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Background: In order to manage bacterial infections in hospitals in the face of an-
tibiotic resistance, the two treatment protocols “mixing” and “cycling” have received
considerable attention both from modelers and clinicians. However, the terms are not
used in exactly the same way by both groups.

Objectives: We aim to investigate a model that comes closer to clinical practice and
compare the predictions to the standard model.

Methods: We set up two deterministic models, implemented as a set of differential
equations, for the spread of bacterial infections in a hospital. Following the traditional
approach, the first model takes a population-based perspective. The second model, in
contrast, takes the drug use of individual patients into account.

Results: The alternative model can indeed lead to different predictions than the stan-
dard model. We provide examples for which in the new model, the opposite strategy
maximizes the number of uninfected patients or minimizes the rate of spread of double
resistance.

Conclusions: While the traditional models provide valuable insight, care is needed in
the interpretation of results.
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Introduction

With bacteria evolving resistance, potent drugs turn ineffective against bacterial infections.
Evolution of resistance to a single antibiotic is often rapid, calling for treatment strategies
that involve the employment of more than one drug. Besides the simultaneous prescription
of a combination of antibiotics to a single patient, several antibiotics belonging to different
classes can be used across a community in order to manage the spread of resistance at a
population level. This is particularly feasible within a hospital, where drug usage can be
controlled and coordinated. Two generic strategies — cycling and mixing of antibiotics —
have attracted considerable attention for the phase of empirical therapy.!® With cycling,
drug A and drug B get alternated. With mixing, one half of all patients receive drug A
and the other half drug B. Both strategies increase heterogeneity in selection. Assessing
the usefulness of these control measures by means of clinical trials is crucial but inherently
difficult. While the number of empirical studies is increasing, the overall picture remains in-
conclusive.* ® Mathematical models therefore remain a helpful tool in understanding which
strategy is more promising.>2 %17 Following Bonhoeffer et al. (1997),! a tradition has estab-
lished of how mixing and cycling are modeled mathematically (for exceptions, see Kouyos et
al. (2011)'3 and Abel zur Wiesch et al. (2014)'%). Tt turns out that the verbal description of
this implementation is easily misinterpreted. In particular, it differs from empirical practice.

The overall modeling approach taken in all studies is a type of epidemic model with trans-
mission between patients, where infected patients are divided up into several compartments
according to the infecting bacterial strain. The traditional implementation of treatment pro-
tocols neglects the dynamics that arise if the perspective of individual patients is taken into
account. For cycling, this means that when the time for a switch of the drug has come, a
patient who is already treated gets switched to another antibiotic rather than that the new
drug is only applied to newly infecteds. For mixing, it means that in every compartment at
any time, one half of all patients are treated with drug A and the other half with drug B.
Importantly, this is not the same as prescribing a random drug to every patient upon infec-
tion. To see this, imagine a patient who is infected with a bacterial strain resistant to drug
A. Drug B successfully suppresses the infection, leading to a fast recovery. In contrast, drug
A is ineffective and the patient recovers slowly. As a consequence, the fraction of patients
that get treated with drug A among all those that are infected with an A-resistant strain
quickly rises to more than 50% even if newly infecteds have a 50-50 chance to get treated
with drug B. The common modeling approach probably comes closest to a situation where
at every drug intake, patients take a random drug (although this would have effects at the
within-host level that are not captured by the models).

In this article, we set up an alternative model where cycling and mixing refer to the indi-
vidual antibiotic prescription. We demonstrate by means of examples that this can lead to
qualitatively different predictions.
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Methods

We use a model for the spread of bacterial infections in a hospital that is based on a mix
of the models in Bonhoeffer et al. (1997) and Bergstrom et al. (2004).1:2 Patients can be
uninfected or infected with one of four bacterial strains and can either be already infected at
hospitalization or acquire the infection from other patients within the hospital. Resistance
can be brought into the hospital from the outside or arise de-novo.

