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Summary:	During	realistic,	continuous	perception,	humans	automatically	segment	experiences	into	6	

discrete	events.	Using	a	novel	model	of	neural	event	dynamics,	we	investigate	how	cortical	structures	7	

generate	event	representations	during	continuous	narratives,	and	how	these	events	are	stored	and	8	

retrieved	from	long-term	memory.	Our	data-driven	approach	enables	identification	of	event	boundaries	9	

and	event	correspondences	across	datasets	without	human-generated	stimulus	annotations,	and	10	

reveals	that	different	regions	segment	narratives	at	different	timescales.	We	also	provide	the	first	direct	11	

evidence	that	narrative	event	boundaries	in	high-order	areas	(overlapping	the	default	mode	network)	12	

trigger	encoding	processes	in	the	hippocampus,	and	that	this	encoding	activity	predicts	pattern	13	

reinstatement	during	recall.	Finally,	we	demonstrate	that	these	areas	represent	abstract,	multimodal	14	

situation	models,	and	show	anticipatory	event	reinstatement	as	subjects	listen	to	a	familiar	narrative.	15	

Our	results	provide	strong	evidence	that	brain	activity	is	naturally	structured	into	semantically	16	

meaningful	events,	which	are	stored	in	and	retrieved	from	long-term	memory.	17	

	 	18	
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Introduction	19	

Typically,	perception	and	memory	are	studied	in	the	context	of	discrete	pictures	or	words.	Real-life	20	

experience,	however,	consists	of	a	continuous	stream	of	perceptual	stimuli.	The	brain	therefore	needs	21	

to	structure	experience	into	units	that	can	be	understood	and	remembered:		“the	meaningful	segments	22	

of	one’s	life,	the	coherent	units	of	one’s	personal	history”	(Beal	&	Weiss,	2013).	Although	this	question	23	

was	first	investigated	decades	ago	(Newtson,	Engquist,	&	Bois,	1977),	a	general	“event	segmentation	24	

theory”	was	only	proposed	recently	(Zacks,	Speer,	Swallow,	Braver,	&	Reynolds,	2007).	These	and	other	25	

authors	have	argued	that	humans	implicitly	generate	event	boundaries	whenever	the	world	changes	in	a	26	

surprising	way,	or	when	consecutive	stimuli	have	distinct	temporal	associations	(Schapiro,	Rogers,	27	

Cordova,	Turk-Browne,	&	Botvinick,	2013).		28	

Two	critical	dimensions	of	event	representations	have	not	yet	been	deeply	explored.	First,	events	can	be	29	

defined	at	multiple	timescales.	When	reading	a	story,	we	could	chunk	it	into	discrete	units	of	individual	30	

words,	sentences,	paragraphs,	or	chapters,	and	may	need	to	chunk	information	on	multiple	timescales	31	

in	parallel.	A	recent	theory	of	cortical	information	processing	argues	for	a	distributed	topographical	32	

hierarchy	of	timescales,	from	short	processing	timescales	(10s	to	100s	of	milliseconds)	in	early	sensory	33	

regions	to	long	processing	timescales	(10s	to	100s	of	seconds)	in	higher-order	areas	(broadly	34	

overlapping	the	default	mode	network)	(Hasson,	Chen,	&	Honey,	2015).	In	this	view,	“events”	in	low-35	

level	sensory	cortex	(e.g.	hearing	a	single	word)	(VanRullen,	2016)	are	progressively	integrated	into	the	36	

minutes-long	events	typically	reported	by	human	observers.	37	

Second,	how	are	real-life	experiences	encoded	into	long-term	memory?	Behavioral	experiments	and	38	

mathematical	models	have	argued	that	long-term	memory	reflects	event	structure	during	encoding	39	

(Ezzyat	&	Davachi,	2011;	Gershman,	Radulescu,	Norman,	&	Niv,	2014;	Sargent	et	al.,	2013;	Zacks,	40	

Tversky,	&	Iyer,	2001),	suggesting	that	the	event	segments	generated	during	perception	may	serve	as	41	
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the	“episodes”	of	episodic	memory.	The	well-accepted	idea	that	the	hippocampus	stores	“snapshots”	of	42	

cortical	activity	has	been	developed	with	discrete	memoranda	(Danker,	Tompary,	&	Davachi,	2016),	for	43	

which	it	is	obvious	when	snapshots	should	be	taken	and	what	information	they	should	contain.	44	

However,	during	a	continuous	stream	of	information	in	a	real-life	context,	it	is	not	at	all	clear	at	which	45	

timescale	(e.g.	words,	sentences,	situations)	snapshots	should	be	taken,	and	whether	these	snapshots	46	

should	be	continuously	updated	during	events	or	encoded	only	after	an	event	has	completed.	47	

We	propose	that	the	full	life	cycle	of	an	event,	from	construction	to	long-term	storage,	can	be	described	48	

in	a	unified	theory,	illustrated	in	Fig.	1.	Each	brain	region	along	the	processing	hierarchy	segments	49	

information	at	its	preferred	timescale,	beginning	with	short	events	in	primary	visual	and	auditory	cortex	50	

and	building	to	multimodal,	abstract	representations	of	the	features	of	the	current	event	(“situation	51	

models”,	Zwaan	&	Radvansky,	1998)	in	long-timescale	areas,	including	default	mode	regions	such	as	the	52	

angular	gyrus	and	posterior	medial	cortex.	At	event	boundaries	in	long-timescale	areas,	the	situation	53	

model	is	transmitted	to	the	hippocampus,	which	can	later	reinstate	the	situation	model	in	long	54	

timescale	regions	during	recall,	and	facilitate	recognition	of	similar	events	in	the	future.	This	theory	55	

makes	the	following	predictions:	1)	Events	should	be	identifiable	at	different	timescales	throughout	the	56	

processing	timescale	hierarchy,	with	segmentation	into	short	events	in	early	sensory	areas	and	57	

integration	into	longer	events	in	high-order	areas.	2)	Event	boundaries	annotated	by	human	observers	58	

should	be	most	related	to	neural	event	boundaries	in	long	timescale	regions.	3)	The	end	of	an	event	in	59	

long	timescale	cortical	regions	should	trigger	the	hippocampus	to	encode	information	about	the	just-60	

concluded	event	into	episodic	memory.	4)	Stored	event	memories	can	be	reinstated	in	long	timescale	61	

cortical	regions	during	recall,	with	stronger	reinstatement	for	more	strongly-encoded	events.	5)	Neural	62	

patterns	in	long	timescale	regions	correspond	to	abstract	situation	models,	which	represent	the	features	63	

of	the	situation	regardless	of	the	way	that	the	situation	is	described	(e.g.	a	movie	or	a	verbal	narrative).	64	
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6)	Prior	memory	for	a	narrative	should	influence	the	processing	of	future	events,	leading	to	anticipatory	65	

reinstatement	in	long	timescale	regions.	66	

Testing	this	kind	of	integrated	theory	is	beyond	the	reach	of	existing	approaches	that	rely	on	human	67	

annotators	to	segment	events.	It	requires	identifying	how	different	brain	areas	segment	events	(possibly	68	

at	different	timescales),	and	aligning	events	across	different	datasets	with	different	timings	(e.g.	to	see	69	

whether	the	same	“situation	model”	is	being	elicited	by	a	movie	vs.	a	verbal	narrative,	or	a	movie	vs.	70	

later	recall).		Stimulus-based	annotations	also	cannot	address	questions	such	as	anticipatory	71	

reinstatement,	in	which	an	identical	stimulus	generates	different	event	segmentations	in	different	72	

observers	(depending	on	their	prior	experience).	Thus,	to	search	for	the	neural	correlates	of	event	73	

segmentation,	we	have	developed	a	new	data-driven	analysis	method	that	allows	us	to	identify	events	74	

directly	from	neural	activity	patterns,	across	multiple	timescales	and	datasets.	75	

Our	analysis	approach	(summarized	here,	and	described	in	detail	in	the	Materials	and	Methods)	starts	76	

with	two	simple	assumptions:	1)	while	processing	a	particular	narrative	stimulus,	observers	progress	77	

through	a	particular	sequence	of	discrete	event	representations	(hidden	states),	and	2)	each	event	has	a	78	

distinct	(observable)	signature	(a	multi-voxel	fMRI	pattern)	that	is	present	throughout	the	event.	We	79	

implement	these	assumptions	using	a	variant	of	a	Hidden	Markov	Model	(HMM).	Fitting	the	model	to	80	

fMRI	data	(e.g.	while	watching	a	movie)	entails	simultaneously	estimating	when	the	transitions	between	81	

events	occur	and	also	the	mean	neural	pattern	for	each	event.	The	optimal	number	of	events	is	selected	82	

by	sweeping	over	a	range	of	values	and	maximizing	the	fit	on	held-out	data.	When	applying	the	model	83	

to	multiple	datasets	that	express	the	same	narrative	(e.g.	while	watching	a	movie	and	during	later	verbal	84	

recall),	the	model	is	constrained	to	find	the	same	sequence	of	patterns	(because	the	events	are	the	85	

same),	but	the	timing	of	the	transitions	between	the	patterns	can	vary	(e.g.	since	the	spoken	description	86	

of	the	events	might	not	take	as	long	as	the	original	events).	For	example,	if	the	number	of	events	is	set	87	

to	10,	the	model	will	attempt	to	explain	both	datasets	in	terms	of	one	multi-voxel	pattern	transitioning	88	
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to	a	second	and	then	a	third,	and	so	forth,	where	these	ten	patterns	are	common	to	both	datasets,	but	89	

exactly	when	the	patterns	switch	can	vary	across	data	sets.	90	

This	model	allows	us	to	test	the	six	predictions	of	our	unified	theory	described	above,	following	events	91	

from	their	initial	perception	in	sensory	cortex	to	their	incorporation	into	long-term	memory.	Our	results	92	

provide	the	first	direct	evidence	that	brain	activity	during	realistic	experiences	is	naturally	structured	93	

into	segmented	events	across	multiple	timescales,	that	event	representations	in	high-order	areas	at	the	94	

top	of	the	processing	hierarchy	contain	high-level	semantic	situation	descriptions,	and	that	these	high-95	

level	events	are	discretely	encoded	by	long-term	memory	structures.	 	96	
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	97	

