
Grow with the flow: a latitudinal cline in physiology is

associated with more variable precipitation in Erythranthe
cardinalis

Abstract

Local adaptation is commonly observed in nature: organisms perform well in their natal

environment, but poorly outside it. Correlations between traits and latitude, or latitudinal

clines, are among the most common pieces of evidence for local adaptation, but identifying

the traits under selection and the selective agents is challenging. Here, we investigated

a latitudinal cline in growth and photosynthesis across 16 populations of the perennial

herb Erythranthe cardinalis (Phrymaceae). Using machine learning methods, we identify

interannual variation in precipitation as a likely selective agent: Southern populations

from more variable environments had higher photosynthetic rates and grew faster. We

hypothesize that selection may favor a more annualized life history – grow now rather than

save for next year – in environments where severe droughts occur more often. Thus our

study provides insight into how species may adapt if Mediterranean climates become more

variable due to climate change.

Introduction

Local adaptation has been documented within numerous species; populations generally1

have higher fitness in their native environment, but perform poorly outside it (Schluter,2

2000; Leimu and Fischer, 2008; Hereford, 2009). However, the prevalance of local adapta-3

tion remains di�cult to assess because researchers rarely test for local adaptation unless4

there are obvious phenotypic or environmental di↵erences (but see Hereford and Winn5

2008). When local adaptation occurs, it frequently leads to clines in both phenotypes and6
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allele frequencies when selection varies over environmental gradients (Huxley, 1938; Endler,7

1977; Barton, 1999). Phenotypic di↵erences between populations along a cline often have8

a genetic basis and can be studied in a common garden (Turesson, 1922; Clausen et al.,9

1940; Hiesey et al., 1942). Despite a long history of studying local adaptation and clines,10

it remains challenging to identify exactly which traits are under selection and which di↵er11

for nonadaptive reasons. In particular, the role that physiological di↵erences play in local12

adaptation is poorly understood, despite the fact that physiology is frequently assumed to13

explain adaptation to the abiotic environment. A related problem is identifying which of14

the myriad and often covarying aspects of the environment causes spatially varying selective15

pressures.16

When populations are locally adapted, reaction norms for fitness will cross, such that local17

genotypes have higher fitness than foreign genotypes and rank orders change across envi-18

ronments (Kawecki and Ebert, 2004). The traits that underlie local adaptation, however,19

need not mirror this pattern. Populations can have fixed genetic di↵erences conferring20

trait values that are adaptive at home but neutral or maladaptive away. Alternatively,21

the ability to plastically respond to a particular environment or the magnitude of response22

to an environment could be adaptive. We distinguish between these patterns of adaptive23

trait di↵erences by referring to ‘intrinsic’ and ‘plastic’ trait variation, respectively. Both24

intrinsic and plastic trait variation can be explained by genetic di↵erences and both are25

involved in adaptation. For example, intrinsic di↵erences in photoperiod responses (Black-26

man et al., 2011) and developmental rate (Stinchcombe et al., 2004) allow organisms to27

properly time their life history with the local environment. Conversely, sun and shade28

plants do not have intrinsically higher or lower rates of carbon assimilation, but rather,29

genotype-by-environment interactions cause sun plants to assimilate more under high light30

and shade plants under low light (Givnish, 1988). In plants especially, we know little about31

the prevalence and adaptive significance of variation in fundamental physiological traits like32

photosynthesis and their impact on plant performance.33
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A basic approach to identify candidate traits underlying local adaptation is to find asso-34

ciations between traits and environments. Either intrinsic and/or plastic variation should35

vary clinally along environmental gradients. Indeed, clines in ecologically important traits36

are widespread in nature (Endler, 1977) and often adaptive, but in most cases the selective37

agent is unknown. For example, in Drosophila numerous latitudinal clines exist for traits38

like thermal tolerance (Ho↵mann et al., 2002), body size (Coyne and Beecham (1987) and39

references therein), and life history (Schmidt et al., 2005). Some Drosophila clines have40

evolved multiple times (Oakeshott et al. (1982); Huey et al. (2000), see also Bradshaw and41

Holzapfel (2001)) or shifted in response to climate change (Umina et al., 2005), evincing42

climatic adaptation. Similarly, plant species exhibit latitudinal clines in traits like flowering43

time (Stinchcombe et al., 2004), cyanogenesis (Kooyers and Olsen, 2012), leaf morphology44

(Hopkins et al., 2008; Stock et al., 2014), and drought response (Kooyers et al., 2015) that45

likely relate to climatic variation.46

Despite the fact that latitudinal clines have been studied for a long time, latitude per se47

cannot be a selective agent. Latitude may be strongly correlated with one or two key48

climatic variables, such as temperature, precipitation, or growing degree-days. Latitude49

may also correlate with the strength of biotic interactions (Schemske et al., 2009) or other50

nonclimatic aspects of the environment, though as we explain below, we do not yet have51

compelling data that these are important in our study system. Hence, we focus on whether52

latitude could be an e↵ective proxy for an underlying climatic driver, in which case we53

would expect a yet stronger relationship between traits and the key climatic variable(s)54

driving selection. Alternatively, latitude may be more strongly related to traits than any55

single climatic variable for at least two reasons. First, latitude may be correlated with56

several climatic agents of selection that are individually weak, but add up to a strong57

latitudinal cline. Alternatively, gene flow among neighbouring populations could smooth58

out local climatic e↵ects, since alleles will experience selection across populations linked59

by migration (Slatkin, 1978; Paul et al., 2011; Hadfield, 2016). We refer to this as the60
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‘climatic neighborhood’. For example, in mountainous regions average temperature at61

a given latitude varies widely, but in aggregate, a lower latitude set of populations will62

experience warmer climate than a higher latitude one. Thus, any particular low latitude63

population would be warm-adapted, even if it was located in a cooler (e.g. high elevation)64

site. Because many climatic factors vary latitudinally, and which climatic factors vary65

latitudinally changes over the earth’s surface (e.g. coastal vs. continental), dissecting the66

evolution of latitudinal clines across many species will help identify generalities, such as67

whether thermal tolerance maxima or seasonal timing is more important (Bradshaw and68

Holzapfel, 2008), and whether local or regional climate shapes selective pressures.69

In this study, we investigated two major questions: 1) whether intrinsic or plastic physiolog-70

ical trait variation corresponds with latitude; and 2) what climatic factor(s) could plausibly71

be responsible for latitudinal clines. Within question 2, we tested three hypotheses outlined72

in the previous paragraph: latitudinal clines are explained by a single dominant climatic73

factor, multiple climatic factors, or the climatic neighborhood experienced by nearby popu-74

lation connected through gene flow. These hypotheses are not mutually exclusive since, for75

example, single or multiple factors in a climatic neighborhood may lead to latitudinal clines.76

We focused on climate because climate often determines and where species are found and77

also can exert strong selection on populations within species, though we acknowledge that78

other abiotic and biotic factors could also contribute to selection and the overall pattern79

of local adaptation. There is also a compelling need to know how populations are (or are80

not) locally adapted to climate so as to predict how they will respond to climate change81

(Aitken and Whitlock, 2013).82

We examined these questions in Erythranthe cardinalis (formerly Mimulus cardinalis [Ne-83

som 2014]) because linking physiological traits to potentially complex patterns of local84

adaptation requires integrating multiple lines of evidence from comparative, experimental,85

and genomic studies under both lab and field conditions. Many classic and contemporary86

studies of local adaptation use Mimulus sensu lato species because of their natural his-87
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tory, easy propagation, and genetic/genomic resources (Clausen et al., 1940; Hiesey et al.,88

