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Abstract

Local adaptation is one of the most ubiquitous observations in nature: organisms perform

well in their natal environment, but poorly outside it. Correlation between traits and

latitude, or latitudinal clines, are among the most common pieces of evidence for local

adaptation, but identifying the traits under selection and the selective agents are chal-

lenging. Here, we investigated a latitudinal cline in growth and photosynthesis across 16

populations of the perennial herb Mimulus cardinalis (Phrymaceae). Using machine learn-

ing methods, we identify interannual variation in precipitation as a likely selective agent:

Southern populations from more variable environments had higher photosynthetic rates

and grew faster. We hypothesize that selection may favor a more annualized life history

– grow now rather than save for next year – in environments where severe droughts occur

more often. Thus our study provides insight into how species may adapt if Mediterranean

climates become more variable due to climate change.

Introduction

Local adaptation within species is ubiquitous; populations generally have higher fitness in

their native environment, but perform poorly outside it (Schluter, 2000; Hereford, 2009).

Local adaptation also frequently leads to clines in both phenotypes and allele frequencies

when selection varies over environmental gradients (Huxley, 1938; Endler, 1977). Pheno-

typic differences between populations along a cline most often have a genetic basis and can

be studied in a common garden (Turesson, 1922; Clausen et al., 1940; Hiesey et al., 1942).

Despite a long history of studying local adaptation and clines, it remains to challegenging

to identify exactly which traits are under selection and which differ for nonadaptive rea-

sons. In particular, the role that physiological differences play in local adaptation is poorly

understood, despite the fact that physiology is frequently assumed to explain adaptation to
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the abiotic environment. We need to understand physiological adaptations within species

as a baseline for anticipating how organisms will respond to climate change. A related

problem is identifying which features of the environment, abiotic factors like soil water

availability or biotic interactions, cause spatially varying selective pressures.

When populations are locally adapted, reaction norms for fitness will cross, such that local

genotypes have higher fitness than foreign genotypes and rank orders change across envi-

ronments (Kawecki and Ebert, 2004). The traits that underlie local adaptation, however,

need not mirror this pattern. Populations can have fixed genetic differences conferring

trait values that are adaptive at home but neutral or maladaptive away. Alternatively,

genotype-by-environment interactions could indicate that variation in plasticity mediates

local adaptation. We distinguish between these patterns of adaptive trait differences by

referring to ‘intrinsic’ and ‘plastic’ trait variation, respectively. There are classic cases

of adaptation involving both intrinsic and plastic trait variation. For example, intrinsic

differences in photoperiod (Blackman et al., 2011) and developmental rate (Stinchcombe

et al., 2004) allow organisms to properly time their life history with the local environ-

ment. Conversely, sun and shade plants do not have intrinsically higher or lower rates

of carbon assimilation, but rather, genotype-by-environment interactions cause sun plants

to assimilate more under high light and shade plants under low light (Givnish, 1988). In

plants especially, we know little about the prevalance and adaptive significance of vari-

ation in fundamental physiological traits like photosynthesis and their impact on plant

performance.

A basic approach to identify candidate traits underlying local adaptation is to find associ-

ations between traits and environments. Either instrinsic and/or plastic variation should

vary clinally along environmental gradients. Indeed, clines in ecologically important traits

are widespread in nature (Endler, 1977) and often adaptive, but in most cases the selective

agent is unknown. For example, in Drosophila numerous latitudinal clines exist for traits

like thermal tolerance (Hoffmann et al., 2002), body size (Coyne and Beecham (1987) and
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references therein), and life history (Schmidt et al., 2005). Some Drosophila clines have

evolved multiple times (Oakeshott et al. (1982); Huey et al. (2000), see also Bradshaw and

Holzapfel (2001)) or shifted in response to climate change (Umina et al., 2005), evincing

climatic adaptation. Similarly, plant species exhibit latitudinal clines in traits like flowering

time (Stinchcombe et al., 2004), cyanogenesis (Kooyers and Olsen, 2012), leaf morphology

(Hopkins et al., 2008), and drought response (Kooyers et al., 2015) that likely relate to

climatic variation.