Figure	1:	Theory	of	event	segmentation	and	memory.	(1)	During	perception,	events	are	constructed	at	98	

a	hierarchy	of	timescales,	with	short	events	in	early	sensory	regions	(including	primary	visual	cortex	and	99	

primary	auditory	cortex)	and	long	events	in	high-level	regions	(including	default	mode	regions	such	as	100	

angular	gyrus	and	posterior	medial	cortex).	(2)	Putative	event	boundaries	identified	by	human	observers	101	

should	correspond	most	closely	to	long	timescale	events	near	the	top	of	the	hierarchy.	(3)	At	the	end	of	102	

a	high-level	event,	the	situation	model	is	stored	into	long-term	memory,	resulting	in	post-boundary	103	

encoding	activity	in	the	hippocampus.	(4)	Episodic	event	memories	can	be	reinstated	into	high-level	104	

cortical	regions	during	recall.	(5)	Since	situation	models	are	abstract	semantic	descriptions,	the	same	105	

sequence	of	high-level	events	can	be	activated	by	multiple	input	modalities	if	they	describe	the	same	106	

story.	(6)	Prior	event	memories	can	also	influence	ongoing	processing,	facilitating	prediction	of	107	

upcoming	events	in	related	narratives.	We	test	each	of	these	hypotheses	using	a	data-driven	event	108	

segmentation	model,	which	can	automatically	identify	transitions	in	neural	activity	patterns	and	detect	109	

correspondences	in	activity	patterns	across	datasets.	 	110	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081018doi: bioRxiv preprint 

https://doi.org/10.1101/081018
http://creativecommons.org/licenses/by-nc-nd/4.0/


7	
	

Results	111	

All	of	our	analyses	are	carried	out	using	our	new	HMM-based	event	segmentation	model	(summarized	112	

above,	and	described	in	detail	in	the	Event	Segmentation	Model	subsection	of	Materials	and	Methods),	113	

which	can	automatically	discover	the	neural	signatures	of	each	event	and	its	temporal	boundaries	in	a	114	

particular	dataset.	We	validated	this	model	using	both	synthetic	data	(Supp.	Fig.	1)	and	narrative	data	115	

with	clear	event	breaks	between	stories	(Supp.	Fig.	2),	confirming	that	we	could	accurately	recover	the	116	

number	of	event	boundaries	and	their	locations	(see	Materials	and	Methods).	We	then	applied	the	117	

model	to	test	six	predictions	of	our	theory	of	event	perception	and	memory.	 	118	
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Timescales	of	cortical	event	segmentation	119	

The	first	prediction	of	our	theory	is	that	“events	should	be	identifiable	at	different	timescales	120	

throughout	the	processing	timescale	hierarchy,	with	segmentation	into	short	events	in	early	sensory	121	

areas	and	integration	into	longer	events	in	high-order	areas.”	We	measured	the	extent	to	which	122	

continuous	stimuli	evoked	the	event	structure	hypothesized	by	our	model	(periods	with	stable	event	123	

patterns	punctuated	by	shifts	between	events),	and	whether	the	timescales	of	these	events	varied	along	124	

the	cortical	hierarchy.	We	tested	the	model	by	fitting	it	to	fMRI	data	collected	while	subjects	watched	a	125	

50-minute	movie	(Chen,	Leong,	Norman,	&	Hasson,	2016),	and	then	assessing	how	well	the	learned	126	

event	structure	explained	the	activity	patterns	of	a	held-out	subject	(by	comparing	within-event	vs.	127	

across-event	pattern	similarity,	with	larger	within-	vs.	across-event	similarity	indicating	better	model	fit).	128	

Note	that	previous	analyses	of	this	dataset	have	shown	that	the	evoked	activity	is	similar	across	129	

subjects,	justifying	an	across-subjects	design	(Chen,	Leong,	et	al.,	2016).		We	found	that	essentially	all	130	

brain	regions	that	responded	consistently	to	the	movie	(across	subjects)	showed	evidence	for	event-like	131	

structure,	and	that	the	optimal	number	of	events	varied	across	the	cortex	(Fig.	2).	Sensory	regions	like	132	

visual	cortex	showed	faster	transitions	between	stable	activity	patterns,	while	higher-level	regions	like	133	

the	precuneus	had	activity	patterns	that	often	remained	constant	for	over	a	minute	before	transitioning	134	

to	a	new	stable	pattern	(see	Fig.	2	insets).	This	topography	of	event	timescales	is	broadly	consistent	with	135	

that	found	in	previous	work	(Hasson	et	al.,	2015)	measuring	sensitivity	to	temporal	scrambling	of	a	136	

movie	stimulus	(see	Supp.	Fig.	3).	 	137	
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	138	

	139	

Figure	2:	Event	segmentation	model	for	movie-watching	data	reveals	event	timescales.	The	event	140	

segmentation	model	identifies	temporally-clustered	structure	in	movie-watching	data	throughout	all	141	

regions	of	cortex	with	high	intersubject	correlation.	The	optimal	number	of	events	varied	by	an	order	of	142	

magnitude	across	different	regions,	with	a	large	number	of	short	events	in	sensory	cortex	and	a	small	143	

number	of	long	events	in	high-level	cortex.	For	example,	the	timepoint	correlation	matrix	for	a	region	in	144	

the	precuneus	exhibited	coarse	blocks	of	correlated	patterns,	leading	to	model	fits	with	a	small	number	145	

of	events	(white	squares),	while	a	region	in	visual	cortex	was	best	modeled	with	a	larger	number	of	146	

short	events	(note	that	only	~3	minutes	of	the	50	minute	stimulus	are	shown).	The	searchlight	is	masked	147	

to	include	only	regions	with	intersubject	correlation	>	0.25,	and	voxelwise	thresholded	for	greater	148	

within-	than	across-event	similarity,	q<0.001.	149	

	 	150	
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Comparison	to	human-labeled	event	boundaries	151	

Our	second	prediction	is	that	“event	boundaries	annotated	by	human	observers	should	be	most	related	152	

to	neural	event	boundaries	in	long	timescale	regions.”	We	asked	four	independent	raters	to	divide	the	153	

movie	into	“scenes”	based	on	major	shifts	in	the	narrative	(such	as	in	location,	topic,	or	time).	The	154	

number	of	event	boundaries	identified	by	the	observers	varied	between	36	and	64,	but	the	boundaries	155	

had	a	significant	amount	of	overlap,	with	an	average	pairwise	Dice’s	coefficient	of	0.63	and	20	event	156	

boundaries	that	were	labeled	by	all	four	raters.		We	then	measured,	for	each	brain	searchlight,	what	157	

fraction	of	its	neurally-defined	boundaries	were	close	to	(within	three	timepoints	of)	a	human-labeled	158	

event	boundary.	As	shown	in	Fig.	3,	this	revealed	a	gradient	from	early	sensory	cortex	to	high-level	long	159	

timescale	regions.	Early	auditory	and	visual	cortex	exhibited	many	neural	boundaries,	some	near	160	

boundaries	marked	by	a	human	observer	but	also	at	many	other	times	during	the	movie,	likely	due	to	161	

shifts	in	low-level	(but	not	high-level)	features.	In	long	timescale	regions,	such	as	angular	gyrus	and	162	

especially	posterior	medial	cortex,	a	majority	of	the	neurally-identified	event	boundaries	corresponded	163	

with	a	boundary	marked	by	a	human	observer.		 	164	
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	165	

Figure	3:	Neural	event	boundaries	match	human-labeled	event	boundaries,	especially	in	posterior	166	

medial	cortex.	Comparing	the	event	boundaries	identified	by	the	model	to	human-labeled	event	167	

boundaries,	we	find	that	similarity	increases	as	we	move	from	sensory	regions	to	high-level	regions.	The	168	

plot	on	the	right	compares	human-labeled	event	boundaries	from	all	four	human	observers	to	neural	169	

event	boundaries	for	three	example	searchlights	(for	several	minutes	of	the	movie).	Early	sensory	170	

regions	such	as	V1	produce	a	large	number	of	boundaries	that	are	not	strongly	predictive	of	a	human-171	

labeled	event.	Long	timescale	regions,	including	angular	gyrus	and	especially	in	superior	parietal	and	172	

posterior	medial	cortex,	have	a	majority	of	their	event	boundaries	near	human-labeled	boundaries.	The	173	

searchlight	is	masked	to	include	only	regions	with	intersubject	correlation	>	0.25.	174	

	 	175	
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Relationship	between	cortical	event	boundaries	and	hippocampal	encoding	176	

The	third	prediction	of	our	theory	is	that	“the	end	of	an	event	in	long	timescale	cortical	regions	should	177	

trigger	the	hippocampus	to	encode	information	about	the	just-concluded	event	into	episodic	memory.”	178	

Prior	work	has	shown	that	the	end	of	a	video	clip	is	associated	with	increased	hippocampal	activity,	and	179	

the	magnitude	of	the	activity	predicts	later	memory	(Ben-Yakov	&	Dudai,	2011;	Ben-Yakov,	Eshel,	&	180	