1971; Bradshaw and Schemske, 2003; Wu et al., 2008; Lowry and Willis, 2010; Wright89

et al., 2013). Yet, there is a deficiency of links between local adaptation and physiological90

mechanisms (Angert, 2006; Angert et al., 2008; Wu et al., 2010; Wright et al., 2013). We91

measured genetic and genotype-by-environment variation in response to temperature and92

drought among 16 populations distributed over 10.7°of latitude. We found a latitudinal93

cline of intrinsic variation in photosynthesis and growth, but little evidence for variation in94

plasticity. Interannual variation in precipitation and temperature are associated with this95

axis of variation, suggesting that climatic variance rather than mean may be an important96

driver of local adaptation in E. cardinalis. The climatic neighborhoods around populations97

explained trait variation better than local climate, indicating that latitudinal clines may be98

common because latitude integrates e↵ects of selection on populations connected through99

gene flow. We place these findings in the context of life history theory and consider future100

directions in the Discussion.101

Material and Methods102

Population Selection103

We used 16 populations from throughout the range of E. cardinalis (Table 1). These104

populations were intentionally chosen to span much of the climatic range of the species105

based on all known occurrences (see below). Seeds were collected in the field from mature,106

undehisced fruit left open for 2-4 weeks to dry, then stored at room temperature. We used107

seeds from 154 families, 4–12 (mean = 9.6, median = 12) families per population.108
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Table 1: Latitude, longitude, and elevation (mas = meters above seal level) of 16 focal
populations used in this study.

Name Latitude Longtiude Elevation (mas)

Hauser Creek 32.657 -116.532 799
Cottonwood Creek 32.609 -116.7 267
Sweetwater River 32.9 -116.585 1180
Grade Road Palomar 33.314 -116.871 1577
Whitewater Canyon 33.994 -116.665 705
Mill Creek 34.077 -116.873 2050
West Fork Mojave River 34.284 -117.378 1120
North Fork Middle Tule River 36.201 -118.651 1314
Paradise Creek 36.518 -118.759 926
Redwood Creek 36.691 -118.91 1727
Wawona 37.541 -119.649 1224
Rainbow Creek 37.819 -120.007 876
Middle Yuba River 39.397 -121.082 455
Little Jamison Creek 39.743 -120.704 1603
Deep Creek 41.668 -123.11 707
Rock Creek 43.374 -122.957 326

Plant propagation109

On 14 April, 2014, 3-5 seeds per family were sown directly on sand (Quikrete Play Sand,110

Georgia, USA) watered to field capacity in RLC4 Ray Leach cone-tainers placed in RL98111

98-well trays (Stuewe & Sons, Inc., Oregon, USA). We used pure sand because E. cardinalis112

typically grows in sandy, riparian soils (A. Angert, pers. obs.). Two jumbo-sized cotton113

balls at the bottom of cone-tainers prevented sand from washing out. Cone-tainers sat in114

medium-sized flow trays (FLOWTMD, Stuewe & Sons, Inc., Oregon, USA) to continuously115

bottom-water plants during germination in greenhouses at the University British Columbia116

campus in Vancouver, Canada (49°15’ N, 123°15’ W). Misters thoroughly wetted the top of117

the sand every two hours during the day. Most seeds germinated between 1 and 2 weeks,118

but we allowed 3 weeks before transferring seedlings to growth chambers. We recorded119

germination daily between one to two weeks after sowing, and every 2-3 days thereafter.120
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On 5 May (21 days after sowing), we transferred seedlings to one of two growth chambers121

(Model E-15 Conviron, Manitoba, Canada). We thinned seedlings to one plant per cone-122

tainer, leaving the center-most plant. 702 of 768 (91.4%) had plants that could be used123

in the experiment. We allowed one week at constant, non stressful conditions (day: 20�,124

night: 16�) for plants to acclimate to growth chambers before starting treatments. The125

initial size of seedlings, measured as the length of the first true leaves, did not di↵er between126

populations, families, or treatments (Table S1).127

Temperature and drought treatments128

We imposed four treatments, a fully-factorial cross of two temperature levels and two129

watering levels. The temperature levels closely simulated an average growing season at the130

thermal extremes of the species range, which we designate as Hot and Cool treatments.131

Watering levels contrasted a perennial and seasonal stream, which we refer to as Well-132

watered and Drought treatments. A detailed description of treatments is provided in the133

Supplemental Materials and Methods and summarized in Fig 1. Because growth chambers134

cannot be subdivided, one chamber was assigned to the Hot treatment level and another135

to the Cool treatment level. Within each chamber, there were two Well-watered blocks136

and two Drought blocks. The photosynthetically active radiation in both chambers was137

approximately 400 µmol quanta m�2 s�1. The growth chambers did not control humidity,138

but because of watering and high plant transpiration rates, the relative humidity was quite139

high in both temperature levels (data not shown). Lower humidity would have made the140

drought more severe, but low soil moisture is stressful in and of itself. The total number of141

plants in each treatment was: n
cool,dry

= 169; n
cool,ww

= 174; n
hot,dry

= 176; n
hot,ww

= 183.142

Each population had 8–12 individuals per treatment level (mean = 11, median = 11).143
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Key treatments and measurements
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Figure 1: Overview of experimental treatments and timing of key trait measurements. All
plants germinated within 21 days of sowing. At that time, we began temperature treatments
(left axis), simulating a typical June-August weather pattern at Hot (red) and Cool (blue) sites.
The bold lines track the average daily temperatures. Within each day, there was a maximum
daytime temperature (top of translucent polygons) and minimum nighttime temperature (bot-
tom of translucent polygons). The drought treatment commenced later by ramping down the
frequency of bottom-watering episodes (dashed black line; right axis), while watering frequency
was maintained in the control treatment (solid black line). Grey boxes on the bottom of the
plot outline the period of key measurements described in the Material and Methods.

Trait measurements144

Wemeasured five traits in response to temperature and watering treatments (Table 2).145

Days to germination We tested for population variation in germination rate, measured146

as Days to Germination, using a lognormal survival model fit using the survreg function147

in the R package survival version 2.38 (Therneau, 2015). We treated Population as a fixed148

e↵ect and Family as random e↵ect using a � frailty function. Statistical significance of the149
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Table 2: Key traits measured in this study.