Despite the fact that latitudinal clines in particular have been studied for a long time,

latitude per se cannot be a selective agent. Latitude may be strongly correlated with

one or two key climatic variables, such as temperature, precipitation, or growing degree-

days. Hence, latitude is an effective proxy for the underlying climatic driver, but we

would expect a yet stronger relationship between traits and the key climatic variable(s)

driving selection. Alternatively, latitude may be more strongly related to traits than any

single climatic variable for at least two reasons. First, latitude may be correlated with

several climatic agents of selection that are individually weak, but add up to a strong

latitudinal cline. Alternatively, gene flow among neighboring populations could smooth

out local climatic effects, since alleles will experience selection across populations linked by

migration. We refer to this as the ‘climatic neighborhood’. For example, in mountainous

regions average temperature at a given latitude varies widely, but in aggregate, a lower

latitude set of populations will experience warmer climate than a higher latitude one. Thus,

any particular low latitude population would be warm-adapted, even if it was located in

a cooler (e.g. high elevation) site. Because many climatic factors vary latitudinally, and

which climatic factors vary latitudinally changes over the earth’s surface (e.g. coastal

vs. continental), dissecting the evolution of latitudinal clines across many species will

help biologists identify generalities, such as whether thermal tolerance maxima or seasonal

timing is more important (Bradshaw and Holzapfel, 2008), or whether local versus regional

climate shape selective pressures.
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In this study, we intestigated two major questions: 1) whether intrinsic or plastic physiolog-

ical trait variation corresponds with latitude; and 2) what climatic factor(s) could plausibly

be repsonsible for latitudinal clines. Within question 2, we tested three hypotheses outlined

in the previous paragraph: latitudinal clines are explained by a single dominant climatic

factor, multiple climatic factors, or the climatic neighborhood experienced by nearby pop-

ulation connected through gene flow. These hypotheses are not mutually exclusive since,

for example, single or multiple factors in a climatic neighborhood may lead to latitudinal

clines.

We examined these questions in Mimulus cardinalis because linking physiological traits

to potentially complex patterns of local adaptation requires integrating multiple lines of

evidence from comparative, experimental, and genomic studies under both lab and field

conditions. Many classic and contemporary studies of local adaptation use species from

genus Mimulus because of its natural history, easy propogation, and genetic/genomic re-

sources (Clausen et al., 1940; Hiesey et al., 1971; Bradshaw and Schemske, 2003; Wu et al.,

2008; Lowry and Willis, 2010; Wright et al., 2013). Yet, there is a conspicuous deficieny of

links between local adaptation and physiological mechanisms (Angert, 2006; Angert et al.,

2008; Wu et al., 2010). We measured genetic and genotype-by-environment variation in

response to temperature and drought among 16 populations distributed over 10.7°of lati-

tude. We found a latitudinal cline of intrinsic variation in photosynthesis and growth, but

little evidence for variation in plasticity. Interannual variation in precipitation is associated

with this axis of variation, suggesting that climatic variance rather than mean may be an

important driver of local adaptation in M. cardinalis. However, no single climatic factor

explained trait variation better than latitude alone, indicating that additional climatic fac-

tors are likely important, albeit less so. The climatic neighborhoods around populations

likewise did not explain trait variation better than latitude alone. We place these findings

in the context of life history theory and consider future directions in the Discussion.
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Material and Methods

Population Selection

We used 16 populations from throughout the range of M. cardinalis (Table 1). Seeds were

collected in the field from mature, undehisced fruit left open for 2-4 weeks to dry, then

stored at room temperature.

Table 1: Geographic region, latitude, longitude, and elevation (mas = meters above seal level)
of 16 focal populations used in this study.

Name Region Latitude Longtiude Elevation (mas)

HAU South Margin 32.657 -116.532 799
CTC South Margin 32.609 -116.7 267
CUR South Margin 32.9 -116.585 1180
GRP South Margin 33.314 -116.871 1577
WWC Transverse 33.994 -116.665 705
MIL Transverse 34.077 -116.873 2050
WFM Transverse 34.284 -117.378 1120
NMT South Sierras 36.201 -118.651 1314
PRD South Sierras 36.518 -118.759 926
RWD South Sierras 36.691 -118.91 1727
WNA Central Sierras 37.541 -119.649 1224
RBW Central Sierras 37.819 -120.007 876
MYU North Sierras 39.397 -121.082 455
LIJ North Sierras 39.743 -120.704 1603
DPC North Coast 41.668 -123.11 707
RCC North Margin 43.374 -122.957 326

Plant propagation

On 14 April, 2014, 3-5 seeds per family were sown directly on sand (Quikrete Play Sand,

Georgia, USA) watered to field capacity in RLC4 Ray Leach cone-tainers placed in RL98

98-well trays (Stuewe & Sons, Inc., Oregon, USA). We used pure sand both to facilitate
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root-washing and because M. cardinalis typically grows in sandy, riparian soils (A. Angert,

pers. obs.). Two jumbo-sized cotton balls at the bottom of cone-tainers prevented sand

from washing out. Cone-tainers sat in medium-sized flow trays (FLOWTMD, Stuewe

& Sons, Inc., Oregon, USA) to continuously bottom-water plants during germination in

greenhouses at the University British Columbia campus in Vancouver, Canada (49°15’

N, 123°15’ W). Misters thoroughly wetted the top of the sand every two hours during

the day. Most seeds germinated between 1 and 2 weeks, but we allowed 3 weeks before

transferring seedlings to growth chambers. We recorded germination daily between one to

two weeks after sowing, and every 2-3 days thereafter. On 5 May (21 days after sowing),

we transferred seedlings to one of two growth chambers (Conviron, Manitoba, Canada).