Dudai,	2013).	These	experiments,	however,	have	used	only	isolated	short	video	clips	with	clear	181	

transitions	between	events.	Do	neurally-defined	event	boundaries	in	a	continuous	movie,	evoked	by	182	

subtler	transitions	between	related	scenes,	generate	the	same	kind	of	hippocampal	signature?	Using	a	183	

searchlight	procedure,	we	identified	event	boundaries	with	the	HMM	segmentation	model	for	each	184	

cortical	area	across	the	timescale	hierarchy.	We	then	computed	the	average	hippocampal	activity	185	

around	the	event	boundaries	of	each	cortical	area,	to	determine	whether	a	cortical	boundary	tended	to	186	

trigger	a	hippocampal	response.	We	found	that	event	boundaries	in	a	distributed	set	of	long	(but	not	187	

short)	timescale	regions	(including	posterior	cingulate	cortex	and	bilateral	angular	gyrus)	all	showed	a	188	

strong	relationship	to	hippocampal	activity,	with	the	hippocampal	response	typically	peaking	within	189	

several	timepoints	after	the	event	boundary	(Fig.	4).	 	190	
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	191	

Figure	4:	Hippocampal	activity	increases	at	cortically-defined	event	boundaries.		To	determine	whether	192	

event	boundaries	may	be	related	to	long-term	memory	encoding,	we	identify	event	boundaries	based	193	

on	a	cortical	region	and	then	measure	hippocampal	activity	around	those	boundaries.	In	a	set	of	high-194	

level	regions	(including	bilateral	angular	gyrus)	we	find	that	event	boundaries	in	these	regions	robustly	195	

predict	increases	in	hippocampal	activity,	which	tends	to	peak	just	after	the	event	boundary.	The	196	

searchlight	is	masked	to	include	only	regions	with	intersubject	correlation	>	0.25,	and	voxelwise	197	

thresholded	for	post-boundary	hippocampal	activity	greater	than	pre-boundary	activity,	q<0.001.	198	

	 	199	
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Reinstatement	of	event	patterns	during	free	recall	200	

We	then	tested	our	fourth	prediction,	that	“stored	event	memories	can	be	reinstated	in	long	timescale	201	

cortical	regions	during	recall,	with	stronger	reinstatement	for	more	strongly-encoded	events.”	After	202	

watching	the	movie,	all	subjects	in	this	dataset	were	asked	to	retell	the	story	they	had	just	watched	203	

(without	any	cues	or	stimulus).	We	focused	our	analyses	on	the	high-level	regions	that	showed	a	strong	204	

relationship	with	hippocampal	activity	in	the	previous	analysis	(posterior	cingulate	and	angular	gyrus),	as	205	

well	as	early	auditory	cortex	for	comparison.	206	

Using	the	event	segmentation	model,	we	first	estimated	the	(group-average)	series	of	event-specific	207	

neural	patterns	evoked	by	the	movie,	and	then	attempted	to	segment	each	subject’s	recall	data	into	208	

corresponding	events.	When	fitting	the	model	to	the	recall	data,	we	assumed	that	the	same	event-209	

specific	neural	patterns	seen	during	the	movie-viewing	will	be	reinstated	during	the	spoken	recall.	210	

Analyzing	the	spoken	recall	transcriptions	revealed	that	subjects	generally	recalled	the	events	in	the	211	

same	order	as	they	appeared	in	the	movie	(see	table	S1	in	Chen,	Leong,	et	al.,	2016).	Therefore,	the	212	

model	was	constrained	to	use	the	same	order	of	multi-voxel	event	patterns	for	recall	that	it	had	learned	213	

from	the	movie-watching	data.	However,	crucially,	the	model	was	allowed	to	learn	different	event	214	

timings	for	the	recall	data	compared	to	the	movie	data	–	this	allowed	us	to	accommodate	the	fact	that	215	

event	durations	differed	for	free	recall	vs.	movie-watching.		216	

For	each	subject,	the	model	attempted	to	find	a	shared	sequence	of	latent	event	patterns	that	was	217	

shared	between	the	movie	and	recall,	as	shown	in	the	example	with	25	events	in	Fig.	5a.	Compared	to	218	

the	null	hypothesis	that	there	was	no	shared	event	order	between	the	movie	and	recall,	we	found	219	

significant	model	fits	in	both	the	posterior	cingulate	(p=0.015)	and	the	angular	gyrus	(p=0.002),	but	not	220	

in	low-level	auditory	cortex	(p=0.277)	(Fig.	5b).	This	result	demonstrates	that	we	can	identify	shared	221	
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temporal	structure	between	perception	and	recall	without	any	human	annotations.	A	similar	pattern	of	222	

results	can	be	found	regardless	of	the	number	of	latent	events	used	(see	Supp.	Fig	4).	223	

We	then	assessed	whether	the	hippocampal	response	evoked	by	the	end	of	an	event	during	the	224	

encoding	of	the	movie	to	memory	was	predictive	of	the	length	of	time	for	which	the	event	was	strongly	225	

reactivated	during	recall.	As	shown	in	Fig.	5c-d,	we	found	that	encoding	activity	and	event	reactivation	226	

were	positively	correlated	in	both	angular	gyrus	(r=0.362,	p=0.002)	and	the	posterior	cingulate	(r=0.312,	227	

p=0.042),	but	not	early	auditory	cortex	(r=0.080,	p=0.333).	Note	that	there	was	no	relationship	between	228	

the	hippocampal	activity	at	the	starting	boundary	of	an	event	and	that	event’s	later	recall	in	the	angular	229	

gyrus	(r=-0.119,	p=0.867;	difference	from	ending	boundary	correlation	p=0.004)	and	only	a	weak,	230	

nonsignificant	relationship	in	posterior	cingulate	(r=0.189,	p=0.113;	difference	from	ending	boundary	231	

correlation	p=0.274).	232	

233	
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	234	

Figure	5:	Movie-watching	events	are	reactivated	during	individual	free	recall,	and	reactivation	is	235	

related	to	hippocampal	activation	at	encoding	event	boundaries.	(a)	We	can	obtain	an	estimated	236	

correspondence	between	movie-watching	data	and	free-recall	data	in	individual	subjects	by	identifying	237	

a	shared	sequence	of	event	patterns,	shown	here	for	an	example	subject	using	data	from	posterior	238	

cingulate	cortex.	(b)	For	each	region	of	interest,	we	tested	whether	the	movie	and	recall	data	shared	an	239	

ordered	sequence	of	latent	events	(relative	to	a	null	model	in	which	the	order	of	events	was	shuffled	240	

between	movie	and	recall).	We	found	that	both	angular	gyrus	(blue)	and	posterior	cingulate	cortex	241	

(green)	showed	significant	reactivation	of	event	patterns,	while	early	auditory	cortex	(red)	did	not.	(c-d)	242	

Events	whose	offset	drove	a	strong	hippocampal	response	during	encoding	(movie-watching)	were	243	

strongly	reactivated	for	longer	fractions	of	the	recall	period,	both	in	the	angular	gyrus	and	the	posterior	244	

cingulate.	Error	bars	for	event	points	denote	s.e.m.	across	subjects,	and	error	bars	on	the	best-fit	line	245	

indicate	95%	confidence	intervals	from	bootstrapped	best-fit	lines.	 	246	
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Shared	event	structure	across	modalities	247	

Our	fifth	hypothesis	is	that	“neural	patterns	in	long	timescale	regions	correspond	to	abstract	situation	248	

models,	which	represent	the	features	of	the	situation	regardless	of	the	way	that	the	situation	is	249	

described	(e.g.	a	movie	or	a	verbal	narrative).”	We	tested	this	hypothesis	using	a	separate	dataset	250	

(Zadbood,	Chen,	Leong,	Norman,	&	Hasson,	2016),	in	which	some	subjects	watched	a	movie	(the	first	24	251	

minutes	of	Sherlock)	while	other	subjects	listened	to	an	18-minute	audio	narration	describing	the	events	252	

that	occurred	in	the	movie.	For	each	cortical	searchlight,	we	first	segmented	the	movie	data	into	events,	253	

and	then	tested	whether	this	same	sequence	of	events	from	the	movie-watching	subjects	was	present	in	254	

the	audio-narration	subjects.	High-level	cortical	regions	with	long	processing	timescales	including	the	255	

angular	gyrus	and	posterior	medial	cortex	showed	a	strongly	significant	correspondence	between	the	256	

two	modalities,	indicating	that	a	similar	sequence	of	event	patterns	was	evoked	by	the	movie	and	audio	257	

narration	(Fig.	6),	irrespective	of	the	modality	used	to	describe	the	events.	In	contrast,	though	low-level	258	

auditory	cortex	was	reliably	activated	by	both	of	these	stimuli,	there	was	no	above-chance	similarity	259	

between	the	series	of	activity	patterns	evoked	by	the	two	stimuli	(movie	vs.	verbal	description),	260	

presumably	because	the	low	level	auditory	features	of	the	two	stimuli	were	markedly	different.	261	