Trait Units

Days to germination day
Leaf expansion rate mm day�1

Stem elongation rate cm day�1

Photosynthetic rate µmol CO
2

m�2 s�1

Mortality probability of death

Population e↵ect was determined using analysis of deviance. Note that, unlike other traits150

discussed below, we did not include Block, Treatment, or Population ⇥ Treatment inter-151

actions because during germination plants had not been placed into blocks and treatments152

had not yet been applied.153

Growth rate: leaf expansion and stem elongation We measured growth rate dur-154

ing two phases: leaf expansion and stem elongation. Growth measurements were taken155

during the early vegetative stage. We censused leaf length twice per week shortly after156

the emergence of true leaves from 12 May – 12 June (28–59 days after sowing), resulting157

in 10 measurements. We ceased measuring leaf length once it appeared to asymptote and158

growth shifted to stem elongation. We also censused plant height on 7 occasions (twice159

per week) between 29 May and 20 June (45 to 67 days after sowing) until plants began160

to initiate floral buds. Thus all growth measurements occured during the vegetative, pre-161

reproductive phase. Both leaf expansion and stem elongation were modelled separately162

as second-order polynomials. We used empirical Bayes’ estimates of growth for each indi-163

vidual plant from linear mixed-e↵ects models fit with the R package lme4 version 1.1-12164

(Bates et al., 2015).165

Photosynthesis During the week of 10 to 16 June (57 to 63 days after sowing), we166

measured daytime photosynthetic rate on a subset of 329 plants evenly spread between167
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treatments and families within populations. The youngest, fully-expanded leaf acclimated168

for 3 minutes to reach steady state in a 6-cm2 chamber of a LI-COR 6400XT Portable Pho-169

tosynthesis System (LI-COR Biosciences, Lincoln, Nebraska). We made all measurements170

at ambient light (400 µmol m�2 s�1 of photosynthetically active radiation), atmospheric171

CO
2

(400 ppm), temperature, and moderate relative humidity. During this period, we sus-172

pended normal day-to-day temperature fluctuations and set daytime temperatures to the173

average for that period (Cool: 26.5°; Hot: 36.1°) so that all plants within a temperature174

level could be measured under the same conditions.175

Mortality We assayed mortality during twice-weekly growth measurements. We ana-176

lyzed the probability of surviving until the end of the experiment as a function of popula-177

tion, treatment, and their interactions using a Generalized Linear Mixed Model (GLMM)178

assuming binomially distributed errors. We included Family and Block as random e↵ects.179

We assessed significance of fixed e↵ects using Type-II Analysis of Deviance with Wald �

2

180

tests in the R package car (Fox and Weisberg, 2011).181

Intrinsic variation and plasticity182

For all traits (Table 2) except germination (see above), we tested for Population, Treat-183

ment (Temperature, Water, and Temperature ⇥ Water), and Population ⇥ Treatment184

interactions (Population ⇥ Temperature, Population ⇥ Water, and Population ⇥ Temper-185

ature ⇥ Water). We interpreted significant Population e↵ects to indicate intrinsic variation186

and Population ⇥ Treatment interactions to indicate variation in plasticity. As mentioned187

above, we used survival and GLMM models for germination rate and mortality, respec-188

tively. For all other traits, we used mixed model ANOVAs with Family and Block included189

as random factors. We fit models using restricted maximum likelihood in lmer, a function190

in the R package lme4 (Bates et al., 2015). We determined significant fixed e↵ect terms us-191
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ing a step-wise backward elimination procedure implemented with the step function in the192

R package lmerTest version 2.0-32 (Kuznetsova et al., 2016). This package uses Satterth-193

waite’s approximation to calculate denominator degrees of freedom for F -tests. We also194

included days to germination as a covariate in growth analyses. To ensure that Population195

and Treatment e↵ects were specific to a particular growth phase, we included germination196

day as a covariate in leaf expansion and stem elongation analyses.197

Principal components of germination, growth, and photosynthesis198

For each single-trait model above, we extracted the Population coe�cient (factoring out199

Treatment and other e↵ects). The multivariate distribution of these coe�cients was then200

summarized using principal components analysis. The first principal component of these201

traits (TraitPC1) loaded positively with germination, growth, and photostynthetic rate,202

therefore we define this as a phenotypic axis delineating fast to slow growth.203

Identifying putative selective agents204

Latitudinal clines are common, but it is often di�cult to ascribe this variation to a par-205

ticular selective agent. To reiterate, we tested three non-mutually exclusive hypotheses206

about how such latitudinal clines emerge: 1) one or two climatic variables explain latitudi-207

nal trait variation; 2) latitude is a proxy for multiple climatic factors that together shape208

trait variation; and 3) latitude integrates selection in a broader climatic neighborhood. We209

found that a population’s position along TraitPC1 correlated strongly with the latitude of210

origin (see Results) and next used Random Forest regression (Liaw and Wiener, 2002) to211

identify putative climatic factors underlying trait-latitude associations in E. cardinalis. We212

reasoned that if we identified a single climatic factor that explained more trait variation213

than latitude, then this would suggest that factor is a key selective agent underlying the214

latitudinal cline (Hypothesis 1). On the other hand, if multiple climatic factors together215
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are necessary to explain trait variation, then this would suggest that many climatic factors216

together have imposed selection for the latitudinal cline (Hypothesis 2). We hereafter refer217

to factors identified in this analysis as ‘Climate-TraitPC1’ variables. To test Hypothesis218

3 about climatic neighborhoods driving selection, we directly competed local with neigh-219

borhood climate. We used the immediate collection location for local climate. For climate220

neighborhoods, we sampled climate at 1000 random points (at 90-m resolution) within a221

62-km radius bu↵er around the collection and took the average. We chose this bu↵er radius222

based on population genetic structure, as inferred from ⇡25,000 restriction-site associated223

SNPs among 49 populations from across the range (Paul et al., In review). Spatial auto-224

correlation in allele frequencies persists for 62 km. However radii of 10 km2 and 100 km2

225

resulted in similar outcomes (data not shown). Since E. cardinalis is found exclusively in226

riparian areas, we only selected points along streams using the National Hydrogeoraphy227

Dataset (United States Geological Survey, 2015). Climatic means and variances (see below)228

were weighted by their climatic suitability as determined using a multimodel ensemble av-229

erage of ecological niche models (Angert et al., 2016). In addition to competing local and230

neighborhood climate, we compared the univariate correlation between local and neigh-231

borhood climate with TraitPC1 and Latitude using paired t-tests. We adjusted degrees232

of freedom to account for the fact that many climatic factors are highly correlated and233

not independent. Specifically, we calculated the e↵ective number of independent climatic234

factors (M
e↵

) using the formula M

e↵

= 1+(M �1)(1�Var(�)/M) (Chevrud, 2001), where235

M is the original number of climatic factors and � are the eigenvalues of the correlation236

matrix of all climatic factors.237

To help eliminate potentially spurious correlations between TraitPC1 and climate, we tested238

for overlap between climatic variables that best predict latitude of all E. cardinalis occur-239

rence records (see detail below), not just the 16 focal populations. We refer to these climatic240

factors as ‘Climate-Latitude’ variables. The logic is that climatic factors associated with241

both TraitPC1 and latitude for all populations are more likely to be important selective242
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agents than climatic factors that happen to correlate with TraitPC1 but do not covary243

with latitude throughout the E. cardinalis range. Therefore, we did not consider Climate-244

TraitPC1 variables to be candidate selective agents unless the same or very similar variable245

was found in the Climate-Latitude analysis. However, we do interpret potential selective246

agents identified in Climate-Latiude analyses alone, because the goal was to explain the247

latitudinal clines in traits, not all aspects of climate that vary with latitude.248

We selected Climate-Latitude and Climate-TraitPC1 variables independently using Vari-249

able Selection Using Random Forest (VSURF) algorithm in the R package VSURF version250

1.0.3 (Genuer et al., 2016). Random Forest regression is useful for cases like ours when251

the number of potential predictors is similar to or greater than the number of observations252

(‘high p, low n’ problem). VSURF is a multistip algorithm that progressively retains or253

eliminates variables based on their importance over regression trees in the forest. Variable254

importance is defined as the average amount a climate variable reduces mean-squared er-255

ror in the predicted response (TraitPC1 or Latitude), compared to a randomly permuted256

dataset, across all trees in the random forest (see Genuer et al. [2015] for further detail).257