We thinned seedlings to one plant per cone-tainer, leaving the center-most plant. 702

of 768 (91.4%) had plants that could be used in the experiment. We allowed one week

at constant, non stressful conditions (day: 20℃, night: 16℃) for plants to acclimate to

growth chambers before starting treatments. The initial size of seedlings, measured as the

length of the first true leaves, did not differ between populations, families, or treatments

(Table S1).

Temperature and drought treatments

We imposed four treatments, a fully-factorial cross of two temperature levels and two

watering levels. The temperature levels closely simulated an average growing season at the

thermal extremes of the species range, which we designate as Hot and Cool treatments.

Watering levels contrasted a perennial and seasonal stream, which we refer to as Well-

watered and Drought treatments. A detailed description of treatments is provided in the

Supplemental Materials and Methods and summarized in Fig 1. Because growth chambers

cannot be subdivided, one chamber was assigned to the Hot treatment level and another

to the Cool treatment level. Within each chamber, there were two Well-watered blocks
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and two Drought blocks. The photosynthetically active radiation in both chambers was

approximately 400 µmol quanta m−2 s−1. The growth chambers did not control humidity,

but because of watering and high plant transpiration rates, the relative humidity was quite

high in both temperature levels (data not shown).

Key treatments and measurements
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Figure 1: Overview of experimental treatments and timing of key trait measurements. All
plants germinated within 21 days of sowing. At that time, we began temperature treatments
(left axis), simulating a typical June-August weather pattern at Hot (red) and Cool (blue) sites.
The bold lines track the average daily temperatures. Within each day, there was a maximum
daytime temperture (top of translucent polygons) and minimum nighttime temperature (bot-
tom of translucent polygons). The drought treatment commenced later by ramping down the
frequency of bottom-watering episodes (black line; right axis). Grey boxes on the bottom of
the plot outline the period of key measurements described in the Material and Methods.

Growth and photosynthesis

Days to germination We tested for population variation in germination rate, measured

as Days to Germination, using a lognormal survival model fit using the survreg function

in the R package survival version 2.38 (Therneau, 2015). We treated Population as a fixed
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Table 2: Key traits measured in this study.

Trait Units

Days to germination day
Leaf expansion rate mm day−1

Stem elongation rate mm or cm day−1

Photosynthetic rate µmol CO2 m−2 s−1

Mortality probability of death

effect and Family as random effect using a Γ frailty function. Statistical signifcance of the

Population effect was determined using analysis of deviance. Note that, unlike other traits

discussed below, we did not include Block, Treatment, or Population × Treatment inter-

actions because during germination plants had not been placed into blocks and treatments

had not yet been applied.

Growth rate: leaf expansion and stem elongation We measured growth rate during

two phases: leaf expansion as a rosette and stem elongation after bolting. We censused leaf

length twice per week from 12 May – 12 June (28–59 days after sowing), resulting in 10

measurements. We ceased measuring leaf length once it appeared to asymptote and growth

shifted to stem elongation. We also censused plant height on 7 occasions (twice per week)

between 29 May and 20 June (45 to 67 days after sowing). Both leaf expansion and stem

elongation were modeled as second-order polynomials of time with individual coefficients

(separate for leaf and stem growth) using empirical Bayes’ estimates from linear mixed-

effects models fit with the R package lme4 version 1.1-12 (Bates et al., 2015).

Photosynthesis During the week of 10 to 16 June (57 to 63 days after sowing), we

measured daytime photosynthetic rate on a subset of 329 plants evenly spread between

treatments and families within populations. The youngest, fully-expanded leaf acclimated

for 3 minutes to reach steady state in a 6-cm2 chamber of a LI-COR 6400XT Portable Pho-
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tosynthesis System (LI-COR Biosciences, Lincoln, Nebraska). We made all measurements

at ambient light (400 µmol m−2 s−1 of photosynthetically active radiation), atmospheric

CO2 (400 ppm), temperature, and moderate relative humidity. During this period, we

suspended normal day-to-day temperature fluctuations and set daytime temperatures to

its average for that period (Cool: 26.5°; Hot: 36.1° so that all plants within a temperature

level could be measured under the same conditions.

