(m j,t, v j,t)

The posterior distribution can be computed through a mean-
stable version of the Kalman Filter, which we will describe
next. Here, the mean m j,t represents the currently expected
outcome for a particular arm j and the variance v j,t represents
the uncertainty attached to that expectation.

Unlike the Bayesian mean tracking model, which com-
putes the posterior distribution of a time-invariant mean µ j

after each new observation, the Kalman filter is a suitable
model for tracking a time-varying mean µ j,t which we here
assume varies over time according to a simple random walk

µ j,t+1 = µ j,t + ζt ζt ∼ N(0, σ2
ζ )

Such a Kalman filter model has been used to successfully de-
scribe participants choices in a restless bandit task (Speeken-
brink & Konstantinidis, 2015) and has also been proposed
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Table 1
Details of the different kernels used to model participants’ learning. Mathematical details of each kernel are provided in the
column labeled “kernel”. Prior samples from each resulting Gaussian process for a one-dimensional input are shown in the
“prior” column. The “posterior” column shows posterior samples of the functions from each Gaussian process after the same
set of 6 observations (dots).

Kernel Prior Posterior

Linear
θ1(s − θ2)(s′ − θ2)

●

●

●

●

●

●

Ornstein-Uhlenbeck
θ1 exp

(
−
|s−s′ |
θ2

) ●

●

●

●

●

●

Mátern 3/2
θ1

(
1 +

√
3|s−s′ |
θ2

)
exp

(
−
√

3|s−s′ |
θ2

) ●

●

●

●

●

●

Radial Basis
θ1 exp

(
−

(s−s′)2

2θ2
2

) ●

●

●

●

●

●

as a model unifying many findings within the literature of
context-free associative learning (Gershman, 2015). The
posterior distribution of the mean is again a normal distri-
bution

p(µ j,t |Dt−1) = N(m j,t, v j,t)

with mean

m j,t = m j,t−1 + δ j,tG j,t[yt − m j,t−1] (8)

where yt is the received reward on trial t and δ j,t = 1 if arm
j was chosen on trial t, and 0 otherwise. The “Kalman gain”
term is computed as

G j,t =
v j,t−1 + σ2

ζ

v j,t−1 + σ2
ζ + σ2

ε

where vk,t, is the variance of the posterior distribution of the
mean µ j,t is computed as

v j,t = [1 − δ j,tG j,t][v j,t−1 + σ2
ζ ] (9)

Prior means and variances were initialized to m j,0 = 0 and
v j,0 = 1000, while the innovation variance σ2

ζ and error vari-
ance σ2

ε were free parameters. The Bayesian mean tracking
model is obtained from the Kalman filter model by setting
the innovation variance to σ2

ζ = 0, implying the underlying
mean is not assumed to change over time.

Decision strategies

As the aforementioned models generate an expectation
given the current context represented by a predictive distri-
bution, we need a decision strategy defining how to choose
among different arms given different estimates of their cur-
rent predictive means and variances. In the psychological lit-
erature, popular decision rules that map current expectations
onto choices are Luce’s choice rule (Luce, 1963) and the ε-
greedy rule (Sutton & Barto, 1998). These are simple rules
that are only based on a single expectation for each option.
In Luce’s choice rule, the probability of choosing an option
is roughly proportional to the current expectations, while the
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ε-greedy rule chooses the maximum-expectancy option with
probability 1 − ε and otherwise chooses with equal proba-
bility between the remaining options. These rules ignore
the uncertainty about the formed expectations, while ratio-
nally, uncertainty should guide exploration. Here, we follow
Speekenbrink and Konstantinidis (2015) and define a rich set
of decision rules that explicitly model how participants trade
off between expectations and uncertainty.