Hence, VSURF automatically eliminates unimportant and redundant variables based on258

the data without having to arbitrarily choose among colinear climate variables before the259

analysis. We kept only variables selected for prediction, the most stringent criterion. A260

visual overview of how we selected climatic variables is depicted in Fig 2.261

For Climate-Latitude analyses, we compiled a representative set of 356 recent (since 2000)262

known E. cardinalis occurrences from a comprehensive set of herbarium records and an263

exhaustive field survey in 2010-11 (Angert et al., 2016). These occurrences were thinned264

by 50% to correct for uneven sampling. For both Climate-TraitPC1 analyses (16 focal265

populations) and Climate-Latitude (many populations), we used a 90-m digital elevation266

model from HydroSHEDS (Lehner et al., 2006) to extract elevation. Monthly interpolated267

climate layers were calculated using ClimateWNA version 5.30 (Wang et al., 2012), which268

accurately downscales climate data specifically for the rugged topography of western North269
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America. For each occurence, we calculated bioclimatic variables using the biovars function270

in the R package dismo version 1.1-1 (Hijmans et al., 2016). We included 24 climatic271

factors, 9 from ClimateWNA and 15 bioclimatic variables (Table S2). The bioclimatic272

variables included all permutations of two climatic factors, temperature and precipitation,273

and six temporal scales (annual average, coldest quarter, warmest quarter, wettest quarter,274

driest quarter, or seasonality) as well as mean diurnal range, isothermality, and annual275

temperature range. For each variable, we calculated both a 30-year normal by averaging276

annual values between 1981 and 2010 and 30-year coe�cient of variation, a standardized277

metric of interannual climatic variation. Temperatures were converted to Kelvin to be278

on a ratio scale appropriate for calculating the coe�cient of variation (CV). In total, the279

VSURF algorithm selected among 96 climate variables: 24 climatic factors ⇥ 2 types (30-280

year average and CV) ⇥ 2 spatial scales (local and neighborhood).281

Results282

A coordinated latitudinal cline in germination, growth, and photosynthe-283

sis284

There are strong genetically-based trait di↵erences in time to germination, growth, and285

photosynthetic rate among populations of E. cardinalis, as evidenced by large and signif-286

icant population e↵ects for these traits (Table 3). A single principal component captured287

71.6 % of the trait variation among populations, defining an axis of variation from fast to288

slow growth. A population’s position along this axis strongly covaried with its latitude of289

origin; southern populations grew faster than northern populations (Fig 3). There were290

similar latitudinal clines for individual traits underlying PC1 (Figures S1 to S4).291
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Table 3: Summary of Population, Treatment, and Population ⇥ Treatment e↵ects. We used
di↵erent statistical modeling for the diverse traits assayed – glmer: generalized linear mixed
model using the R package lme4 (Bates et al., 2015); lmer: linear mixed model using the
R package lme4 (Bates et al., 2015); survreg: survival regression using the R package sur-
vival (Therneau, 2015). Note that temperature and water treatments were imposed after
germination, hence are not applicable to this trait. Complete analysis of variance/deviance
tables for each trait are available in the Supporting Information. Key to statistical significance:
*P < 0.05; ** P < 0.01; *** P < 0.001

Trait Germination Leaf expansion Stem elongation Photosynthesis Mortality
Statistical model survreg lmer lmer lmer glmer

Population *** *** *** ***
Temperature NA *** *** ** ***
Water NA * ***
Pop ⇥ Temp NA *
Pop ⇥ Water NA *
Temp ⇥ Water NA ***
Pop ⇥ Temp ⇥ Water NA

Little evidence for variation in plasticity292

Genotype ⇥ environment (G⇥E) interactions are also a common signature of local adap-293

tation. In contrast to the intrinsic di↵erences described above, we found little evidence of294

G⇥E in E. cardinalis. There were only two statistically significant Population ⇥ Treat-295

ment interactions (Table 3, Fig. S5), but these were not strong compared to Population296

and Temperature e↵ects. Otherwise, populations responded similarly to treatments: faster297

growth in the hot treatment, slower growth in the dry treatment, and high mortality in298

the hot, dry treatment (Table 3). Complete ANOVA tables are available in the Supporting299

Information (Tables S3 to S6)300

Neighborhood climatic variability best explains latitudinal cline301

Interannual variation in climate averaged over each populations’s climatic neighborhood302

correlated most strongly with trait variation and latitude of E. cardinalis occurrences303
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(Fig. 4, Table S7). All 16 Climate-Latitude and 3 Climate-TraitPC1 variables were neigh-304

borhood rather than local variables (Fig. 4). In fact, neighborhood climate almost always305

correlated better with TraitPC1 and Latitude than local climate (Fig. 5). On average,306

neighborhood Climate-TraitPC1 correlation coe�cients were 0.16 higher than correlations307

with local-scale climate variables (paired t-test, t = 7.87, d.f. = 33.6, P = 3.94 ⇥ 10�9).308

Likewise, neighborhood Climate-Latitude correlation coe�cients were 0.13 higher than309

those for local-scale climate (paired t-test, t = 6.71, d.f. = 36.8, P = 7.22⇥ 10�8).310

Among Climate-Latitude and Climate-TraitPC1 variables, neighborhood climatic variabil-311

ity over 30 years (1981–2010) in either winter precipitation (bio16�) and/or temperature312

(bio11�) are the strongest candidates to explain the latitudinal cline in E. cardinalis (see313

Table S2 for a key to climate variable abbreviations). Note that the coe�cient of vari-314

ation of a climatic factor is subscripted with � whereas the mean is subscripted with µ.315

More specifically, greater winter precipitation variability and lower winter temperature316

variability are associated with Southern latitudes and higher TraitPC1 values (Fig. 6A,B).317

Neighborhood interannual variation in winter precipitation (bio16�) was the most impor-318

tant Climate-Latitude variable (Fig. 4A). However, neighborhood bio16� did not overlap319

with Climate-TraitPC1 variables (Fig. 4B). We nevertheless consider it a plausible can-320

didate for two reasons. First, neighborhood bio16� correlated strongly with TraitPC1321

(Fig. 6A). Second, one of the most important Climate-TraitPC1 variables (neighborhood322

bio15�; Fig. 6B,C) is very similar to bio16�. In Mediterranean climates like California, most323

precipitation occurs in the wettest quarter (winter), so years with low winter precipitation324

also have low precipitation seasonality. Hence, highly variable year-to-year winter precip-325

itation at lower latitude (Fig. 6D) is closely associated with large swings in precipitation326

seasonality (Fig. 6C).327

Interannual variation in temperature of the coldest quarter (neighborhood bio11�) is an-328

other plausible candidate because it was the only variable in both Climate-Latitude and329

Climate-TraitPC1 analyses (Fig. 4). Neighborhood bio11� explained more variation in330
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TraitPC1 than latitude (latitude r