Mortality We assayed mortality during twice-weekly growth measurements. We ana-

lyzed the probability of surviving until the end of the experiment as a function of popula-

tion, treatment, and their interactions using a Generalized Linear Mixed Model (GLMM)

assuming binomially distributed errors. We included Family and Block as random effects.

We assessed significance of fixed effects using Type-II Analysis of Deviance with Wald χ2

tests in the R package car (Fox and Weisberg, 2011).

Intrinsic variation and plasticity

For all traits (Table 2) except germination (see above), we tested for Population, Treatment,

and Population × Treatment interactions. We interpreted significant Population effects to

indicate intrinsic variation and Population × Treatment interactions to indicate variation

in plasticity. As mentioned above, we used survival and GLMM models for germination rate

and mortality, respectively. For all other traits, we used mixed model ANOVAs with Family

and Block included as random factors. We fit models using restricted maximum likelihood

in lmer, a function in the R package lme4 (Bates et al., 2015). We determined significant

fixed effect terms using a step-wise backward elimination procedure implemented with the

step function in the R package lmerTest version 2.0-32 (Kuznetsova et al., 2016). This

package uses Satterthwaite’s approximation to calculate denominator degrees of freedom

for F -tests. We also included days to germination as a covariate in growth analyses.
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Principal components of germination, growth, and photosynthesis

For each single-trait model above, we extracted the Population coefficient (factoring out

Treatment and other effects). The multivariate distribution of these coefficients was then

summarized using principal components analysis (PCA). The first principal component of

these traits (TraitPC1) loaded positively with germination, growth, and photostynthetic

rate, therefore we define this as a phenotypic axis dilineating fast to slow growth.

Identifying putative selective agents

We found that a population’s position along TraitPC1 correlated strongly with the latitude

or origin (see Results) and next used Random Forest regression (Liaw and Wiener, 2002)

to identify putative climatic factors underlying trait-latitude associations in M. cardinalis.

Hypothesis 1: if a single climatic factor explained more trait variation than latitude alone,

this would suggest that that factor is a selective agent underlying the latitudinal cline in

our 16 focal populations. Hypothesis 2: if multiple climatic factors together explained

trait variation, we interpreted this as evidence that multiple climatic factors together have

generated the latitudinal cline. We hereafter refer to factors identified in this analysis as

‘Climate-TraitPC1’ variables. In addition, to help eliminate potentially spurious correla-

tions between TraitPC1 and climate, we tested for overlap between climatic variables that

best predict latitude of all M. cardinalis occurrence records, not just the 16 focial popula-

tions. We refer to these climatic factors as ‘Climate-Latitude’ variables. The logic is that

climatic factors associated with both TraitPC1 and latitude for all populations are more

likely to be important selective agents than climatic factors that happen to correlate with

TraitPC1 but do not covary with latitude throughout the M. cardinalis range. We selected

Climate-Latitude and Climate-TraitPC1 variables independently with Variable Selection

Using Random Forest (VSURF) algorithm in the R package VSURF version 1.0.3 (Genuer

et al., 2016). VSURF ranks variables by their importance over regression trees in the forest.
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We kept only variables selected for prediction, the most stringent criterion.

To test the third hypothesis about climatic neighborhoods driving selection, we repeated

the same procedure to identify Climate-TraitPC1 variables as above, except that we used

spatially averaged climate variables. We sampled climate at 1000 random points (at 90-m

resolution) within a 62-km buffer around the 16 focal populations. We chose this buffer size

because neutral genetic differentiation increases slowly with geographic distance, indicating

significant gene flow between nearby populations (Paul et al., In review). Significant spatial

autocorrelation persisted for approximately 62 km. Since M. cardinalis is found exclusively

in riparian areas, we only selected points along streams using the National Hydrogeoraphy

Dataset (United States Geological Survey, 2015). Climatic means and CVs were weighted

by their climatic suitability as determined using a multimodel ensemble average of ecological

niche models (Angert et al., 2016). We distinguish between analyses where climate is

inferred from a single point (‘point estimated Climate-TraitPC1’) versus averaged across a

62-km climatic neighborhood (‘spatially averaged Climate-TraitPC1’).