We denote the number of uninfected individuals by X. Patients that are infected by the sen-
sitive or a resistant strain are denoted by S and R,, respectively, and the subscript indicates
to which antibiotic(s) the strain is resistant. Patients enter the hospital at a total rate of
niot it and leave at a per-capita rate of pu independently of infectious status. In other words,
the model assumes that the infection does not increase mortality, and that the infection is
not the cause for the hospitalization. m, is the fraction of incoming patients for the respec-
tive compartment. The transmission probability between uninfecteds and infected patients
carrying the sensitive strain is given by . The transmission probability is reduced by a
factor (1 —c¢,) for infection with a resistant strain; this accounts for a cost of resistance. If a
patient infected with a strain sensitive to the currently applied drug gets infected by a resis-
tant strain, the resistant strain can replace the sensitive strain. This happens with a lower
probability than infection of an uncolonized patient (reduction by a factor ). Independently
of treatment, the immune response of patients leads to recovery at rate . Treatment with
a working drug leads to recovery at rate 7. Finally, bacteria can evolve resistance. During
treatment with drug A /B, resistance evolves at rate v4 /vg. Additionally, the sensitive strain
becomes resistant to both drugs within a single step at rate v4p.

In the traditional model, a fraction y4 is treated with drug A and a fraction 1 — x4 with
drug B in every compartment at any time. Overall, we obtain the following set of differential
equations:
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o = Mot — wS — (v +71)8 — (xava + (1 —xa)ve +vap) S+ BSX
—xa0(1 —ca)BSRa — (1 —xa)o(l —cp)BSRp — (1 — cap)oBSRaB,
dR A
= MATot — uRA —(v+ (1 —xa)T)Ra — (1 — xa)vBRA + (1 —ca)RaX + xavaS+ xaoB(1 —ca)SRa

+oB{xa(l —ca)— (1 —xa)(1—cp)} RaRp — (1 — xa)oB(1 —cap)RaRaB,

dR
TtB =mpniotph — uRp — (Y + xa7)Rp — xavallp + B(1 —cp)RpX + (1 — xa)vpS+ (1 — xa)oB(1 —cp)SRp D

—0oB{xa(l—ca)—(1—-xa)(1—-cB)} RARB — xa0B(1 —caB)RBRAB,

dR
d?B = mapntotpt — pRAB — YRAB +vaBS + (1 — xa)vBRA + xavaRp + (1 — cap)RapX
+0B8(1 —cap)oSRap + (1 —xa)oB(1 —cap)RaRap + xa08(1 —cap)RRasg,
dX
e (1-mg—ma —mp—map)ntotpt — pX + (v +7)S — BSX + (v + (1 — xa)7)Ra

—pB(1 —ca)RaX + (v +xaT)Rp — B(1 —c)RpX +vRap — (1 — cap)RapX.

For the alternative model, we split up the compartments S, R4, and Rp according to the
treatment that patients receive.'®!® The drug is indicated by a superscript. E.g. Rff)
denotes the number of all patients that are infected by a strain resistant to drug A and that
are treated with drug A. x4 is now the fraction of patients who receive drug A throughout
the entire course of their therapy. This yields:
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2)

We numerically integrate Eq. (1) and Eq. (2) using Mathematica version 10.4.1.0 (Wolfram
Research, Champaign, USA). Integration in R version 3.2.3 using the deSolve package only
yields unimportant differences.