		 	262	
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	263	

Figure	6:	Movie-watching	model	generalizes	to	audio	narration	in	high-level	cortex.	After	identifying	a	264	

series	of	event	patterns	in	a	group	of	subjects	who	watched	a	movie,	we	tested	whether	this	same	series	265	

of	events	occurred	in	a	separate	group	of	subjects	who	heard	an	audio	narration	of	the	same	story.	The	266	

movie	and	audio	stimuli	were	not	synchronized	and	differed	in	their	duration.	We	restricted	our	267	

searchlight	to	voxels	that	responded	to	both	the	movie	and	audio	stimuli	(having	high	ISC	within	each	268	

group).	Movie-watching	event	patterns	in	early	auditory	cortex	(dotted	line)	did	not	generalize	to	the	269	

activity	evoked	by	audio	narration,	while	regions	including	the	angular	gyrus	and	posterior	medial	cortex	270	

exhibited	shared	event	structure	across	the	two	stimulus	modalities.	The	searchlight	is	masked	to	271	

include	only	regions	with	intersubject	correlation	>	0.1	in	all	conditions,	and	voxelwise	thresholded	for	272	

above-chance	movie-audio	fit,	q<10-5.	273	

	 	274	
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Anticipatory	reinstatement	for	a	familiar	narrative	275	

Finally,	we	tested	our	sixth	prediction,	that	“prior	memory	for	a	narrative	should	influence	the	276	

processing	of	future	events,	leading	to	anticipatory	reinstatement	in	long	timescale	regions.”	Our	277	

analyses	so	far	have	examined	data	on	perception	or	on	memory,	but	in	everyday	life	we	draw	on	these	278	

two	functions	simultaneously.	Our	ongoing	interpretation	of	events	can	be	influenced	by	prior	279	

knowledge;	specifically,	if	subjects	listening	to	the	audio	version	of	a	narrative	had	already	seen	the	280	

movie	version,	they	may	anticipate	upcoming	events	compared	to	subjects	experiencing	the	narrative	281	

for	the	first	time.	Detecting	this	kind	of	anticipation	has	not	been	possible	with	previous	approaches	that	282	

rely	on	stimulus	annotations,	since	the	difference	between	the	two	groups	is	not	in	the	stimulus	(which	283	

is	identical)	but	rather	in	the	temporal	dynamics	of	their	cognitive	processes.	284	

We	can	fit	our	event	segmentation	model	to	the	three	conditions	(watching	the	movie,	listening	to	the	285	

narration	with	memory,	and	listening	to	the	narration	without	memory)	simultaneously,	looking	for	the	286	

same	sequence	of	event	patterns	in	all	three	cases	(with	varying	event	boundaries).	By	analyzing	which	287	

timepoints	(across	the	three	conditions)	were	assigned	to	the	same	event,	we	can	generate	a	timepoint	288	

correspondence	indicating	–	for	each	timepoint	during	the	audio	narration	datasets	–	which	timepoints	289	

of	the	movie	are	most	strongly	evoked	(on	average)	in	the	mind	of	the	listeners.	290	

We	searched	for	cortical	regions	along	the	hierarchy	of	timescale	showing	anticipation,	in	which	this	291	

correspondence	for	the	memory	group	was	consistently	ahead	of	the	correspondence	for	the	no-292	

memory	group	(relative	to	chance).	As	shown	in	Fig.	7,	we	found	anticipatory	event	reinstatement	in	293	

several	high-level	regions	with	long	processing	timescales,	including	the	angular	gyrus	and	posterior	294	

medial	cortex,	with	the	largest	leading	effects	in	the	medial	frontal	cortex.	Examining	the	movie-audio	295	

correspondences	in	these	regions,	the	memory	group	was	consistently	ahead	of	the	no-memory	group,	296	

indicating	that	for	a	given	timepoint	of	the	audio	narration	the	memory	group	had	event	297	

representations	that	corresponded	to	later	timepoints	in	the	movie.	 	298	
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	299	

Figure	7:	Prior	memory	shifts	movie-audio	correspondence.	The	event	segmentation	model	was	fit	300	

simultaneously	to	a	data	from	a	group	watching	the	movie,	the	same	group	listening	to	the	audio	301	

narration	after	having	seen	the	movie	(“memory”),	and	a	separate	group	listening	to	the	audio	narration	302	

for	the	first	time	(“no	memory”).	By	examining	which	timepoints	were	estimated	to	fall	within	the	same	303	

latent	event,	we	obtained	a	correspondence	between	timepoints	in	the	audio	data	(for	both	groups)	and	304	

timepoints	in	the	movie	data.	We	found	that	the	correspondence	in	both	groups	was	close	to	the	305	

human-labeled	correspondence	between	the	movie	and	audio	stimuli	(black	boxes).	In	some	regions,	306	

however,	the	memory	correspondence	(orange)	significantly	led	the	non-memory	correspondence	307	

(blue),	with	events	from	the	movie	appearing	slightly	earlier	for	the	memory	group	(indicated	by	an	308	

upward	shift	on	the	correspondence	plots)	despite	the	stimuli	for	the	two	groups	being	identical.	This	309	

suggests	that	cortical	regions	of	the	memory	group	were	anticipating	events	in	the	narration	based	on	310	

knowledge	of	the	movie,	with	the	anticipation	effect	increasing	from	posterior	to	anterior	regions.	The	311	

searchlight	is	masked	to	include	only	regions	with	intersubject	correlation	>	0.1	in	all	conditions,	and	312	

voxelwise	thresholded	for	above-chance	differences	between	memory	and	no	memory	groups,	q<0.05.	 	313	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081018doi: bioRxiv preprint 

https://doi.org/10.1101/081018
http://creativecommons.org/licenses/by-nc-nd/4.0/


21	
	

Discussion	314	

Using	a	data-driven	event	segmentation	model	that	can	identify	temporal	structure	directly	from	neural	315	

measurements,	we	found	that	activity	patterns	in	cortical	regions	including	posterior	medial	cortex	and	316	

the	angular	gyrus	process	narratives	as	a	sequence	of	high-level	semantic	events.		Although	narratives	317	

evoke	rapid	shifts	between	stable	activity	patterns	in	many	cortical	regions	along	the	timescale	318	

hierarchy,	only	these	high-level	regions	have	event	representations	that	are	closely	related	to	human	319	

annotations,	predict	hippocampal	encoding,	are	reactivated	during	recall,	generalize	across	modalities,	320	

and	show	anticipatory	coding	for	familiar	narratives.	321	

Event	segmentation	theory	322	

Our	results	are	the	first	to	demonstrate	a	number	of	key	predictions	of	event	segmentation	theory	323	

(Zacks	et	al.,	2007)	directly	from	neural	data	of	naturalistic	narratives,	without	using	specially-324	

constructed	stimuli	or	subjective	labeling	of	where	events	should	start	and	end.	Previous	work	has	325	

shown	that	hand-labeled	event	boundaries	are	associated	with	univariate	activity	increases	in	a	network	326	

of	regions	overlapping	our	high-level	areas	(Ezzyat	&	Davachi,	2011;	Speer,	Zacks,	&	Reynolds,	2007;	327	

Swallow	et	al.,	2011;	Whitney	et	al.,	2009;	Zacks,	Braver,	et	al.,	2001;	Zacks,	Speer,	Swallow,	&	Maley,	328	

2010),	but	by	modeling	fine-scale	spatial	activity	patterns	we	were	able	to	detect	these	event	changes	329	

without	an	external	reference.	This	allowed	us	to	identify	regions	with	temporal	event	structures	at	330	

many	different	timescales,	only	some	of	which	matched	human-labeled	boundaries.	Other	analyses	of	331	

these	datasets	also	found	reactivation	during	recall	(Chen,	Leong,	et	al.,	2016)	and	shared	event	332	

structure	across	modalities	(Zadbood	et	al.,	2016);	however,	because	these	other	analyses	defined	333	

events	based	on	the	narrative	rather	than	brain	activity,	they	were	unable	to	identify	differences	in	334	

event	segmentation	across	brain	areas	or	across	groups	with	different	prior	knowledge.	335	
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Timescales	of	perception	336	

The	topography	of	event	timescales	revealed	by	our	analysis	provides	converging	evidence	for	an	337	

emerging	view	of	how	information	is	processed	during	real-life	experience	(Hasson	et	al.,	2015).	The	338	

“process	memory	framework”	argues	that	perceptual	stimuli	are	integrated	across	longer	and	longer	339	

timescales	along	a	hierarchy	from	early	sensory	regions	to	regions	in	the	default	mode	network.	Using	a	340	

variety	of	experimental	approaches,	including	fMRI,	electrocorticography	(ECoG),	and	single-unit	341	

recording,	this	topography	has	previously	been	mapped	either	by	temporally	scrambling	the	stimulus	at	342	

different	timescales	to	see	which	regions’	responses	are	disrupted	(Hasson,	Yang,	Vallines,	Heeger,	&	343	

Rubin,	2008;	Honey	et	al.,	2012;	Lerner,	Honey,	Silbert,	&	Hasson,	2011)	or	by	examining	the	power	344	

spectrum	of	intrinsic	dynamics	within	each	region	(Honey	et	al.,	2012;	Murray	et	al.,	2014;	Stephens,	345	

Honey,	&	Hasson,	2013).	Our	model	and	results	add	to	these	findings,	by	suggesting	that	all	processing	346	

regions	exhibit	fast	changes	at	event	boundaries,	but	that	these	fast	changes	are	much	less	frequent	in	347	

long-timescale	regions	which	accumulate	and	synthesize	information	at	the	situation	model	level,	since	348	

they	experience	large	updates	only	when	the	high-level	situation	model	changes.	349	