For Climate-Latitude analyses, we compiled a representative set of 356 recent (since 2000)

known M. cardinalis occurences. These occurences were thinned by 50% to correct for

uneven sampling from a comprehensive set of herbarium records and an exhaustive field

survey in 2010-11 (Angert et al., 2016). For both Climate-TraitPC1 analyses (16 focal

populations) and Climate-Latitude (many populations), we used a 90-m digital elevation

model from HydroSHEDS (Lehner et al., 2006) to extract elevation. Monthly interpolated

climate layers were calculated using ClimateWNA version 5.30 (Wang et al., 2012), which

accurately downscales climate data specifically for the rugged topography of western North

America. For each occurence, we calculated bioclimatic variables using the biovars function

in the R package dismo version 1.1-1 (Hijmans et al., 2016). In total, we included 24 climate

variables, 9 from ClimateWNA and 15 bioclimatic variables (Table S2). The bioclimatic

variables included all permutations of two climatic factors, temperature and precipitation,

and six temporal scales (annual average, coldest quarter, warmest quarter, wettest quarter,
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driest quarter, or seasonality) as well as mean diurnal range, isothermality, annual temper-

ature range. For each variable, we calculated both a 30-year normal by averging annual

values between 1981 and 2010 and 30-year coefficient of variation, a standardized metric

of interannual climatic variation. Temperatures were converted to Kelvin to be on a ratio

scale appropriate for calculating the coefficient of variation.

Results

A coordinated latitudinal cline in germination, growth, and photosynthe-

sis

There are strong genetically-based trait differences in time to germination, growth, and

photosynthetic rate among populations of M. cardinalis, as evidenced by large and signif-

icant population effects for these traits (Table 3). A single principal component captured

71.6 % of the trait variation among populations, defining an axis of variation from fast

to slow growth (Fig 2). As we explain below, intrinsic differences between populations in

terms of plant function (photosynthesis) and performance (growth) contrasted with the

low amount of variation in plasticity. There were similar latitudinal clines for individual

traits underlying PC1 (Fig S1-S4).

Little evidence for variation in plasticity

Genotype × environment (G×E) interactions are also a common signature of local adap-

tation. We found little evidence G×E in M. cardinalis. There were only two statistically

significant Population × Treatment interaction (Table 3), but these were not strong com-

pared to Population and Temperature effects. Otherwise, populations responded similarly

to treatments: faster growth in the hot treatment, slower growth in the dry treatment, and
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Table 3: Summary of Population, Treatment, and Population × Treatment effects. We used
different statistical modeling for the diverse traits assayed – glmer: generalized linear mixed
model using the R package lme4 (Bates et al., 2015); lmer: linear mixed model using the
R package lme4 (Bates et al., 2015); survreg: survival regression using the R package sur-
vival (Therneau, 2015). Note that temperature and water treatments were imposed after
germination, hence are not applicable to this trait. Complete analysis of variance/deviance
tables for each trait are available in the Supporting Information. Key to statistical significance:
*P < 0.05; ** P < 0.01; *** P < 0.001

Trait Germination Leaf expansion Stem elongation Photosynthesis Mortality
Statistical model survreg lmer lmer lmer glmer

Population *** *** *** ***
Temperature NA *** *** ** ***
Water NA * ***
Pop × Temp NA *
Pop × Water NA *
Temp × Water NA ***
Pop × Temp × Water NA

high mortality in the hot, dry treatment (Table 3). Note that interactions were calculated

after factoring out intrinsic trait differences, necessarily reducing statistical power to detect

significant interactions relative to main effects. However, the fact that the Population and

Treatment effects were often highly significant (P � 0.001 in most cases) suggests that

statistical power alone cannot explain why we failed to detect Population × Treatment

interactions. Complete ANOVA tables are available in the Supporting Information (Table

S3-S6).

Climatic variability best explains latitudinal cline

Latitudinal clines are common, but it is often difficult to ascribe this variation to a partic-

ular selective agent. For M. cardinalis, interannual variation in precipitation over 30 years

(1981–2010) is very closely related to the latitude of recently recorded occurences of this

species (Fig. 3A). Specifically, precipitation is more variable at lower latitude. The two

most important Climate-Latitude variables were the interannual variation in total precipi-
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Figure 2: Trait variation, from fast to slow growth, is closely associated with latitude. Each
point is a population’s latitude of origin (x-axis) and position along the slow to fast growth axis
(y-axis), defined as Principal Component 1 of four traits (see Material and Methods). The line
and 95% confidence intervals were estimated using linear regression.

tation (bio12σ; see Table. S2 for a key to climate variable abbreviations) and precipitation

in the wettest quarter (bio16σ). Note that the coefficient of variation of a climatic factor

is subscripted with σ whereas the mean is subscripted with µ. Bio12σ and bio16σ are very

similar because in Mediterranean climates of California, most precipitation occurs in the
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winter quarter. These Climate-Latitude variables were also the two most important point

estimated Climate-TraitPC1 variables (Fig. 3B). Populations from Southern, more variable

environments grew faster. However, neither climatic variable alone explained more varia-

tion in TraitPC1 than latitude (latitude r2 = 0.55; bio16σ r
2 = 0.52; bio12σ r

2 = 0.47).