Results and Discussion

We consider two complementary scenarios.
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Absence of double resistance. The de-novo emergence of resistance within the hospital
can be neglected (v4 = vg = vap = 0), and no double resistant cases are admitted to
the hospital (map = 0). This corresponds to the situation considered in Bergstrom et al.
(2004)% and we use the same parameter set; cf. also the similar “Case IT1I” in Bonhoeffer et
al. (1997).! We assess the success of the respective strategy by the number of uninfected
patients (Figure 1). For both strategies, the number of uninfected patients is lower in the
alternative than in the traditional model, since the latter essentially exposes a fraction of
patients to both drugs during the course of treatment. Figure 1C shows that in the standard
model, cycling performs worse than mixing for all cycling periods,? whilst in the alternative
model, we find an optimal cycling frequency around which cycling is slightly better than
mixing (cf. also Panels A and B). In this regime, a large fraction of new infections is caused
by patients who get still treated with the previous drug and carry the corresponding resistant
strain; these new infections are now successfully treated. A similar result as in Figure 1C
has been found before in a more complex model, where it was attributed to drug adjustment
in case of resistance.!®

De-novo emergence of resistance within the hospital. There is no influx of patients
harbouring resistant bacteria (m4 = mp = map = 0), and all resistance emerges de-novo
within the hospital (cf. “Case II” in Bonhoeffer et al. (1997)'). We now consider the spread
of double resistance. The picture is essentially the reverse of the medal from the previous
paragraph. In the new model, the number of patients infected by a single resistant strain
rises to high numbers under the mixing strategy since patients that get treated with an
ineffective drug only recover very slowly. At the same time, the colonizing strain is not
confronted with the other drug until a new patient gets infected and treated with the second
drug. The selection pressure for the double resistant strain is hence low and the spread of
double resistance is delayed compared to the standard model (cf. upper and lower Panels
in Figure 2). The dynamics under cycling converge to those under mixing for rapid cycling
(Figure 2C and F). For slow cycling, the spread of double resistance in the two models is
more similar (Panels A and D). For intermediate cycling (Panels B and E), the prediction
under which treatment strategy the double resistant strain spreads faster gets reversed.

Conclusions. The terms “mixing” and “cycling” do not refer to the same protocol in
mathematical standard models and in clinical practice, the former neglecting the behavior
of individual patients. In large parts of the parameter space, the results from the standard
model and the alternative model that comes closer to the real-life implementation are qual-
itatively — and sometimes even quantitatively — similar. However, the examples given in
this article show that they can also lead to different conclusions, e.g. with the new model,
the number of uninfected patients can be lower under cycling than under mixing, where the
standard model predicts the opposite. Given such important discrepancies, it seems to be
time to be more critical about the established model simplification.
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Figure 1: Panels A+B: Number of uninfected patients as a function of time. For cycling,
the drug is switched after 30 days. Panel C: Average number of uninfected patients in one
cycling period after the transient behavior has decayed. In the standard model, mixing
outperforms cycling for all cycling frequencies. In the alternative model, conversely, cycling
outcompetes mixing by a small margin for intermediate cycling. Parameters: n; = 100,
mo = 0.7, my = mgo = 0.05, mg =0. p=0.1~v=0.03 7=0.25, va = vg = vap = 0,
o0 =0.01,ca = cg = cap =0, 8 = 0.01 (see Figure 3 in Bergstrom et al. (2004)?). The initial
frequencies are given by the equilibrium frequencies in the absence of treatment, Xy ~ 4,
50%78, RA:RB:9, RABZO.
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Figure 2: Number of patients infected with the double resistant strain, R4p, as a function of
time. For slow cycling (drug switch after 180 days), double resistance spreads more rapidly
under mixing than under cycling in both models. For rapid cycling (drug switch after 3 days),
the dynamics under the two strategies converge (In Panel C, the lines are indistinguishable).
For intermediate cycling (drug switch after 60 days), the predictions of the models differ.
While double resistance spreads more rapidly under mixing in the standard model, it spreads
more rapidly under cycling in the alternative model. Parameters: ny; = 100, my = 0.5,
mi=my =msg =0, p=0.05~7=0.027=05 vy =vg =105 vig = 1073, o0 = 0.01,
cy =cg = 0.1, cyp = 0.2, 8 = 0.01. The initial frequencies are given by the equilibrium
frequencies in the absence of treatment, Xy ~ 4, Sy ~ 96, Ry = Rg = Rap = 0.
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