Interactions	between	long	timescale	cortical	regions	and	the	hippocampus	350	

Several	long-timescale	regions,	including	posterior	cingulate	cortex	and	the	angular	gyrus,	showed	351	

effects	across	many	of	our	independent	analyses.	These	areas	are	involved	in	high-level	scene	352	

processing	tasks	involving	memory	and	navigation	(Baldassano,	Esteva,	Beck,	&	Fei-Fei,	2016),	are	part	353	

of	the	“general	recollection	network”	with	strong	anatomical	and	functional	connectivity	to	the	354	

hippocampus	(Rugg	&	Vilberg,	2013),	and	are	the	core	components	of	the	posterior	medial	memory	355	

system	(Ranganath	&	Ritchey,	2012),	which	is	thought	to	represent	and	update	a	representation	of	the	356	

current	situation	(Johnson-Laird,	1983;	Van	Dijk	&	Kintsch,	1983;	Zwaan,	Langston,	&	Graesser,	1995;	357	

Zwaan	&	Radvansky,	1998).	Since	event	representations	in	these	regions	generalized	across	modalities	358	
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and	between	perception	and	recall,	our	results	provide	further	evidence	that	they	encode	high-level	359	

situation	descriptions.	360	

Prior	work,	however,	has	not	addressed	what	happens	to	the	representations	in	these	regions	when	the	361	

situation	changes.	Behavioral	experiments	have	shown	that	long-term	memory	reflects	event	structure	362	

during	encoding	(Ezzyat	&	Davachi,	2011;	Sargent	et	al.,	2013;	Zacks,	Tversky,	et	al.,	2001),	suggesting	363	

that	situation	representations	are	“saved”	into	memory	as	discrete	events.	We	have	demonstrated	that	364	

the	hippocampal	encoding	activity	previously	shown	to	be	present	at	the	end	of	movie	clips	(Ben-Yakov	365	

&	Dudai,	2011;	Ben-Yakov	et	al.,	2013)	and	at	abrupt	switches	between	stimulus	category	and	task	366	

(DuBrow	&	Davachi,	2016)	also	occurs	at	the	much	more	subtle	transitions	between	events	(defined	by	367	

pattern	shifts	in	high-level	regions),	providing	evidence	that	event	boundaries	trigger	the	storage	of	the	368	

current	situation	representation	into	long-term	memory.	We	have	also	shown	that	this	post-event	369	

hippocampal	activity	is	related	to	pattern	reinstatement	during	recall,	as	has	been	recently	370	

demonstrated	for	the	encoding	of	discrete	items	(Danker	et	al.,	2016),	thereby	supporting	the	view	that	371	

events	are	the	natural	units	of	episodic	memory	during	everyday	life.	372	

Our	event	segmentation	model	373	

Temporal	latent	variable	models	have	been	largely	absent	from	the	field	of	human	neuroscience,	since	374	

the	vast	majority	of	experiments	have	a	temporal	structure	that	is	defined	ahead	of	time	by	the	375	

experimenter.	One	notable	exception	is	the	recent	work	of	Anderson	and	colleagues,	which	has	used	376	

HMM-based	models	to	discover	temporal	structure	in	neural	responses	during	mathematical	problem	377	

solving	(Anderson	&	Fincham,	2014;	Anderson,	Lee,	&	Fincham,	2014;	Anderson,	Pyke,	&	Fincham,	378	

2016).	These	models	are	used	to	segment	problem-solving	operations	(performed	in	less	than	30	379	

seconds)	into	a	small	number	of	cognitively	distinct	stages	such	as	encoding,	planning,	solving	and	380	

responding.	Our	work	is	the	first	to	show	that	(using	a	modified	HMM	and	an	annealed	fitting	381	
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procedure)	this	latent-state	approach	can	be	extended	to	much	longer	experimental	paradigms	with	a	382	

much	larger	number	of	latent	states.	383	

For	finding	correspondences	between	continuous	datasets,	as	in	our	analyses	of	shared	structure	384	

between	perception	and	recall	or	perception	under	different	modalities,	several	other	types	of	385	

approaches	(not	based	on	HMMs)	have	been	proposed	in	psychology	and	machine	learning.	Dynamic	386	

time	warping	(Kang	&	Wheatley,	2015;	Silbert,	Honey,	Simony,	Poeppel,	&	Hasson,	2014)	locally	387	

stretches	or	compresses	two	timeseries	to	find	the	best	match,	and	more	complex	methods	such	as	388	

conditional	random	fields	(Zhu	et	al.,	2015)	allow	for	parts	of	the	match	to	be	out	of	order.	However,	389	

these	methods	do	not	explicitly	model	event	boundaries,	and	future	work	will	be	required	to	investigate	390	

what	types	of	neural	correspondences	are	well	modeled	by	continuous	warping	versus	event-structured	391	

models.	392	

Perception	and	memory	in	the	wild	393	

Our	results	provide	a	bridge	between	the	large	literature	on	long-term	encoding	of	individual	items	394	

(such	as	words	or	pictures)	and	studies	of	memory	for	real-life	experience	(Nielson,	Smith,	Sreekumar,	395	

Dennis,	&	Sederberg,	2015;	Rissman,	Chow,	Reggente,	&	Wagner,	2016).	Since	our	approach	does	not	396	

require	an	experimental	design	with	rigid	timing,	it	opens	the	possibility	of	having	subjects	be	more	397	

actively	and	realistically	engaged	in	a	task,	allowing	for	the	study	of	events	generated	during	virtual	398	

reality	navigation	(such	as	spatial	boundaries,	Horner,	Bisby,	Wang,	Bogus,	&	Burgess,	2016)	or	while	399	

holding	dialogues	with	a	simultaneously-scanned	subject	(Hasson,	Ghazanfar,	Galantucci,	Garrod,	&	400	

Keysers,	2012).	The	model	also	is	not	fMRI-specific,	and	could	be	applied	to	other	types	of	neural	401	

timeseries	such	as	electrocorticography	(ECoG),	electroencephalography	(EEG),	or	functional	near-402	

infrared	spectroscopy		(fNIRS),	including	portable	systems	that	could	allow	experiments	to	be	run	403	

outside	the	lab	(Mckendrick	et	al.,	2016).	 	404	
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Conclusion	405	

Using	a	novel	event	segmentation	model	that	can	be	fit	directly	to	neuroimaging	data,	we	showed	that	406	

neural	responses	to	naturalistic	stimuli	are	temporally	organized	into	discrete	events	at	varying	407	

timescales.	In	a	network	of	high-level	association	regions,	we	found	that	these	events	were	related	to	408	

subjective	event	annotations	by	human	observers,	predicted	hippocampal	encoding,	generalized	across	409	

modalities	and	between	perception	and	recall,	and	showed	anticipatory	coding	of	familiar	narratives.	410	

Our	results	provide	a	new	framework	for	understanding	how	continuous	experience	is	accumulated,	411	

stored,	and	recalled.	 	412	
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Experimental	Procedures	413	

	414	

Figure	8:	Event	segmentation	model.	Our	hypothesis	about	the	event	structure	of	narrative	stimuli	is	415	

that,	for	a	particular	story,	a	series	of	distinct	events	occurs	in	a	fixed	order	(across	stimulus	modalities	416	

and	between	encoding	and	recall),	and	that	each	event	k	has	a	signature	neural	pattern	mk.	To	encode	417	

this	hypothesis	in	a	quantitative	model,	we	used	a	modified	Hidden	Markov	Model	(HMM)	in	which	the	418	

latent	state	for	each	timepoint	denotes	the	event	to	which	that	timepoint	belongs.	The	model	starts	in	419	

the	first	event,	and	then	every	successive	timepoint	either	continues	the	current	event	or	starts	the	next	420	

event,	with	the	final	timepoint	constrained	to	finish	in	the	final	event	K.	All	neural	datapoints	during	421	

event	k	are	assumed	to	be	highly	correlated	(Pearson’s	r)	with	mk.	422	

	 	423	
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Event	Segmentation	Model	424	

Our	model	is	built	on	two	hypotheses:	1)	while	processing	narrative	stimuli,	observers	experience	a	425	

sequence	of	discrete	events,	and	2)	each	event	has	a	distinct	neural	signature.	Mathematically,	a	given	426	

subject	(or	averaged	group	of	subjects)	starts	in	event	s1=1	and	ends	in	event	sT=K,	where	T	is	the	total	427	

number	of	timepoints	and	K	is	the	total	number	of	events.	On	each	timepoint	the	model	either	remains	428	

in	the	current	state	or	advances	to	the	next	state,	i.e.	st+1	∈	{st,	st+1}	for	all	timepoints	t.	Each	event	has	a	429	

signature	mean	activity	pattern	mk	across	all	V	voxels	in	a	region	of	interest,	and	the	observed	brain	430	

activity	bt	at	any	timepoint	t	is	assumed	to	be	highly	correlated	with	mk,	as	illustrated	in	Fig.	8.	431	

Given	the	sequence	of	observed	brain	activities	bt,	our	goal	is	to	infer	both	the	event	signatures	mk	and	432	

the	event	structure	st.	To	accomplish	this,	we	cast	our	model	as	a	variant	of	a	Hidden	Markov	Model	433	

(HMM).	The	latent	states	are	the	events	st	that	evolve	according	to	a	simple	transition	matrix,	in	which	434	

all	elements	are	zero	except	for	the	diagonal	(corresponding	to	st+1	=	st)	and	the	adjacent	off-diagonal	435	

(corresponding	to	st+1	=	st+1),	and	the	observation	model	is	an	isotropic	Gaussian	$ %& '& = ( =436	

	
)

*+,-
.
/

0

-1-
2 34 /2 56 -

-

,	where	7(9)	denotes	z-scoring	an	input	vector	x	to	have	zero	mean	and	unit	437	

variance.	Note	that,	due	to	this	z-scoring,	the	log	probability	of	observing	brain	state	bt	in	an	event	with	438	

signature	mk	is	simply	proportional	to	the	Pearson	correlation	between	bt	and	mk	plus	a	constant	offset.	439	