Interannual variation in chilling degree-days (DD 0σ) was also common to both Climate-

Latitude and Climate-TraitPC1 analyses (Fig. 3). Southern, faster growing populations

are from climates with less variation in chilling degree-days. However, DD 0σ and bio16σ

together still only explained slightly more variation in TraitPC1 than latitude alone (lati-

tude r2 = 0.55 versus DD 0σ+bio16σ r
2 = 0.6). This suggests that interannual variation

in precipitation explains most of the latitudinal cline, but other variables such as variation

in chilling degree-days may contribute.

There was no overlap between Climate-Latitude and spatially averaged Climate-TraitPC1

(Fig. S7). This is not because climatic neighboorhood did not predict TraitPC1; there were

significant correlations between important spatially averaged climatic factors and TraitPC1

that explained as much variation as latitude (data not shown). If these correlations are

spurious, this indicates that climatic neighborhood is not as imporant as climate in the

immediate vicinity of a population. Conversely, the climatic neighborhood may be impor-

tant among our focal populations and depart from rangewide correlations between latitude

and climate. Since these analyses are exploratory and prone to overinterpretation, we be-

lieve the closer overlap between Climate-Latitude and point estimated Climate-TraitPC1

variables provides more compelling evidence for putative selective agents.

Discussion

We found evidence for one of two common signatures of local adaptation in the peren-

nial herb Mimulus cardinalis. Latitudinal clines in germination rate, photosynthesis, and

growth, suggests adaptive differentiation in fundamental physiological traits of the species.
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Figure 3: Interannual variation in precipitation is closely correlated with latitude and trait vari-
ation. A. Using Random Forest regression, we identified 11 climatic variables significantly (high
importance) associated with latitude of M. cardinalis occurences. B. The two most important
Climate-Latitude variables were also the two most important Climate-TraitPC1 variables. Note
that the Importance values in A and B are not comparable because the dependent variables
(Latitude and Trait PC1, respectively) are on different scales. Climatic variables (left of A;
right of B) are defined by three qualities: Climatic factor – Temperature (Temp), Precipitation
(Prec), Chilling (chilling degree-days), Snow (precipitation as snow); Temporal scale – Annual,
Coldest quarter (Cold Quar), Warmest Quarter (Warm Quar), Wettest quarter (Wet Quar),
Driest Quarter (Dry Quar), or Seasonality; Summary statistic – average (µ) or coefficient of
variation (σ)

However, we found little evidence that populations respond differently to temperature or

drought. As we discuss below, this may indicate that the fundamental abiotic niche is

relatively conserved. Finally, we found that climatic variation between years may be a

more important selective agent than the average climate. In the paragraphs that follow,

we tie these results into the broader threads of evolutionary theory that might help explain

why intrinsic variation in photosynthesis and growth varies clinally, but plastic responses

to temperature and drought are relatively conserved.

Evolutionary theory indicates that the shape of fitness tradeoffs, demography, and gene flow

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 14, 2016. ; https://doi.org/10.1101/080952doi: bioRxiv preprint 

https://doi.org/10.1101/080952


can constrain adaptation (Levins, 1968; Ronce and Kirkpatrick, 2001) and hence the type

of variation maintained within species. Specifically, adaptive variation cannot be main-

tained by spatially varying selection if tradeoffs are too strong, demography is strongly

asymmetric, and/or maladaptive gene flow is too high. In M. cardinalis we found sub-

stantial genetically based variation among populations along a phenotypic axis from fast

to slow growth that varied over a large spatial scale (Fig. 2). If this variation is adaptive,

it suggests that the fitness tradeoff between doing well in low versus high latitude envi-

ronments is not too strong nor swamped by demographic asymmetry or maladaptive gene

flow. That is, alleles favoured at one latitude are not strongly selected against when they

flow to another population, allowing locally adaptive genetic variation to be maintained

by spatially heterogenous selection. We also know from previous work that population

size does not vary strongly with latitude. Gene flow appears to be high, but attenuates at

broad spatial scales, especially between Southern (< 35°N) and Northern portions of the

range (Paul et al., In review).