We will consider 4 different strategies to make decisions
in a CMAB task based on the expected outcomes derived
from the above learning models. The mathematical details
of these are given in Table 2. The upper confidence bound
(UCB) algorithm estimates a trade-off between the current
expected value and the variance per option and chooses the
option with the highest upper confidence bound; it has been
shown to perform well in many real world tasks (Krause &
Ong, 2011). The UCB rule has a free parameter c which
determines the width of confidence interval (e.g., setting
c = 1.96 results in a 95% credible set). The UCB-algorithm
can be described as a selection strategy with an exploration
bonus, where the bonus dynamically depends on the con-
fidence interval of the estimated mean reward at each time
point. It is sometimes also referred to as optimistic sampling
as it can be interpreted to inflate expectations with respect
to the upper confidence bounds (Srinivas et al., 2009). We
will approximate the confidence interval for each option by
a 95% credible set based on a normal distribution (so fixing
c = 1.96).

Another decision strategy is the probability of improve-
ment which calculates the probability for each arm to lead
to an outcome higher than the best observed outcome so
far (Kushner, 1964). Intuitively, this algorithm estimates
the probability of one option to generate a higher utility
than another option and has recently been used in exper-
iments involving multi-attribute choices (Gershman, Mal-
maud, Tenenbaum, & Gershman, 2016).

The expected improvement is similar to the probability of
improvement, but calculates the expected increase of out-
comes for each arm compared to the maximum output seen
so far (Mockus, Tiesis, & Zilinskas, 1978).

The fourth decision strategy we consider is the probabil-
ity of maximum utility rule (Speekenbrink & Konstantinidis,
2015). This strategy chooses each arm according to the prob-
ability that it results in the highest reward out of all arms in
a particular context. It can be seen as a form of probabil-
ity matching (Neimark & Shuford, 1959) and can be imple-
mented by sampling from each arm’s predictive distribution
once, and then choosing the arm with the highest sampled
pay-off. Even though this acquisition function seems rel-
atively simplistic at first, it can describe human choices in
restless bandit tasks well (Speekenbrink & Konstantinidis,
2015). It is also closely related to Thompson sampling (May,
Korda, Lee, & Leslie, 2012), which samples from the poste-

rior distribution of the mean rather than the predictive distri-
bution of rewards. Thus, while Thompson sampling “proba-
bility matches” the expected rewards of each arm, the proba-
bility of maximum utility rule matches to actual rewards that
might be obtained.

All of these decision rules (apart from the Probability of
Maximum Utility rule) are essentially deterministic. As par-
ticipants’ decisions are expected to be more noisy reflections
of the decision rule, a softmax-transformation was used to
transform the utilities into probabilities of choice:

p(at = j) =
exp{γ · acq(a = j|st,Dt−1)}∑n
i=1 exp{γ · acq(a = i|st,Dt−1)}

(10)

The temperature parameter γ > 0 governs how consistent
participants choose according to the values generated by
the different kernel-acquisition function combinations. All
free parameters were estimated by numerically maximising
the likelihood of participants’ decisions with the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm.

General CMAB task

In our implementation of the CMAB task, participants are
told that they have to mine for “Emeralds” on different plan-
ets. Moreover, it is explained that –at each time of mining–
the galaxy is described by 3 different environmental factors,
“Mercury”, “Krypton”, and “Nobelium”, that have different
effects on different planets. Participants are then told that
they have to maximize their production of Emeralds over
time by learning how the different environmental factors in-
fluence the planets and choosing the planet they think will
produce the highest outcome in light of the available factors.
Participants were explicitly told that different planets can re-
act differently to specific environmental factors. A screen-
shot of the CMAB can be seen in Figure 1.

Figure 1. Screenshot of experiment.

As each planet responds differently to the contexts, they
can be seen as arms of a bandit that are related to the context
by different functions. The reward an option j provides is
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Table 2
Different acquisition functions used to model participants’ choices. Mathematical details are provided in the column “Acquisi-
tion function”. Here, m∗,t(s) denotes the posterior mean of the function for context s and action ∗ which is the action currently
believed to be optimal. Examples are provided for a problem where each action corresponds to choosing a one-dimensional
input, after which the associated output can be observed. Prior samples from a Radial Basis kernel are shown in the “Prior
(time t)” column. The utility of each potential action according to each acquisition function is shown in the “Acquisition
function” column. After choosing the action with the highest utility and observing the corresponding output, the Gaussian
process is updated and used as a prior at the next time. Samples from this posterior are shown in the final column.