The	HMM	is	fit	to	the	neural	data	by	using	an	annealed	version	of	the	Baum-Welch	algorithm,	which	440	

iterates	between	estimating	the	neural	signatures	mk	and	the	latent	event	structure	st.	Given	the	441	

signature	estimates	mk,	the	event	estimates	p(st=k)	can	be	computed	using	the	forward-backward	442	

algorithm.	Given	the	event	estimates	p(st=k),	the	signatures	mk	can	be	computed	as	the	weighted	443	

average	;< =
= >4?< 344

= >4?<4

.	To	encourage	convergence	to	a	high-likelihood	solution,	we	anneal	the	444	

observation	variance	σ2	as	4 ∙ 0.98F 	where	i	is	the	number	of	loops	of	Baum-Welch	completed	so	far.	We	445	
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stop	the	fitting	procedure	when	the	log-likelihood	begins	to	decrease,	indicating	that	the	observation	446	

variance	has	begun	to	drop	below	the	actual	event	activity	variance.	We	can	also	fit	the	model	447	

simultaneously	to	multiple	datasets;	on	each	round	of	Baum-Welch,	we	run	the	forward-backward	448	

algorithm	on	each	dataset	separately,	and	then	average	across	all	datasets	to	compute	a	single	set	of	449	

shared	signatures	mk.	450	

After	fitting	the	model	on	one	set	of	data,	we	can	then	look	for	the	same	sequence	of	events	in	another	451	

dataset.	Using	the	signatures	mk	learned	from	the	first	dataset,	we	simply	perform	a	single	round	of	the	452	

forward-backward	algorithm	to	obtain	event	estimates	p(st=k)	on	the	second	dataset.	If	we	expect	the	453	

datasets	to	have	similar	noise	properties	(e.g.	both	datasets	are	group-averaged	data	from	the	same	454	

number	of	subjects),	we	set	the	observation	variance	to	the	final	σ2	obtained	while	fitting	the	first	455	

dataset.	When	transferring	events	learned	on	group-averaged	data	to	individual	subjects,	we	estimate	456	

the	variance	for	each	event	across	the	individual	subjects	of	the	first	dataset.	457	

The	end	state	requirement	of	our	model	–	that	all	states	should	be	visited,	and	the	end	state	should	be	458	

symmetrical	to	all	other	states	–	requires	extending	the	traditional	HMM	by	modifying	the	observation	459	

probabilities	$ %& '& = ( .	First,	we	enforce	'G = H	by	requiring	that,	on	the	final	timestep,	only	the	460	

final	state	K	could	have	generated	the	data,	by	setting	$ %G 'G = ( = 0	for	all	( ≠ H.	Equivalently,	we	461	

can	view	this	as	a	modification	of	the	backwards	pass,	by	initializing	the	backwards	message	J('G = ()	462	

to	1	for	( = H	and	0	otherwise.	Second,	we	must	modify	the	transition	matrix	to	ensure	that	all	valid	463	

event	segmentations	(which	start	at	event	1	and	end	at	event	K,	and	proceed	monotonically	through	all	464	

events)	have	the	same	prior	probability.	Formally,	we	introduce	a	dummy	absorbing	state	K+1	to	which	465	

state	K	can	transition,	ensuring	that	the	transition	probabilities	for	state	K	are	identical	to	those	for	466	

previous	states,	and	then	set	$ %& '& = H + 1 = 0	to	ensure	that	this	state	is	never	actually	used.	467	
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Since	we	do	not	want	to	assume	that	events	will	have	the	same	relative	lengths	across	different	datasets	468	

(such	as	a	movie	and	audio-narration	version	of	the	same	narrative),	we	fix	all	states	to	have	the	same	469	

probability	of	staying	in	the	same	state	(st+1	=	st)	versus	jumping	to	the	next	state	(st+1	=	st+1).	Note	that	470	

the	shared	probability	of	jumping	to	the	next	state	can	take	any	value	between	0	and	1	with	no	effect	on	471	

the	results	(up	to	a	normalization	constant	in	the	log-likelihood),	since	every	valid	event	segmentation	472	

will	contain	exactly	the	same	number	of	jumps	(K-1).	473	

Our	model	induces	a	prior	over	the	locations	of	the	event	boundaries.	There	are	a	total	of	 G

M/)
	equally	474	

likely	placements	of	the	K-1	event	boundaries,	and	the	number	of	ways	to	have	event	boundary	k	fall	on	475	

timepoint	t	is	the	number	of	ways	that	k-1	boundaries	can	be	placed	in	t-1	timepoints	times	the	number	476	

of	ways	that	(K-1)-(k-1)-1	boundaries	can	be	placed	in	T-t	timepoints.	Therefore	$ '& = (	&	'&N) = ( +477	

1 =

4O0

6O0

PO4

QO6O0

P

QO0

.	An	example	of	this	distribution	is	shown	in	Supp.	Fig.	5.	During	the	annealing	process,	478	

the	distribution	over	boundary	locations	starts	at	this	prior,	and	slowly	adjusts	to	match	the	event	479	

structure	of	the	data.	480	

The	model	implementation	was	first	verified	using	simulated	data.	An	event-structured	dataset	was	481	

constructed	with	V=10	voxels,	K=10	events,	and	T=500	timepoints.	The	event	structure	was	chosen	to	be	482	

either	uniform	(with	50	timepoints	per	event),	or	the	length	of	each	event	was	sampled	(from	first	to	483	

last)	from	N(1,0.25)*(timepoints	remaining)/(events	remaining).	A	mean	pattern	was	drawn	for	each	484	

event	from	a	standard	normal	distribution,	and	the	simulated	data	for	each	timepoint	was	the	sum	of	485	

the	event	pattern	for	that	timepoint	plus	randomly	distributed	noise	with	zero	mean	and	varying	486	

standard	deviation.	The	noisy	data	were	then	input	to	the	event	segmentation	model,	and	we	measured	487	

the	fraction	of	the	event	boundaries	that	were	exactly	recovered	from	the	true	underlying	event	488	

structure.	As	shown	in	Supp.	Fig.	1,	were	able	to	recover	a	majority	of	the	event	boundaries	even	when	489	

the	noise	level	was	as	large	as	the	signature	patterns	themselves.	490	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081018doi: bioRxiv preprint 

https://doi.org/10.1101/081018
http://creativecommons.org/licenses/by-nc-nd/4.0/


30	
	

Implementations	of	our	model,	along	with	simulated	data	examples,	are	available	on	github	at	491	

https://github.com/intelpni/brainiak	(python)	and	at	https://github.com/cbaldassano/Event-492	

Segmentation	(Matlab).	 	493	
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Experimental	Data	494	

Interleaved	Stories	dataset	495	

To	test	our	model	in	a	dataset	with	clear,	unambiguous	event	boundaries,	we	used	data	from	subjects	496	

who	listened	to	two	unrelated	audio	narratives	(Chen,	Chow,	Norman,	&	Hasson,	2015).	497	

22	subjects	(all	native	English	speakers)	were	recruited	from	the	Princeton	community	(9	male,	13	498	

female,	ages	18-26).	All	subjects	provided	informed	written	consent	prior	to	the	start	of	the	study	in	499	

accordance	with	experimental	procedures	approved	by	the	Princeton	University	Institutional	Review	500	

Board.	The	study	was	approximately	2	hours	long	and	subjects	received	$20	per	hour	as	compensation	501	

for	their	time.	Data	from	3	subjects	were	discarded	due	to	falling	asleep	during	the	scan,	and	1	due	to	502	

problems	with	audio	delivery.	503	

In	this	work	we	used	data	from	18	subjects	who	listened	to	the	two	audio	narratives	in	an	interleaved	504	

fashion,	with	the	audio	stimulus	switching	between	the	two	narratives	approximately	every	60	seconds	505	

at	natural	paragraph	breaks.	The	total	stimulus	length	was	approximately	29	minutes,	during	which	506	

there	were	32	story	switches.	The	audio	was	delivered	via	in-ear	headphones.	507	

Imaging	data	were	acquired	on	a	3T	full-body	scanner	(Siemens	Skyra)	with	a	20-channel	head	coil	using	508	

a	T2*-weighted	echo	planar	imaging	(EPI)	pulse	sequence	(TR	1500	ms,	TE	28	ms,	flip	angle	64,	whole-509	

brain	coverage	27	slices	of	4	mm	thickness,	in-plane	resolution	3	x	3	mm	,	FOV	192	x	192	mm).	510	

Preprocessing	was	performed	in	FSL,	including	slice	time	correction,	motion	correction,	linear	511	

detrending,	high-pass	filtering	(140	s	cutoff),	and	coregistration	and	affine	transformation	of	the	512	

functional	volumes	to	a	template	brain	(MNI).	Functional	images	were	resampled	to	3	mm	isotropic	513	

voxels	for	all	analyses.	514	
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The	analyses	in	this	paper	were	carried	out	using	data	from	a	posterior	cingulate	region	of	interest,	the	515	

posterior	medial	cluster	in	the	“dorsal	default	mode	network”	defined	by	whole-brain	resting	state	516	

connectivity	clustering	(Shirer,	Ryali,	Rykhlevskaia,	Menon,	&	Greicius,	2012).	517	

Sherlock	Recall	dataset	518	

Our	primary	dataset	consisted	of	17	subjects	who	watched	the	first	50	minutes	of	the	first	episode	of	519	

BBC’s	Sherlock,	and	were	then	asked	to	freely	recall	the	episode	in	the	scanner	without	cues	(Chen,	520	