Another possibility we could have seen is that southern populations, which appear to

experience more frequent drought years (see next section), could have evolved the ability

to tolerate drought better than northern populations, thereby expanding the fundamental

niche of the species as a whole. We found no evidence for this; all populations responded

to drought and temperature similarly (Table 3). Plants grew faster in the Hot treatment,

but there was little effect of drought on growth. Rather, the effects of drought took longer

to materialize but resulted in high mortality, especially in the Hot chamber. However,

there was no differential mortality among populations in this treatment. We hypothesize

that evolution of the fundamental niche may be constrained by a combination of strong

fitness tradeoffs, demographic asymmetry, and gene flow. Riparian habitats where M.

cardinalis live are highly heterogeneous at small spatial scales. Plants in the stream never

have to tolerate drought whereas plants only a few meters away may experience extreme

drought since there is little direct precipitation during the growing season in Mediterranean
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climates of western North America. But alleles that confer greater drought tolerance may

be quite costly in well-watered soils, and vice versa, leading to strong fitness tradeoffs.

Such tradeoffs promote specialization to one soil type or another, thereby inhibiting the

evolution of broad environmental tolerance within a population. Demography and gene

flow may reinforce niche conservatism. A new mutant with increased drought tolerance

that can survive at the resource-poor margin of a population will be demographically

overwhelmed by the larger census populations that can be maintained in higher resource

environments. Infrequent wet years may also produce most seeds, so selection weighted

towards wet environment even if dry years are more frequent. Finally, gene flow, which is

generally high among M. cardinalis populations within the same ecoregion (Paul et al., In

review), will thwart local adaptation and reinforce specialization. Thus, the spatial grain

of the environment, demographic asymmetry, and gene flow may conspire to constrain local

adaptation via altered fundamental niche.

Based on the available data, interannual variation in annual or winter precipitation (these

are closely correlated in Mediterranean climates) may be the selective agent driving varia-

tion in physiological traits. Variation in precipitation was best predicted latitude of recent

M. cardinalis occurences and trait variation along the fast-slow growth continuum (Fig. 3).

A life history tradeoff between allocation to growth in the current year at the expense

of future years could explain this pattern. In southern populations with more frequent

droughts capable of killing rhizomes, a more annualized strategy could be favored. Con-

versely, in more predictable northern environments, lifetime fitness may be optimized when

a significant fraction of assimilate is allocated below ground for future years. Although this

hypothesis remains to be directly tested, a few independent lines of evidence are consis-

tent with it. Preliminary surveys suggest that northern populations not only grow slower,

but also produce greater numbers of rhizomes (C.D. Muir, unpub. data), suggesting an

allocation tradeoff. Ecological niche models also show that occurence of southern popula-

tions is best predicted by recent climate (< 5 years), whereas northern occurences are best
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predicted by climate over the previous 30 years (M. Bayly & A. Angert, unpub. data).

Finally, demographic surveys of natural populations show greater variation in the size of

recruits in southern populations, suggesting higher maximum growth rates under natural

conditions (M. Bayly & A. Angert, unpub. data). There is a lot of interest in understand-

ing how organisms will respond to changes in climatic variation, not just changes in the

average climate. Our data indeed suggest that variation may be more important than the

mean.

In summary, we found evidence for a coordinated latitudinal cline in germination rate,

photosynthesis, and growth, suggesting local adaptation. These fixed differences between

populations suggest different trait optima in different climates. We did not find evidence

that the relative performance of populations shifts with temperature or watering regime,

suggesting relatively little variation in plasticity. Exploratory analysis implicate that more

variable precipitation regimes at lower latitude drive much of the latitudinal cline, though

other climatic factors could also contribute. There was little compelling evidence that se-

lection over a broad climatic neighborhood surrounding populations strongly explained the

latitudinal cline. In the future, we will use field experiments to test whether greater vari-

ation in precipitation selects for faster growth and that selection on temperature/drought

responses does not vary among populations. By doing so, we aim to understand why

certain physiological and developmental mechanisms, but not others, contribute to local

adaptation.
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Table S1: Initial size of seedlings did not vary among Populations, Families, or Treatments.
We used a censored Gaussian model of initial size at the outset of the experiment (longest
leaf length of the first true leaves). The model was censored because we could not accurately
measure leaves less than 0.25 mm with digital callipers (217 of 702, 30.9%, were too small).
We fit models using a Bayesian MCMC method implemented using the MCMCglmm function
with default priors in the R package MCMCglmm version 2.17 (Hadfield, 2010). We estimated
the posterior distribution from 1000 samples of an MCMC chain run for 105 steps after a 104

step burn-in. We used step-wise backward elimination procedure to find the best-supported
model according to Deviance Information Criterion (DIC).