2 = 0.55 vs. bio11� r

2 = 0.6; Fig. S6), whereas neigh-331

borhood bio16� did slightly worse (bio16� r

2 = 0.49). Models using bio15� or bio11� to332

predict TraitPC1 also had significantly lower Akaike Information Criteria (AIC) than the333

latitude model (AIC of di↵erent models – bio15�: 48.5; bio11�: 52.4; latitude: 54.5). The334

best two-factor model including both neighborhood bio15� and bio11� did not significantly335

improve explanatory power (r2 = 0.71, AIC= 49.2). In summary, either variation in precip-336

itation or temperature seasonality may be important selective agents, but there is no strong337

evidence that they are both important. The most important Climate-TraitPC1 variable,338

neighborhood variation in mean diurnal range (bio2�; Fig. 4B) did not have any obvious339

similarity to Climate-Latitude variables. Given the large number of potential associations,340

we therefore think this may be a spuriously strong relationship.341

Discussion342

We found evidence for one of two common signatures of local adaptation in the perennial343

herb Erythranthe cardinalis. Latitudinal clines in germination rate, photosynthesis, and344

growth suggest adaptive di↵erentiation in important physiological traits of the species.345

However, we found little evidence that populations respond di↵erently to temperature or346

drought. Due to low replication within families, we did not have power to assess within-347

population genotype-by-environment interactions, which may be present. As we discuss348

below, low variation in plasticity among populations may indicate that some dimensions349

of the fundamental abiotic niche are relatively conserved. Note that statistical power to350

detect significant plasticity is lower than that for intrinsic di↵erences. However, the fact351

that the Population and Temperature e↵ects were often highly significant (P ⌧ 0.001 in352

most cases) suggests that statistical power alone cannot explain low variation in plasticity.353

Finally, our results suggest that neighborhood-scale climate and interannual variation are354

more important selective agents than local averages. In the paragraphs that follow, we tie355
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these results into the broader threads of evolutionary theory that might help explain why356

intrinsic variation in physiology changes clinally, whereas plastic responses to temperature357

and drought are relatively static. One caveat to bear in mind is that we are limited by358

the size of the climate grid (⇡ 90 m2) and therefore unable to detect very fine-scale local359

adaptation.360

Evolutionary theory indicates that the shape of fitness tradeo↵s, demography, and gene flow361

can constrain adaptation (Levins, 1968; Ronce and Kirkpatrick, 2001; Lenormand, 2002)362

and hence the type of variation maintained within species. Specifically, adaptive variation363

can be maintained by spatially varying selection if tradeo↵s are not too strong, demography364

is symmetric, and/or maladaptive gene flow is low. Strong tradeo↵s can prevent local365

adaptation in spatially variable environments because selection favors habitat specialists366

that track a specific habitat regardless of its frequency in the environment (Levins, 1968).367

For example, a riparian specialist may experience similar selection in rivers of high rainfall368

regions and deserts, even though the habitat is much rarer in the latter. In E. cardinalis we369

found substantial genetically based variation among populations along a phenotypic axis370

from fast to slow growth that varied over a large spatial scale (Fig. 3). If this variation371

is adaptive, it suggests one of several possibilities to investigate in the future: the fitness372

tradeo↵ between low versus high latitude environments is not too strong nor swamped373

by demographic asymmetry or maladaptive gene flow. That is, alleles favoured at one374

latitude are not strongly selected against when they flow to another population, allowing375

locally adaptive genetic variation to be maintained by spatially heterogenous selection. We376

also know from previous work that population size does not vary strongly with latitude377

(Angert, unpub. data). Gene flow appears to be high, but attenuates at broad spatial378

scales, especially between Southern (< 35°N) and Northern portions of the range (Paul379

et al., In review).380

Nevertheless, local gene flow from similar environments may shape how selection varies381

with latitude. Theory predicts that populations will not be perfectly adapted to their382
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immediate habitat when there is gene flow from surrounding populations with di↵erent383

optima (Lenormand, 2002). With spatial heterogeneity and gene flow, traits will not covary384

perfectly with the local optimum (Slatkin, 1978; Paul et al., 2011; Hadfield, 2016), but385

should instead better match the average environment experienced by nearby populations386

connected through gene flow, which we refer to as the climatic neighborhood. Gene flow387

and spatial heterogeneity may therefore be important in maintaining genetic variation388

(Yeaman and Jarvis, 2006). As this hypothesis predicts, climatic neighborhoods (62-km389

bu↵er around populations) correlated with traits and latitude of occurrences better than390

local climate (Fig. 4). We interpret this as suggestive evidence that gene flow between391

neighboring E. cardinalis populations shapes selection – populations are locally adapted to392

prevailing climate in their neighborhood, but perhaps not perfectly adapted to their local393

climate. This may not greatly constrain local adaptation because local and neighborhood394

climate values were generally similar in E. cardinalis populations (Fig. 5), at least at the395

resolution of ClimateWNA (90 m2). Therefore, we would predict in reciprocal transplants396

that populations whose local climate is farther from their neighborhood average would be397

less well adapted than those close to their neighborhood average.398

It is reasonable to predict that southern populations, which appear to experience more399

frequent drought years (see below), might have physiological adaptation to survive and400

grow in drier soil. We found no evidence for this type of drought tolerance; all popula-401

tions responded to drought and temperature similarly (Table 3). Plants grew faster in402

the Hot treatment, but there was little e↵ect of drought on growth. Rather, the e↵ects403

of drought took longer to materialize but resulted in high mortality, especially in the Hot404

treatment. However, there was no di↵erential mortality among populations in this treat-405

ment. Although our results indicate that this axis of the species niche may be constrained,406

plants have multiple ways to resist drought through both tolerance and escape (Ludlow,407

1989; Kooyers, 2015). Next, we consider why drought tolerance may less important in local408

adaptation than a form of escape for this species.409
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We hypothesize that tolerance to dry soil may be constrained by a combination of strong410

fitness tradeo↵s, demographic asymmetry, and gene flow. Soil moisture in riparian habitats411

where E. cardinalis lives is highly heterogeneous at very small spatial scales (several me-412

ters). Plants in the stream never have to tolerate drought whereas plants only a few meters413

away may experience extreme drought since there is little direct precipitation during the414

growing season in Mediterranean climates of western North America. We hypothesize alle-415

les that confer greater drought tolerance may be quite costly in well-watered soils, and vice416

versa, leading to strong fitness tradeo↵s. Such tradeo↵s would promote specialization to417

one soil moisture or another, thereby inhibiting the evolution of broad environmental tol-418

erance within a population. Demography and gene flow may reinforce niche conservatism.419

A new mutant with increased drought tolerance that could survive at the resource-poor420

margin of a population would likely be demographically overwhelmed by the larger census421

populations that can be maintained in higher-resource environments. Infrequent wet years422

may also produce most seeds, so selection is weighted towards alleles that have high fitness423

in the wet environment, even if dry years are more frequent (Templeton and Levin, 1979;424

Brown and Venable, 1986). Finally, gene flow, which is generally high among E. cardinalis425

populations within the same ecoregion (Paul et al., In review), will thwart local adapta-426

tion and reinforce specialization. Thus, the spatial grain of the environment, demographic427

asymmetry, and gene flow may conspire to constrain local adaptation along this environ-428

mental axis. Consistent with this hypothesis, recent record-setting droughts have caused429

the decline or even local extinction of some natural populations of E. cardinalis (Sheth and430