Leong,	et	al.,	2016).	Subjects	varied	in	the	length	and	richness	of	their	recall,	with	total	recall	times	521	

ranging	from	11	minutes	to	46	minutes	(and	a	mean	of	22	minutes).	Imaging	data	was	acquired	using	a	522	

T2*-weighted	echo	planar	imaging	(EPI)	pulse	sequence	(TR	1500	ms,	TE	28	ms,	flip	angle	64,	whole-523	

brain	coverage	27	slices	of	4	mm	thickness,	in-plane	resolution	3	x	3	mm	,	FOV	192	x	192	mm).	524	

We	restricted	our	searchlight	analyses	to	voxels	that	were	reliably	driven	by	the	stimuli,	measured	using	525	

intersubject	correlation	(Hasson,	Nir,	Levy,	Fuhrmann,	&	Malach,	2004).	Voxels	with	a	correlation	less	526	

than	r=0.25	during	movie-watching	were	removed	before	running	the	searchlight	analysis.	527	

We	defined	three	regions	of	interest	based	on	prior	work.	In	addition	to	the	posterior	cingulate	region	528	

defined	above,	we	defined	the	angular	gyrus	as	area	PG	(both	PGa	and	PGp)	using	the	maximum	529	

probability	maps	from	a	cytoarchitectonic	atlas	(Eickhoff	et	al.,	2005),	and	we	defined	early	auditory	530	

cortex	as	voxels	within	the	Heschl’s	gyrus	region	(Harvard-Oxford	cortical	atlas)	with	reliable	intersubject	531	

correlation	during	an	audio	narrative	(“Pieman”,	Simony	et	al.,	2016).	532	

Sherlock	Narrative	dataset	533	

To	investigate	cross-modal	event	representations	and	the	impact	of	prior	memory,	we	used	a	separate	534	

dataset	in	which	subjects	experienced	multiple	versions	of	a	narrative.	One	group	of	17	subjects	535	

watched	the	first	24	minutes	of	the	first	episode	of	Sherlock	(a	portion	of	the	same	episode	used	in	the	536	
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Sherlock	Recall	dataset),	while	another	group	of	17	subjects	(who	had	never	seen	the	episode	before)	537	

listened	to	an	18	minute	audio	description	of	the	events	during	this	part	of	the	episode	(taken	from	the	538	

audio	recording	of	one	subject’s	recall	in	the	Sherlock	Recall	dataset).	The	subjects	who	watched	the	539	

episode	then	listened	to	the	same	18	minute	audio	description.	This	yielded	three	sets	of	data,	all	based	540	

on	the	same	story:	watching	a	movie	of	the	events,	listening	to	an	audio	narration	of	the	events	without	541	

prior	memory,	and	listening	to	an	audio	narration	of	the	events	with	prior	memory.	Imaging	data	was	542	

acquired	using	the	same	sequence	as	in	Sherlock	Recall	dataset;	see	Zadbood	et	al.	(2016)	for	full	543	

details.	544	

As	in	the	Sherlock	Recall	experiment,	we	removed	all	voxels	that	were	not	reliably	driven	by	the	stimuli.	545	

Only	voxels	with	an	intersubject	correlation	of	at	least	r=0.1	across	all	three	conditions	were	included	in	546	

searchlight	analyses.	547	

Event	annotations	by	human	observers	548	

Four	human	observers	were	given	the	video	file	for	the	50-minute	Sherlock	stimulus,	and	given	the	549	

following	directions:	“Write	down	the	times	at	which	you	feel	like	a	new	scene	is	starting;	these	are	550	

points	in	the	movie	when	there	is	a	major	change	in	topic,	location,	time,	etc.	Each	“scene”	should	be	551	

between	10	seconds	and	3	minutes	long.	Also,	give	each	scene	a	short	title.”	The	similarity	among	552	

observers	was	measured	using	Dice’s	coefficient	(number	of	matching	boundaries	divided	by	mean	553	

number	of	boundaries,	considering	boundaries	within	three	timepoints	of	one	another	to	match).	 	554	
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Finding	event	structure	in	narratives	555	

To	validate	our	event	segmentation	model	on	real	fMRI	data,	we	first	fit	the	model	to	group-averaged	556	

PCC	data	from	the	Interleaved	Stories	experiment.	In	this	experiment,	we	expect	that	an	event	boundary	557	

should	be	generated	every	time	the	stimulus	switches	stories,	giving	a	ground	truth	against	which	to	558	

compare	the	model’s	segmentations.	As	shown	in	Supp.	Fig.	2,	our	method	was	highly	effective	at	559	

identifying	events,	with	the	majority	of	the	identified	boundaries	falling	close	to	a	story	switch.	560	

The	remaining	subsections	of	the	Materials	and	Methods	describe	how	the	model	was	used	to	obtain	561	

each	of	the	experimental	results,	with	subsection	titles	corresponding	to	subsections	of	the	Results.	562	

Timescales	of	cortical	event	segmentation	563	

We	applied	the	model	in	a	searchlight	to	the	whole-brain	movie-watching	data	from	the	Sherlock	Recall	564	

study.	Cubical	searchlights	were	scanned	throughout	the	volume	at	a	step	size	of	3	voxels	and	with	a	565	

side	length	of	7	voxels.	For	each	searchlight,	the	event	segmentation	model	was	applied	to	group-566	

averaged	data	from	all	but	one	subject.	We	measured	the	robustness	of	the	identified	boundaries	by	567	

testing	whether	these	boundaries	explained	the	data	in	the	held-out	subject.	We	measured	the	spatial	568	

correlation	between	all	pairs	of	timepoints	that	were	four	timepoints	apart,	and	then	binned	these	569	

correlations	according	to	whether	the	pair	of	timepoints	fell	within	the	same	event	or	crossed	over	an	570	

event	boundary.	The	average	difference	between	the	within-	versus	across-event	correlations	was	used	571	

as	an	index	of	how	well	the	learned	boundaries	captured	the	temporal	structure	of	the	held-out	subject.	572	

The	analysis	was	repeated	for	every	possible	held-out	subject,	and	with	a	varying	number	of	events	from	573	

K=10	to	K=120.	After	averaging	the	results	across	subjects,	the	number	of	events	with	the	best	within-	574	

versus	across-event	correlations	was	chosen	as	the	optimal	number	of	events	for	this	searchlight.	To	575	

generate	a	null	distribution,	the	same	analysis	was	performed	except	that	the	event	boundaries	were	576	
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scrambled	before	computing	the	within-	versus	across-event	correlation.	This	scrambling	was	performed	577	

by	reordering	the	events	with	their	durations	held	constant,	to	ensure	that	the	null	events	had	the	same	578	

distribution	of	event	lengths	as	the	real	events.	The	within	versus	across	difference	for	the	real	events	579	

compared	to	1000	null	events	was	used	to	compute	a	z	value,	which	was	converted	to	a	p	value	using	580	

the	normal	distribution.	The	p	values	were	Bonferroni	corrected	for	the	12	choices	of	the	number	of	581	

events,	and	then	the	false	discovery	rate	q	was	computed	using	the	same	calculation	as	in	AFNI	(Cox,	582	

1996).	583	

Since	the	topography	of	the	results	was	similar	to	previous	work	on	temporal	receptive	windows,	we	584	

compared	the	map	of	the	optimal	number	of	events	with	the	short	and	medium/long	timescale	maps	585	

derived	by	measuring	inter-subject	correlation	for	intact	versus	scrambled	movies	(Chen,	Honey,	et	al.,	586	

2016).	The	histogram	of	the	optimal	number	of	events	for	voxels	was	computed	within	each	of	the	587	

timescale	maps.	588	

Comparison	to	human-labeled	event	boundaries	589	

To	compare	the	neurally-defined	event	boundaries	throughout	the	cortex	to	the	human-labeled	event	590	

boundaries,	we	computed	the	fraction	of	the	neural	event	boundaries	that	were	close	to	a	human-591	

labeled	boundary	for	each	searchlight.	We	defined	“close	to”	as	“within	three	timepoints,”	since	the	592	

typical	uncertainty	in	the	model	about	exactly	where	a	neural	event	switch	occurred	was	approximately	593	

three	timepoints.		 	594	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/081018doi: bioRxiv preprint 

https://doi.org/10.1101/081018
http://creativecommons.org/licenses/by-nc-nd/4.0/


36	
	

Relationship	between	cortical	event	boundaries	and	hippocampal	encoding	595	

After	applying	the	event	segmentation	model	throughout	the	cortex	as	described	above,	we	measured	596	

whether	the	data-driven	event	boundaries	were	related	to	activity	in	the	hippocampus.	For	a	given	597	

cortical	searchlight,	we	extracted	a	window	of	mean	hippocampal	activity	around	each	of	the	598	

searchlight’s	event	boundaries.	We	then	averaged	these	windows	together,	yielding	a	profile	of	599	

boundary-triggered	hippocampal	response	according	to	this	region’s	boundaries.	To	assess	whether	the	600	

hippocampus	showed	a	significant	increase	in	activity	related	to	these	event	boundaries,	we	measured	601	

the	mean	hippocampal	activity	for	the	10	timepoints	following	the	event	boundary	minus	the	mean	602	

activity	for	the	10	timepoints	preceding	the	event	boundary,	and	compared	this	difference	to	the	same	603	

calculation	for	the	shuffled	event	boundaries	(as	described	above).	The	z	value	for	this	difference	was	604	

computed	to	a	p	value,	and	then	transformed	to	a	false	discovery	rate	q.	 	605	
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Reinstatement	of	event	patterns	during	free	recall	606	