Acquisition function (acq(a = i|st,Dt−1)) Prior (time t) acq(x)k Prior (time t + 1)

Upper Confidence Bound:

m j,t(st) + c
√
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given as

y j,t = f (at = j, st) = f j(st) + ε j,t

with ε j,t ∼ N(0, 5). The task consists of 150 trials in which a
random context is drawn and participants choose a planet to
mine on. Which planet corresponded to which reward func-
tion f j was determined at random before the start of the ex-
periment.

The three experiments we present differed in the functions
f j and whether the environmental factors were binary or con-
tinuous. This is specified in more detail when describing the
experiments. Source code for all experiments is available
online.1

Experiment 1 : CMAB with binary cues

The goal of the first experiment was to test whether partic-
ipants can learn to make good decisions in a CMAB task. For
this purpose, we set up a relatively simple contextual bandit
scenario in which the contexts consist of binary features.

Participants

Forty-seven participants (26 male) with an average age of
31.9 years (S D = 8.2) were recruited via Amazon Mechan-
ical Turk and received $0.3 plus a performance-dependent
bonus of up to $0.5 as a reward.

1https://github.com/ericschulz/contextualbandits
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Task

There were four different arms that could be played. In
addition, three discrete variables, si,t, i = 1, 2, 3, were intro-
duced as the general context. The three variables defining the
contexts could either be on (si,t = 1) or off (si,t = −1). The
outcomes of the four arms were dependent on the context as
follows:

f1(st) = 50 + 15 × s1,t − 15 × s2,t

f2(st) = 50 + 15 × s2,t − 15 × s3,t

f3(st) = 50 + 15 × s3,t − 15 × s1,t

f4(st) = 50

On each trial, the probability that a contextual feature was
on or off was set to p(si,t = 1) = p(si,t = −1) = 0.5.
The functions f j were deliberately designed such that the
expected reward of each arm over all possible contexts is
E[y j,t] = 50. This means that the only way to gain higher
rewards than the average of 50 is by learning how the con-
textual features influence the rewards. More formally, this
means that no arm achieves first-order stochastic dominance.
Moreover, by including the context-independent fourth arm
that returns the mean with added noise helps us to distinguish
even further between learning and not learning the context:
this arm has the same expected value as all the other arms
but a lower variance and therefore second-order dominates
the other arms. As such, a context-blind learner would be
expected to prefer this arm over time.

Procedure

As described above, participants were told that they had
to mine for “Emeralds” on different planets. Moreover, it
was explained that at each time each of the 3 different en-
vironmental factors could either be on (+) or off (-) and had
different effects on different planets. Participants were told
that they had to maximize the overall production of Emeralds
over time by learning how the different elements influence
the planets and then picking the planet they thought would
produce the highest outcome, given the status (on or off) of
the elements. It was explicitly noted that different planets
can react differently to different elements. There were a total
number of 150 trials.

Results

Behavioral results. Participants learned to take the con-
text into account and gained 66.78 points (SD=13.02) on av-
erage throughout the task. Average scores of participants
were significantly above the chance level of 50, as confirmed
by a one-sample t-test, t(46) = 7.17, p < 0.01.

Over time, participants made increasingly better choices
(see Figure 2a), as indicated by a significant correlation be-
tween the average score (over participants) and trial number,

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●●

●

r=0.74, p<0.01

40

50

60

70

80

0 50 100 150

Trial

M
ea

n

Outcomes over time

(a) Average scores per round.

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

r=0.−0.22, p<0.05

0.0

0.1

0.2

0.3

0.4

0 50 100 150

Trial

M
ea

n

Proportion of 4th arm

(b) Proportion of 4th arm.
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Figure 2. Average overall score (a), mean score per round
(c), and proportion of best arm chosen per round (c) for the
binary CMAB task.

r = 0.74, p < 0.01. The proportion of participants choosing
the non-contextual option (the option that did not respond
to any of the contextual features, indicated as the 4th arm)
decreased over time (r = −0.22, p < 0.05, Figure 2b), an-
other indicator that participants learned the underlying func-
tions. Finally, the proportion of participants choosing the
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best option for the current context increased during the task
(r = 0.72, p < 0.01, see Figure 2a).