Angert, 2017).431

In sum, these results indicate that intrinsic di↵erences in physiology and growth, but not432

plastic responses to temperature and drought, mediate local adaptation to climate in E.433

cardinalis. Next, we would like to understand why variation in these particular traits434

may be adaptive. We argue that temporally more variable environments, as experienced435

by southern populations, select for a more ‘annualized’ life-history strategy, a form of436
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drought escape. Demographic observations in natural populations of E. cardinalis reveal437

that southern populations tend to flower earlier at a smaller size, while northern popula-438

tions invest more in vegetative growth (Sheth and Angert, 2017). The association between439

position along the ‘fast-slow’ continuum and associated traits in E. cardinalis is similar to440

interspecific relationships between growth, functional traits, and life history (Adler et al.,441

2014; Salguero-Gómez et al., 2016). However, we cannot exclude unexplored factors (e.g.442

edaphic conditions, competitors, pollinators, etc.) which may also contribute to the lati-443

tudinal cline.444

Greater investment in aboveground growth, as opposed to belowground storage for future445

seasons, may be favoured in climates with more frequent drought years, but maladaptive446

in climates with more consistent precipitation. This is a form of drought escape in that447

plants are investing more reproduction in the present to avoid possible drought in subse-448

quent years. Suppose plants that grow quickly and allocate new resources to continued449

growth rather than storage have higher fitness over a single growing season. However,450

by not allocating resources to storage, these fast-growing plants begin future seasons at a451

deficit. Therefore, in a stable environment where winter survivorship is assured in most452

years, failure to store resources may reduce lifetime fitness. But for perennial herbs in453

Mediterranean climates, a dry winter (rainy season) can kill the rhizomes (underground454

stems that store nutrients for future growth) before emergence or aboveground stems before455

flowering. If drought years occur frequently enough, selection may favour the fast-growing456

strategy because there is no advantage to storage if drought kills plants before flower-457

ing. Considering life-history strategy as a continuum from no storage (annual) to lots of458

storage (perennial), we hypothesize that the optimal allocation to aboveground growth is459

more ‘annualized’ in southern climates that have greater interannual variation in precipi-460

tation. This scenario di↵ers from classic drought escape syndromes in which plants speed461

up development early in the season before the onset of drought.462

The hypothesis that greater precipitation variability selects for an annualized life history463
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is tentative, but consistent with theory and data from other species. Life history theory464

shows that less variable environments are one factor that favours the evolution of perenni-465

ality (Stearns, 1976; Iwasa and Cohen, 1989; Friedman and Rubin, 2015). Populations of466

the perennial Plantago asiatica show a similar latitudinal cline in growth and allocation to467

storage (Sawada et al., 1994), though these authors attribute the cline to variation in grow-468

ing season length. There are also life history clines in the closely related species E. guttata,469

but the underlying traits and climatic drivers are quite di↵erent. Annual E. guttata flower470

sooner and produce fewer stolons in response to climates with shorter seasons and more471

intense summer drought (Lowry and Willis, 2010; Friedman et al., 2015; Kooyers et al.,472

2015). In contrast, there are no truly annual (monocarpic and semelparous) populations of473

E. cardinalis. Rather, our hypothesis states that climatic variability selects on quantitative474

variation in allocation to growth versus storage. This hypothesis makes several indepen-475

dent, testable predictions. The allocation tradeo↵ predicts that northern populations will476

provision more photosynthetic assimilate to rhizomes compared with southern populations.477

If southern populations are indeed more ‘annualized’ because more frequent droughts cause478

mortality, then we predict that species distribution models using recent climate would best479

predict occurrences in the south, whereas longer term climate would be a better predictor480

in the north. Finally, we predict that southern populations would show greater variation481

in the size of recruits and higher maximum population growth rates.482

In summary, we found evidence for a coordinated latitudinal cline in germination rate,483

photosynthesis, and growth, suggesting local adaptation. We therefore predict to find484

di↵erent optima for these traits in di↵erent climates. We did not find evidence that the485

relative performance of populations shifts with temperature or watering regime, suggesting486

relatively little variation in plasticity. Exploratory analysis implicate that more variable487

precipitation regimes at lower latitude drive much of the latitudinal cline, though other488

climatic factors could also contribute. Interestingly, the climatic neighborhood may shape489

selective pressures more than local climate. In the future, we will use field experiments to490
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test whether greater variation in precipitation selects for faster growth and if selection on491

temperature/drought responses does not vary among populations. By doing so, we aim492

to understand why certain physiological and developmental mechanisms, but not others,493

contribute to local adaptation.494

References495
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Figure 2: Overview of method for identifying putative climatic selective agents underlying
latitudinal cline. We looked for climate variables that explained both the latitude of 356 E. car-
dinalis occurrences (‘Climate-Latitude variables’) and with traits (‘Climate-Trait variables’). For
Climate-Latitude variables we extracted climate data from recent occurrences located through-
out California and Oregon, USA (shown in map). For Climate-Trait variables, we extracted
climatic data for the 16 focal populations. For both analyses, we extracted local and neighbor-
hood climate. Local climate refers to climate only from where a population was collected (xi,0).
Neighborhood climate was calculated as the average over 1000 points in a 62-km radius cli-
matic neighborhood (xi,1, xi,2, . . . ), but only along stream habitats as E. cardinalis is riparian.
We identified climatic factors that most strongly predicted latitude of occurrences (Climate-
Latitude variables) and traits (Climate-Trait variables), as shown for hypothetical data in plots
at the bottom of the figure.
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Figure 3: Trait variation, from fast to slow growth, is closely associated with latitude. Each
point is a population’s latitude of origin (x-axis) and position along the slow to fast growth axis
(y-axis), defined as Principal Component 1 of four traits (see Material and Methods). The line
and 95% confidence intervals were estimated using linear regression.
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Figure 4: Climatic variation integrated over climatic neighborhood is closely correlated with
latitude of E. cardinalis and trait variation. A. Using Random Forest regression, we identified
16 climatic variables significantly (high importance) associated with latitude of E. cardinalis
occurrences. B. Only one of of the most important Climate-Latitude variables (in bold) was
among the most important Climate-TraitPC1 variables. Variable importance is defined as
the average amount a climate variable reduces mean-squared error in the predicted response
(TraitPC1 or Latitude), compared to a randomly permuted dataset, across all trees in the
random forest (see Genuer et al. [2015] for further detail). Note that the Importance values
in A and B are not comparable because the dependent variables (Latitude and Trait PC1,
respectively) are on di↵erent scales. Climatic variables (left of A; right of B) are defined by
four qualities: Climatic factor – Temperature (Temp), Precipitation (Prec), Heating degree-
days (Heating), Snow (precipitation as snow); Temporal scale – Annual, Coldest quarter (Cold
Quar), Warmest Quarter (Warm Quar), Wettest quarter (Wet Quar), Driest Quarter (Dry
Quar), or Seasonality; Type – 30-year average (Avg.) or coe�cient of variation (Var.); Spatial
scale – local or 62-km radius climatic neighborhood.
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Figure 5: Neighborhood climate predicts TraitPC1 (‘Climate-trait’, panel A) and Latitude of
occurences (‘Climate-latitude’, panel B) better than local climate. Each point is the absolute
value of the Pearson correlation coe�cient (|r|) between TraitPC1 (A) or latitude (B) for 24
climatic factors, for which we used both the 30-year mean (closed circles) and coe�cient of
variation (open circles). Most points lie above the 1:1 line, indicating stronger correlations with
neighborhood compared to local climate. Neighborhood climate was integrated over a 62-km
radius around focal populations (see text for further detail).
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Figure 6: Variation in precipitation is correlated with TraitPC1 and latitude. A. Greater values
of TraitPC1 are associated with greater interannual variation in precipitation of the wettest quar-
ter. This was the most important Climate-Latitude variable, but not among the most important
Climate-TraitPC1 variables. B. However, a closely related parameter, interannaul variation in
precipitation seasonality, was among the most important Climate-TraitPC1 variables. C. Across
focal populations, variation in precipitation of the wettest quarter and seasonality are closely
correlated. D. Southern populations of E. cardinalis experience much greater interannual vari-
ationi in precipitation. In all panels, we report climatic neighborhood values (see Material and
Methods). Regression lines, 95% confidence intervals, and coe�cients of determination (R2)
were calculated using linear regression.
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Table S1: Initial size of seedlings did not vary among Populations, Families, or Treatments.
We used a censored Gaussian model of initial size at the outset of the experiment (longest
leaf length of the first true leaves). The model was censored because we could not accurately
measure leaves less than 0.25 mm with digital callipers (217 of 702, 30.9%, were too small).
We fit models using a Bayesian MCMC method implemented using the MCMCglmm function
with default priors in the R package MCMCglmm version 2.17 (Hadfield, 2010). We estimated
the posterior distribution from 1000 samples of an MCMC chain run for 105 steps after a 104