For	each	region	of	interest,	we	fit	the	event	segmentation	model	as	described	above	(on	the	group-607	

averaged	data).	We	then	took	the	learned	sequence	of	event	signatures	mk	and	ran	the	forward-608	

backward	algorithm	on	each	individual	subject’s	recall	data.	We	set	the	variance	of	each	event’s	609	

observation	model	by	computing	the	variance	within	each	event	in	the	movie-watching	data	of	610	

individual	subjects,	pooling	across	both	timepoints	and	subjects.	We	compared	the	log-likelihood	of	the	611	

fit	to	the	recall	data	against	a	null	model	in	which	the	event	signatures	were	randomly	re-ordered,	and	612	

computed	the	z	value	of	the	true	log-likelihood	compared	to	100	null	shuffles,	then	converted	to	a	p	613	

value.	This	null	hypothesis	test	therefore	assessed	whether	the	recall	exhibited	ordered	reactivation	of	614	

the	events	identified	during	movie-watching.	The	analysis	was	run	for	10	events	to	60	events	in	steps	of	615	

5.	616	

We	operationalized	the	overall	reinstatement	of	an	event	k,	as	 p(sT = k)& ;	that	is,	the	sum	across	all	617	

recall	time	points	of	the	probability	that	the	subject	was	recalling	perceptual	event	k	at	that	time	point.	618	

We	measured	whether	this	per-event	re-activation	during	recall	could	be	predicted	during	movie-619	

watching,	based	on	the	hippocampal	response	at	the	end	of	the	event.	For	each	subject,	we	computed	620	

the	difference	between	hippocampal	activity	after	versus	before	the	event	boundary	as	above.	We	then	621	

averaged	the	event	re-activation	and	hippocampal	offset	response	across	subjects,	and	measured	their	622	

correlation.	To	assess	the	robustness	of	these	correlations,	we	performed	a	bootstrap	test,	in	which	we	623	

resampled	subjects	(with	replacement,	yielding	17	subjects	as	in	the	original	dataset)	before	taking	the	624	

average	and	computing	the	correlation.	The	p	value	was	defined	as	the	fraction	of	1000	resamples	that	625	

yielded	correlations	greater	than	zero.	For	comparison	purposes,	we	also	performed	the	same	analysis	626	

but	with	hippocampal	differences	at	the	beginning	of	each	event,	rather	than	the	end.	 	627	
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Shared	event	structure	across	modalities	628	

To	determine	whether	audio	narration	of	a	story	elicited	the	same	sequence	of	events	as	a	movie	of	that	629	

story,	we	used	an	approach	similar	to	that	used	for	detecting	reactivation	at	recall.	After	fitting	the	630	

event	segmentation	model	to	a	searchlight	of	movie-watching	data	from	the	Sherlock	Narration	631	

experiment,	we	took	the	learned	event	signatures	mk	and	used	them	to	run	the	forward-backward	632	

algorithm	on	the	audio	narration	data.	Since	both	the	movie	and	audio	data	were	averaged	at	the	group	633	

level,	they	should	have	similar	levels	of	noise,	and	therefore	we	simply	used	the	fit	movie	variance	σ2	for	634	

the	observation	variance.	As	above,	we	compared	to	a	null	model	in	which	the	order	of	the	event	635	

signatures	was	shuffled	before	fitting	to	the	narration	data,	which	yielded	a	z	value	that	was	converted	636	

to	a	p	value	and	then	corrected	to	a	false	discovery	rate	q.	637	

Anticipatory	reinstatement	for	a	familiar	narrative	638	

To	determine	whether	memory	changed	the	event	correspondence	between	the	movie	and	narration,	639	

we	then	fit	the	segmentation	model	simultaneously	to	group-averaged	data	from	the	movie-watching	640	

condition,	audio	narration	no-memory	condition,	and	audio	narration	with	memory	condition,	yielding	a	641	

sequence	of	events	in	each	condition	with	the	same	neural	signatures.	We	computed	the	642	

correspondence	between	the	movie	states	sm,t	and	the	audio	no-memory	states	sanm,t	as	as	$ '5,&0 =643	

'WX5,&- = $('5,&0 = () ∙ $('WX5,&- = ()< ,	and	similarly	for	the	audio	memory	states	sam,t.	To	644	

determine	if	this	correspondence	was	significantly	different	between	the	memory	and	no-memory	645	

conditions,	we	created	null	groups	by	averaging	together	a	random	half	of	the	no-memory	subjects	with	646	

a	random	half	of	memory	subjects,	and	then	averaging	together	the	remaining	subjects	from	each	647	

group,	yielding	two	group-averaged	timecourses	whose	correspondences	should	differ	only	by	chance.	648	

For	both	the	real	and	null	correspondences,	we	computed	the	differences	between	the	group	649	
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correspondences	as	 ($ '5,&0 = 'WX5,&- − $ '5,&0 = 'W5,&- )
*

&*&) ,	and	calculated	a	z	value	based	650	

on	the	results	for	real	versus	null	groups.	This	z	value	was	converted	to	a	p	value	and	then	corrected	to	a	651	

false	discovery	rate	q.	For	visualization,	we	also	computed	how	far	the	memory	correspondence	was	652	

ahead	of	the	no-memory	correspondence	as	the	mean	over	t2	of	the	difference	in	the	expected	values	653	

Z)$ '5,&0 = 'WX5,&-&0
− Z)$ '5,&0 = 'W5,&-&0

.	 	654	
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	809	

Supplementary	Figure	1:	The	event	segmentation	model	recovers	event	boundaries	on	simulated	data.	810	

Simulated	data	with	a	discrete	event	structure	obscured	by	varying	levels	of	noise	was	input	to	the	811	

segmentation	model,	with	T=500,	K=10,	and	V=10.	The	model	successfully	recovers	a	majority	of	the	812	

underlying	event	boundaries	at	low	noise	levels,	and	can	still	identify	an	above-chance	fraction	of	813	

boundaries	even	at	high	noise	levels	that	are	as	large	as	the	differences	between	the	event	patterns.	814	

Having	variable	event	lengths	leads	to	only	a	small	loss	in	performance,	and	does	not	change	the	overall	815	

performance	curve.		816	

	 	817	
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	818	

Supplementary	Figure	2:	The	event	segmentation	model	successfully	identifies	switches	between	819	

stories.	Subjects	listened	to	two	stories,	which	were	interleaved	such	that	they	alternated	back	and	820	

forth	about	every	minute.	Using	data	from	PCC,	an	event	segmentation	model	with	34	event	transitions	821	

showed	the	best	fit	to	held-out	subjects	(very	close	to	the	actual	number	of	32).	Fitting	the	model	with	822	

34	transitions,	the	majority	(20)	were	within	3	timepoints	of	a	story	switch.	A	null	distribution	was	823	

created	by	permuting	the	order	of	the	events	(preserving	event	lengths);	under	this	null	distribution	the	824	

chance	of	having	this	many	event	boundaries	close	to	true	story	switches	was	p<0.001.		825	

826	
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	827	

Supplementary	Figure	3:	Topography	of	event	timescales	broadly	matches	the	topography	of	temporal	828	

receptive	windows.	(a)	The	optimal	number	of	events	during	movie	watching	(from	Fig.	2)	was	829	

compared	to	the	map	of	voxel	timescales	(Chen,	Honey,	et	al.,	2016),	which	was	defined	based	on	830	

sensitivity	to	temporal	scrambling	of	a	movie.	Although	derived	from	very	different	types	of	831	

experimental	data,	these	two	approaches	yield	similar	topographies,	with	early	visual	and	auditory	832	

regions	exhibiting	a	large	number	of	events	and	having	short	timescales	(orange),	and	higher-level	833	

regions	having	a	small	number	of	events	and	medium/long	timescales	(blue).	(b)	Plotting	the	834	

distributions	of	the	number	of	events	within	the	short	and	medium/long	timescale	masks	confirms	that	835	

most	regions	with	a	small	number	of	events	have	medium/long	temporal	receptive	windows,	which	836	

most	regions	with	a	large	number	of	events	have	short	temporal	receptive	windows.	837	

	 	838	
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	839	

Supplementary	Figure	4:	Movie	and	recall	data	show	matching	event	structure	in	high-level	regions	840	

across	a	range	of	settings	for	the	number	of	latent	events.	The	results	shown	in	Fig.	5b	hold	for	most	841	

choices	of	the	number	of	latent	events	between	10	and	40,	with	decreasing	goodness-of-fit	for	larger	842	

numbers	of	events.	Note	that	the	best	fits	were	achieved	with	models	having	approximately	20-25	843	

events,	similar	to	the	minimum	number	of	human-labeled	events	that	were	recalled	by	the	subjects	(24,	844	

see	table	S1	in	Chen,	Leong,	et	al.,	2016).	 	845	
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Supplementary	Figure	5:	Prior	distribution	over	event	boundaries.	Our	event	segmentation	model	847	

defines	a	uniform	prior	over	all	possible	event	segmentations	in	which	every	event	occurs	for	at	least	848	

one	timepoint	and	all	events	occur	in	order.	This	induces	a	prior	distribution	over	event	boundaries,	849	

shown	here	for	T=500,	K=10.	During	the	annealing	process,	the	distribution	of	boundaries	starts	at	this	850	

prior,	which	allows	for	a	(highly	uncertain)	first	estimate	of	the	signature	neural	pattern	for	each	event.	851	

Based	on	these	patterns,	the	latent	events	for	all	timepoints	are	refit,	and	then	the	patterns	are	852	

recalculated.	The	process	continues,	with	the	pattern	variance	slowly	decreasing,	until	the	log	likelihood	853	

reaches	a	peak.		854	

	855	
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