Modelling results. To determine which combination of
learning model and an acquisition function best captures par-
ticipants’ choices, we focus on three indicators of model fit.
For each participant and model, we computed Akaike’s “An
Information Criterion” (AIC, Akaike, 1974), which penalizes
model fit by model complexity. Lower AIC values indicate
better model performance. For each model, we also counted
the number of participants best-described by the model ac-
cording to the AIC. Finally, we computed the “protected
exceedance probability” (Rigoux, Stephan, Friston, & Dau-
nizeau, 2014) for each model. This measure assumes that
each model occurs with some frequency in the population of
all participants and defines the protected exceedance proba-
bility as the probability that a particular model is more fre-
quent than all the other models, whilst accounting for the
possibility that there are truly no differences between the
models in their frequency of occurrence.2 The results are
shown in Figure 3.

Overall, the best performing model was a GP learning
model with the Ornstein-Uhlenbeck kernel paired with ex-
pected improvement as decision rule. This combination had
the lowest average AIC (297), a protected probability that
it is the most frequent model of p = 0.24, and described
n = 6 participants best overall. Other models which de-
scribed participants’ behaviour well incorporated the same
decision strategy, but used a Mátern 3/2 (mean AIC 298,
n = 5, p = 0.18) or Radial Basis kernel (mean AIC 298,
n = 6, p = 0.16). We can assess the performance of
the learning models and acquisition functions separately by
computing the marginal protected probability of exceedance.
Marginalizing over over all acquisition functions, the Mátern
3/2 kernel was most likely to be the most frequent learn-
ing model (p = 0.32), followed by the Ornstein-Uhlenbeck
kernel (p = 0.26). Marginalizing over all learning models,
showed that the expected improvement is by far most likely
to be the most frequent decision rule (p = 0.61).

The Ornstein-Uhlenbeck, and to a somewhat lesser extent
the Mátern 3/2 kernel, assume relatively unsmooth functions.
As a result, there seems to be only relatively sparse general-
ization from observations in one context to similar other con-
texts. The results of our cognitive modelling exercise thus
imply that people learn rather locally and may have relied
on a special form of exemplar learning combined with sparse
extrapolation, effectively memorizing for each context and
arm the observed rewards and averaging these to come to
an estimate of the expected reward. By using an Expected
Improvement decision strategy, they would compare the arm
with the highest averaged rewards in a particular context to
relatively unknown arms in that context, determining how
probable these are to provide a higher reward and the mag-
nitude of this improvement. This is in agreement with prior

findings in more simple multi-attribute choice tasks (for ex-
ample, Carroll & De Soete, 1991).

Experiment 2: Continuous-Linear CMAB

Experiment 1 indicated that people may have relied on
a very local, exemplar-like learning strategy. As that ex-
periment contained only 8 unique contexts, a memorization
strategy is feasible. The goal of the second experiment was
to assess whether such local learning extends to a situation
with more unique contexts. In Experiment 2, we used the
same task but with continuous rather than discrete features to
comprise the contexts and a linear relation between contexts
and rewards.

Participants

Fifty-nine participants (30 male) with a mean age of 32.4
(SD=7.8) were recruited via Amazon Mechanical Turk and
received $0.3 as a basic reward and a performance-dependent
bonus of up to $0.5.

Task and Procedure

The task was identical to that of Experiment 1, only this
time the context contained continuous features with an un-
derlying linear function mapping inputs to outputs:

f1(st) = 50 + 3 × s1,t − 3 × s2,t

f2(st) = 50 + 3 × s2,t − 3 × s3,t

f3(st) = 50 + 3 × s3,t − 3 × s1,t

f4(st) = 50

The values of the context variables s j,t were described nu-
merically and sampled randomly from a uniform distribu-
tion s j,t ∼ U(−10, 10). Again, the expected value (over all
contexts) for each planet was 50, so there was no first-order
stochastically dominating arm, while the fourth arm achieved
second-order stochastic dominance as the variance of its re-
wards was the lowest.