step burn-in. We used step-wise backward elimination procedure to find the best-supported
model according to Deviance Information Criterion (DIC).

Model Random DIC

Population + Water + Temperature +
Population:Water +
Population:Temperature +
Water:Temperature +
Population:Water:Temperature

Family 1638

Population + Water + Temperature +
Population:Water +
Population:Temperature +
Water:Temperature

Family 1605.2

Population + Water + Temperature +
Population:Water +
Population:Temperature

Family 1603.4

Population + Water + Temperature +
Population:Water +
Water:Temperature

Family 1577.5

Population + Water + Temperature +
Population:Temperature +
Water:Temperature

Family 1579.9

Population + Water + Temperature +
Population:Water

Family 1577.3

Population + Water + Temperature +
Water:Temperature

Family 1550.5

Population + Water + Temperature Family 1549.3
Population + Water Family 1541.7
Population + Temperature Family 1546.8
Water + Temperature Family 1551.1
Population Family 1541.9
Water Family 1543.9
- Family 1541.7
- - 1538.3
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Table S2: Climatic variables used

Abbreviation Climate variable

DD 0 degree-days below 0�(chilling degree-days)
DD5 degree-days above 5�(growing degree-days)
DD 18 degree-days below 18�(heating degree-days)
DD18 degree-days above 18�(cooling degree-days)
NFFD number of frost-free days
PAS precipitation as snow (mm) between August in previous year and July

in current
Eref Hargreaves reference evaporation (mm)
CMD Hargreaves climatic moisture deficit (mm)
RH mean annual relative humidity
bio1 annual mean temperature
bio2 mean diurnal range (mean of monthly (max temp - min temp))
bio3 isothermality (bio2/bio7) (* 100)
bio4 temperature seasonality (standard deviation *100)
bio5 max temperature of warmest month
bio6 min temperature of coldest month
bio7 temperature annual range (bio5-bio6)
bio8 mean temperature of wettest quarter
bio9 mean temperature of driest quarter
bio10 mean temperature of warmest quarter
bio11 mean temperature of coldest quarter
bio12 annual precipitation
bio15 precipitation seasonality (coe�cient of variation)
bio16 precipitation of wettest quarter
bio17 precipitation of driest quarter
bio18 precipitation of warmest quarter
bio19 precipitation of coldest quarter
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Table S3: Analysis of varianace (ANOVA) table on leaf expansion rate (LER) using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random e↵ects. Abbreviations:
SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees of
freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Day to Germination 12.12 12.12 1 637 35.21 4.9 ⇥10�9

Population 22.22 1.48 15 118 4.3 2.5 ⇥10�6

Temperature 80.42 80.42 1 5 233.61 2.6 ⇥10�5

Water 4.1 4.1 1 5 11.92 0.019
Temperature ⇥ Water 0.03 0.03 1 4 0.07 0.801
Population ⇥ Temperature 2.76 0.18 15 547 0.53 0.925
Population ⇥ Water 9.66 0.64 15 562 1.87 0.024
Population ⇥ Temperature ⇥ Water 4.11 0.27 15 530 0.78 0.700

Table S4: Analysis of varianace (ANOVA) table on stem elongation rate (SER) using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random e↵ects. Abbreviations:
SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees of
freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Day to Germination 3.6 3.6 1 662 21.1 5.1 ⇥10�6

Population 12 0.8 15 113 4.7 5.8 ⇥10�7

Temperature 12.4 12.4 1 6 72.8 1.5 ⇥10�4

Water 0.6 0.6 1 5 3.7 0.113
Temperature ⇥ Water 0.9 0.9 1 4 5.2 0.093
Population ⇥ Temperature 3.6 0.2 15 549 1.4 0.126
Population ⇥ Water 2.8 0.2 15 536 1.1 0.330
Population ⇥ Temperature ⇥ Water 1.5 0.1 15 518 0.6 0.874
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Table S5: Analysis of varianace (ANOVA) table on photosynthetic rate using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random e↵ects. Abbrevia-
tions: SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees
of freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Population 347.7 23.2 15 78 3.02 7.5 ⇥10�4

Temperature 134.1 134.1 1 6 17.46 6.4 ⇥10�3

Water 51 51 1 4 6.64 0.066
Temperature ⇥ Water 0.7 0.7 1 3 0.09 0.781
Population ⇥ Temperature 218.6 14.6 15 263 1.9 0.024
Population ⇥ Water 87.7 5.8 15 233 0.76 0.724
Population ⇥ Temperature ⇥ Water 91.4 6.1 15 208 0.79 0.686

Table S6: Analysis of deviance table on the probability of mortality by the end of the experiment
using Type-II Wald �

2 tests in the R package car (Fox and Weisberg, 2011). Family and Block
were included as random e↵ects. Abbreviations: df = degrees of freedom

�

2 df P -value

Population 32 31 0.419
Temperature 31.8 6 1.8 ⇥10�5

Water 69.2 12 4.6 ⇥10�10

Temperature ⇥ Water 20.7 1 5.3 ⇥10�6

Population ⇥ Temperature 5.6 15 0.985
Population ⇥ Water 8.6 15 0.897
Population ⇥ Temperature ⇥ Water 0.2 15 1.000
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Table S7: Important climatic variables predicting latitude of E. cardinalis populations
(‘Climate-Latitude’) and the first principal component of traits measured in a common gar-
den (‘Climate-TraitPC1’). Local climatic variables were measured from the exact location of
collection; neighborhood climatic variables were averaged from a 62-km neighborhood around
population (see Material and Methods). Importance and significance were determined using
the variable selection using random forests (VSURF) algorithm (see Material and Methods).
Climatic variables are described in Table S2. µ signifies the mean of the climate variables from
1981–2010; � indicates coe�ecient of variation among years.