Results

Behavioral results. As in Experiment 1, participants
were able to take the context into account. The average
obtained reward across participants was 59.84 (SD = 9.41),
significantly higher than chance, t(58) = 7.17, p < 0.01.
However, two participants scored significantly less than ex-
pected even at chance level assessed by a simple t-test and
were therefore excluded from the following analysis.

2To estimate this probability, we first estimated the log-evidence
of each model by a Laplace approximation (based on the determi-
nant of the Hessian matrix computed in the BFGS-optimization),
and then used these as the likelihood of each model in the hierar-
chical Bayesian model of Stephan, Penny, Daunizeau, Moran, and
Friston (2009); (see also Gershman, 2016).
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Figure 3. Results of model comparison for CMAB with binary cues when accounted for random model (mean AIC=415.89, 0
participants explained best, exceedance probability=0). Results were standardized to fit on one scale.

Performance increased over trials, r = 0.39, p < 0.01,
although this was not as pronounced as in Experiment 1 (see
Figure 4a).

The proportion of participants choosing the fourth arm did
not decrease over time (r = 0.05, p > 0.05). Notice however
that in this scenario with higher input variance (caused by
more diverse input-output pairs), it can happen that the fourth
option turns out to be the best option overall. The proportion
of choosing the best option given the context significantly
increased over trials (r = 0.33, p < 0.01, see Figure 4c).

Modelling results. Modelling results are shown in Fig-
ure 5. The best model of participants’ behaviour overall com-
bined a GP learning strategy with an Ornstein-Uhlenbeck
kernel with the Upper Confidence Bound decision strategy
(mean AIC = 371, number of best fitting participants n = 15,
protected exceedance probability p = 0.44). As in Experi-
ment 1, this indicates that participants learned only locally

combined with sparse extrapolations. However, in making
their decisions, they balanced exploration and exploitation
more explicitly by directly weighting the expected rewards
and the associated uncertainty of different arms. Compared
to Experiment 1, more participants were described well by
the a context-blind Kalman Filter learning strategy, com-
bined with an Expected Improvement (mean AIC = 387,
n = 11, p = 0.28). This may be due to the increased dif-
ficulty of the task, which made memorization of rewards for
each context less feasible, and may have moved a number
of participants to give up on learning the relation between
contexts and rewards.

Marginalizing the protected probability of exceedance
over all acquisition functions showed that the Kalman filter
(p = 0.53) and the GP with an Orstein-Uhlenbeck kernel
(p = 0.47) were the two mostly applied learning strategies
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Figure 4. Average overall score (a), mean score per round
(c), and proportion of best arm chosen per round (c) for the
continuous-linear CMAB task.

overall. Again, this shows that most participants learned very
locally only or relied on a context-blind strategy. Marginal-
izing over the learning models showed that the UCB is by far
the best acquisition function (p = 0.45).

Experiment 3: Continuous-Non-Linear CMAB

The previous experiments showed that many people were
able to learn how a general multi-feature context differen-
tially affects the rewards associated to decision alternatives.
The goal of the third experiment was to investigate whether
this would still be the case in an even more complex situation
where the contexts consist of continuous features which are
non-linearly related to the rewards associated to the arms. In
order to cover a wide range of non-linearities, the functions
relating contexts to rewards were themselves sampled from a
Gaussian process prior.

Participants

60 participants (28 female) with a mean age of 29
(SD=8.2) were recruited via Amazon Mechanical Turk and
received $0.3 as a basic reward and a performance-dependent
reward of up to $0.5.

Task and Procedure

The task was identical to that of Experiment 2, apart from
the functions mapping inputs to outputs, which were drawn
from a Gaussian process prior:

f1(st) = 50 + f1(s1,t, s2,t)
f2(st) = 50 + f2(s2,t, s3,t)
f3(st) = 50 + f3(s3,t, s1,t)
f4(st) = 50

f j ∼ GP(µ,Σ), j = 1, . . . , 3

where the kernel used to sample the functions from was a
Radial Basis kernel with a length-scale of θ2 = 2.

As in Experiment 2, the features were described numeri-
cally and could take values between -10 and 10. These val-
ues were determined at random and sampled from a uniform
distribution si,t ∼ U(−10, 10). As before, the average expec-
tation for all planets was 50 and the variance for the fourth
arm was the lowest.