Climate-Latitude variables Climate-TraitPC1 variables

Precipitation of wettest quarter (�, neighborhood) Mean diurnal range (�, neighborhood)
Annual precipitation (µ, neighborhood) Precipitation seasonality (�, neighborhood)
Precipitation of wettest quarter (µ, neighborhood) Mean temperature of coldest quarter (�, neighborhood)
Mean temperature of coldest quarter (�, neighborhood)
Annual precipitation (�, neighborhood)
Precipitation of driest quarter (µ, neighborhood)
Precipitation of coldest quarter (�, neighborhood)
Hargreaves climatic moisture deficit (µ, neighborhood)
Precipitation of warmest quarter (µ, neighborhood)
Precipitation seasonality (µ, neighborhood)
Precipitation of warmest quarter (�, neighborhood)
Heating degree-days (�, neighborhood)
Precipitation of driest quarter (�, neighborhood)
Number of frost-free days (�, neighborhood)
Mean temperature of wettest quarter (�, neighborhood)
Precipitation as snow (�, neighborhood)
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Figure S1: Southern populations germinate faster. Each point is a population of E. cardinalis
showing its latitude of origin (x-axis) and model-predicted days to germination in days under
growth chamber conditions (see Material and Methods). Bars around each point are 95%
confidence intervals. Predicted time to germination and confidence intervals are based on
survival regression (see Materials and Materials). The line is the linear regression of log(model-
predicated days to germination) ⇠ latitude. The P -value of the regression is given in the upper
left corner.
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Figure S2: Southern populations grow faster. Each point is a population of E. cardinalis
showing its latitude of origin (x-axis) and model-predicted leaf expansion rate during the rosette
phase. Bars around each point are 95% confidence intervals. Predicted leaf expansion rate based
least-square mean estimates and confidence intervals were calculated from linear mixed-e↵ects
models (see Materials and Materials). The line is the linear regression of model-predicated leaf
expansion rate ⇠ latitude. The P -value of the regression is given in the upper right corner.
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Figure S3: Southern populations grow faster. Each point is a population of E. cardinalis
showing its latitude of origin (x-axis) and model-predicted stem elongation rate. Bars around
each point are 95% confidence intervals. Predicted stem elongation rate based least-square
mean estimates and confidence intervals were calculated from linear mixed-e↵ects models (see
Materials and Materials). The line is the linear regression of model-predicated stem elongation
rate ⇠ latitude. The P -value of the regression is given in the upper right corner.
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Figure S4: Southern populations photosynthesize faster. Each point is a population of E.
cardinalis showing its latitude of origin (x-axis) and model-predicted instantaneous photosyn-
thetic rate. Bars around each point are 95% confidence intervals. Predicted photosynthetic
rates based least-square mean estimates and confidence intervals were calculated from linear
mixed-e↵ects models (see Materials and Materials). The line is the linear regression of model-
predicated photosynthetic rate ⇠ latitude. The P -value of the regression is given in the upper
right corner.

46

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/080952doi: bioRxiv preprint 

https://doi.org/10.1101/080952


Cool Hot

Wet Dry Wet Dry

Water Treatment

Temperature Treatment

1.0

1.5

2.0

2.5

3.0

3.5

Le
af

 e
xp

an
si

on
 ra

te
 (m

m
 d

ay
−1

) A Cool Hot

Wet Dry Wet Dry

Water Treatment

Temperature Treatment

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

St
em

 e
lo

ng
at

io
n 

ra
te

 (c
m

 d
ay

−1
) B

Cool Hot

Wet Dry Wet Dry

Water Treatment

Temperature Treatment

6

8

10

12

14

16

Ph
ot

os
yn

th
es

is
 (µ

m
ol

 C
O

2 
m
−2

 s
−1

)

C Cool Hot

Wet Dry Wet Dry

Water Treatment

Temperature Treatment

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
ivo
rs
hi
p

D

Figure S5: Reaction norms signify little Population ⇥ Treatment interactions. For all panels,
black lines represent population-level reaction norms from Wet to Dry in the Cool temperature
treatment (dashed black lines) and Hot temperature treatment (solid black lines); gray lines
represent reaction norms from Cool to Hot in the Wet treatment (solid gray lines) and Dry
treatment (dashed gray lines). The responses shown are (A) leaf expansion rate, (B) stem
elongation rate, (C) photosynthesis, and (D) survivorship (= 1 - mortality).
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Figure S6: Trait variation, from fast to slow growth, is closely associated with neighborhood
variation in temperature of the coldest quarter (bio11�) Each point is a population coe�cient of
variation in bio11 averaged over a 62-km climatic neighborhood (x-axis) and position along the
slow to fast growth axis (y-axis), defined as Principal Component 1 of four traits (see Material
and Methods). The line and 95% confidence intervals were estimated using linear regression.
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Supporting Material and Methods676

Temperature treatments677

We simulated typical growing season (June 1 - August 15) air temperatures at the two most678

thermally divergent focal sites in our study, Whitewater Canyon (WWC, Hot) and Little679

Jameson (LIJ, Cool). We downloaded daily interpolated mean, minimum, and maximum680

air temperature from 13 years (2000-2012) at both sites from ClimateWNA (Wang et al.,681

2012). This range was chosen because seeds used in the experiment were collected around682

2012, thus their presence in that location at that time suggests that populations were able683

to persist there for at least some years before collection. Monthly temperatures from Cli-684

mateWNA are highly correlated with the air temperature recorded from data loggers in685

the field at these sites (A. Angert, unpub. data). Hence, the ClimateWNA temperature686

profiles are similar to actual thermal regimes experienced by E. cardinalis in nature. We687

simulated realistic temperature regimes by calculating the mean temperature trend from688

June to August using LOESS (Cleveland et al., 1992). The residuals were highly autocor-689

related at both sites (warmer than average days are typically followed by more warm days)690

and there was strong correlation (r = 0.65) between sites (warm days in WWC were also691

warm in LIJ). The ‘VARselect’ function in the vars package for R (Pfa↵, 2008) indicated692

that a lag two Vector Autoregression (VAR(2)) model best captured the within-site auto-693

correlation as well as between-site correlation in residuals. We fit and simulated from the694

VAR(2) model using the package dse (Gilbert, 2014) in R. Simulated data closely resem-695

bled the autocorrelation and between-site correlation of the actual data. From simulated696

mean temperature, we next selected minimum and maximum daily temperatures. Mean,697

min, and max temperature were highly correlated at both sites. We chose min and max698

temperatures using site-specific fitted linear models between mean, max, and min tem-699

perature, with additional variation given by normally distributed random deviates with700

variance equal to the residual variance of the linear models. For each day, the nighttime701
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(22:00 - 6:00) chamber temperature was set to the simulated minimum temperature. Dur-702

ing the middle of the day, temperature was set to the simulated maximum temperature,703

with a variable period of transition between min and max so that the average temperature704

was equal the simulated mean temperature.705

Watering treatments706

For watering treatments, we simulated two extreme types of streams where E. cardinalis707

grows. In the well-watered treatment, we simulated a large stream that never goes dry708

during the summer growing season. In the drought treatment, we simulated a small stream709

that has ample flow at the beginning of the season due to rain and snow melt, but gradually710

dries down through the summer. In both treatments, plants were bottom-watered using711

water chilled to 7.5�. Plants in the well-watered treatment were fully saturated every two712

hours during the day. Watering in the drought treatment gradually declined from every713

two hours to every day between May 20 (36 days after sowing) and 10 June (57 days after714

sowing). Simultaneously, the amount of bottom-watering per flood decreased, such that715

only the bottom of the cone-tainers were wetted by the end of the experiment.716
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