The procedure was identical to the one of Experiment 2.

Results

Behavioral results. On average, participants obtained
rewards of 55.35 (SD = 6.33), which is again above chance
level, t(59) = 5.85, p < 0.01. 8 participants performed worse
than expected by chance level and were therefore excluded
from the following analysis.

Average scores increased significantly over trials, r =

0.19, p < 0.01 (see Figure 6b), although the correlation was
smaller than in Experiment 2, which might be due to the in-
crease in difficulty of the task.

The proportion of participants choosing the best option
given the current context increased over trials, r = 0.12,
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Figure 5. Results of model comparison for CMAB with continuous-linear cues when accounted for random model (mean
AIC=415.89, 0 participants explained best, exceedance probability=0). Results were standardized to fit on one scale.

p < 0.05, but less marked than in the previous experi-
ments (see Figure 6c). The proportion of choosing the non-
contextual arm did again not significantly decrease over time,
r = 0.04, p > 0.05. In a non-linear scenario, it might make
even more sense for both contextual and context-free learn-
ing strategies to choose the 4th arm as it generates the mean
output almost certainly.

Modelling results. Modelling results are shown in Fig-
ure 7. It can be seen that two models describe participants’
behavior well. The best performing model combines the
Ornstein-Uhlenbeck kernel with a Upper Confidence bound
decision strategy. This model has a mean AIC of 377, de-
scribes n = 10 participants best, and has a protected probabil-
ity of exceedance of p = .69. The next best model combines
the context-free Kalman Filter with a Probability of maxi-
mum utility acquisition function. This model has a mean
AIC of 379, also describes n = 10 participants best, but has

a lower protected probability of exceedance of p = 0.24.
As this last experiment required participants to learn three
different non-linear functions, it might have been too diffi-
cult for some participants to learn the functions, so that they
reversed back to learning in a purely context-free manner.
Those who were able to learn contextually again only do
so very locally and combined this with a decision strategy
which explicitly trades off mean expectations and their un-
certainties. Marginalizing over the acquisition functions or
learning models in this scenarios shows the same results as
the individual analysis above as there really were only two
models describing participants’ behaviour well.

Discussion and Conclusion

We have introduced the contextual multi-armed bandit
(CMAB) task as a paradigm to investigate behaviour in situa-
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Figure 6. Average overall score (a), mean score per round
(c), and proportion of best arm chosen per round (c) for the
continuous-non-linear CMAB task.

tions where participants have to learn functions and simulta-
neously make decisions according to the predictions of those
functions. The CMAB is a natural extension of past research
on learning in multi-armed bandit tasks as well as research
on function learning. In three experiments, we assessed peo-
ple’s performance in a CMAB task where a general context

affected the rewards of options differently (i.e., each option
had a different function relating contexts to rewards). Even
though learning multiple functions simultaneously is likely
to be more complex than learning a single function (as is
common in previous studies on function learning and multi-
ple cue probability learning), on average, participants were
able to perform better than expected if they were unable to
take the contexts into account. This was even the case in
a rather complex situation where the functions were drawn
from a general class of non-linear function, although perfor-
mance dropped here compared to a simpler situation with
linear functions.

In an environment where the contexts were defined by bi-
nary features, participants’ learning appeared to be mostly
locally-focused, relying on a universal learning strategy that
matches a Gaussian process regression with an Ornstein-
Uhlenbeck kernel. In basing their decisions on the learned
functions, they appeared to rely on a strategy in which they
focus on the expected improvement over past outcomes. In
an environment with continuous contextual features which
are linearly related to rewards, this picture changed some-
what; while participants again seemed to learn locally, here
they appeared to trade-off their expectations and uncertain-
ties more explicitly (best described by an Upper Confidence
Bound acquisition function). In an environment involving
non-linear functions sampled from a Gaussian Process prior,
we again found that most learners were best-described as lo-
cally learning the functions and mapping their expectations
to choices by explicitly balancing expected rewards and their
uncertainties. However, this task was more difficult and a
proportion of participants appeared unable to learn the func-
tions, performing more in line with a context-blind learning
strategy (Kalman filter) that treats the task as a restless bandit
in which the expected rewards fluctuate over time but where
these fluctuations are not predictable from the changes in
context. The combination of a Kalman filter learning model
with a “probability of maximum utility” decision strategy
that described these participants best has been found to de-
scribe participants behaviour well in an actual restless bandit
task Speekenbrink and Konstantinidis (2015).

Modelling function learning as Gaussian process regres-
sion allowed us to incorporate both rule-based and similarity-
based learning in one framework. We found that most par-
ticipants appeared to rely on an Ornstein-Uhlenbeck ker-
nel, which assumes very unsmooth functions and generalizes
only very locally from previous observations to similar con-
texts. This is close to a combination of exemplar learning, in
which past observations are memorized and averaged when
making new predictions, and sparse, similarity-based extrap-
olation. Such a memorization strategy is plausible when
the number of unique contexts is relatively small. How-
ever, this kernel (as well as the Matérn 3/2 kernel, which as-
sumes slightly smoother functions) also captured contextual
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Figure 7. Results of model comparison for CMAB with continuous-non-linear cues when accounted for random model (mean
AIC=415.89, 4 participants explained best, exceedance probability=0). Results were standardized to fit on one scale.

learners in experiments where the contexts were defined by
continuous features and there were thus many more unique
contexts. While previous research on function learning has
found a strong bias towards linear functions in such environ-
ments (e.g., Lucas et al., 2015), we did not find such a bias in
the present experiments. This could be due to the increased
complexity of learning multiple functions simultaneously, or
due to participants’ learning the functions with the purpose
of making good decisions, rather than to accurately predict-
ing the outcomes as such. While good performance in stan-
dard function learning experiments requires accurate knowl-
edge of a function in its whole domain, more course-grained
knowledge may suffice in our CMAB task, where it suffices
to know which function has the maximum output for a given
context. Although the true functions relating contexts to re-
wards were smoother than those assumed by an Ornstein-

Uhlenbeck kernel, approaching the task with a relatively un-
smooth kernel may be wise when there is uncertainty about
the level of smoothness in the environment. Assuming un-
smooth functions and learning in a situation of smoother than
expected functions will lead to smaller mismatched learning
errors than the other way around, that is, expecting smooth
functions and having to learn in unsmooth environments (see
Sollich, 2001).

When making decisions based on their functional knowl-
edge, participants appear to adapt their strategy to the task at
hand. They seem to try and improve upon past outcomes
within a relatively simple scenario with binary contextual
features, while they trade off between expectations and their
uncertainties more explicitly as the environment gets more
complicated.

When there are few unique and distinct contexts, it might
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be possible to memorize the average outcomes for those con-
texts, such that trying to maximally improve upon the current
best option may be a feasible and efficient strategy. As the
learning environment becomes more complex, a strategy that
incorporates exploration more explicitly might be needed.
Upper confidence bound sampling is not only the only acqui-
sition function with provable good regret (Srinivas, Krause,
Kakade, & Seeger, 2012), but it has also been proposed as
a dynamic shaping bonus within the exploratory choice lit-
erature before (Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006).

The present experiments focused on a general context
which differentially affected the outcomes of options. Fu-
ture studies utilizing the CMAB paradigm could incorporate
contextual features which are option-specific (e.g., the type
of restaurant) as well as general features (e.g., the area in
which the restaurants are located), possibly allowing these to
interact (e.g., a seafood restaurant might be preferable to a
pizzeria in a fishing village, but not a mountain village).

To make the task more true to real-life decision situations,
future research could adapt the reward functions to incorpo-
rate costs of taking actions or obtaining poor outcomes (see
Schulz, Huys, Bach, Speekenbrink, & Krause, 2016). Re-
search utilizing the CMAB paradigm also has the potential
to be applied to more practical settings, for example military
decision making, clinical gambling, or financial investment
scenarios, to name just a few examples of decision making
that normally involve both learning a function and making
decisions based on expected outcomes. In general, we be-
lieve that incorporating context into models of reinforcement
learning and decision making provides a fruitful avenue for
future research.
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