Model Random DIC

Population + Water + Temperature +
Population:Water +
Population:Temperature +
Water:Temperature +
Population:Water:Temperature

Family 1638

Population + Water + Temperature +
Population:Water +
Population:Temperature +
Water:Temperature

Family 1605.2

Population + Water + Temperature +
Population:Water +
Population:Temperature

Family 1603.4

Population + Water + Temperature +
Population:Water +
Water:Temperature

Family 1577.5

Population + Water + Temperature +
Population:Temperature +
Water:Temperature

Family 1579.9

Population + Water + Temperature +
Population:Water

Family 1577.3

Population + Water + Temperature +
Water:Temperature

Family 1550.5

Population + Water + Temperature Family 1549.3
Population + Water Family 1541.7
Population + Temperature Family 1546.8
Water + Temperature Family 1551.1
Population Family 1541.9
Water Family 1543.9
- Family 1541.7
- - 1538.3
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Table S2: Climatic variables used

Abbreviation Climate variable

DD 0 degree-days below 0℃(chilling degree-days)
DD5 degree-days above 5℃(growing degree-days)
DD 18 degree-days below 18℃(heating degree-days)
DD18 degree-days above 18℃(cooling degree-days)
NFFD number of frost-free days
PAS precipitation as snow (mm) between August in previous year and July in current
Eref Hargreaves reference evaporation (mm)
CMD Hargreaves climatic moisture deficit (mm)
RH mean annual relative humidity
bio1 Annual Mean Temperature
bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
bio3 Isothermality (bio2/bio7) (* 100)
bio4 Temperature Seasonality (standard deviation *100)
bio5 Max Temperature of Warmest Month
bio6 Min Temperature of Coldest Month
bio7 Temperature Annual Range (bio5-bio6)
bio8 Mean Temperature of Wettest Quarter
bio9 Mean Temperature of Driest Quarter
bio10 Mean Temperature of Warmest Quarter
bio11 Mean Temperature of Coldest Quarter
bio12 Annual Precipitation
bio15 Precipitation Seasonality (Coefficient of Variation)
bio16 Precipitation of Wettest Quarter
bio17 Precipitation of Driest Quarter
bio18 Precipitation of Warmest Quarter
bio19 Precipitation of Coldest Quarter
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Table S3: Analysis of varianace (ANOVA) table on leaf expansion rate (LER) using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random effects. Abbreviations:
SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees of
freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Day to Germination 12.12 12.12 1 637 35.21 4.9 ×10−9

Population 22.22 1.48 15 118 4.3 2.5 ×10−6

Temperature 80.42 80.42 1 5 233.61 2.6 ×10−5

Water 4.1 4.1 1 5 11.92 0.019
Temperature × Water 0.03 0.03 1 4 0.07 0.801
Population × Temperature 2.76 0.18 15 547 0.53 0.925
Population × Water 9.66 0.64 15 562 1.87 0.024
Population × Temperature × Water 4.11 0.27 15 530 0.78 0.700

Table S4: Analysis of varianace (ANOVA) table on stem elongation rate (SER) using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random effects. Abbreviations:
SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees of
freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Day to Germination 3.6 3.6 1 662 21.1 5.1 ×10−6

Population 12 0.8 15 113 4.7 5.8 ×10−7

Temperature 12.4 12.4 1 6 72.8 1.5 ×10−4

Water 0.6 0.6 1 5 3.7 0.113
Temperature × Water 0.9 0.9 1 4 5.2 0.093
Population × Temperature 3.6 0.2 15 549 1.4 0.126
Population × Water 2.8 0.2 15 536 1.1 0.330
Population × Temperature × Water 1.5 0.1 15 518 0.6 0.874
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Table S5: Analysis of varianace (ANOVA) table on photosynthetic rate using lmerTest
(Kuznetsova et al., 2016). Family and Block were included as random effects. Abbrevia-
tions: SS = sum of squares; MS = mean sum of squares (SS / df1); df1 = numerator degrees
of freedom; df2 = denominator degrees of freedom.

SS MS df1 df2 F-value P -value

Population 347.7 23.2 15 78 3.02 7.5 ×10−4

Temperature 134.1 134.1 1 6 17.46 6.4 ×10−3

Water 51 51 1 4 6.64 0.066
Temperature × Water 0.7 0.7 1 3 0.09 0.781
Population × Temperature 218.6 14.6 15 263 1.9 0.024
Population × Water 87.7 5.8 15 233 0.76 0.724
Population × Temperature × Water 91.4 6.1 15 208 0.79 0.686

Table S6: Analysis of deviance table on the probability of mortality by the end of the experiment
using Type-II Wald χ2 tests in the R package car (Fox and Weisberg, 2011). Family and Block
were included as random effects. Abbreviations: df = degrees of freedom

χ2 df P -value

Population 32 31 0.419
Temperature 31.8 6 1.8 ×10−5

Water 69.2 12 4.6 ×10−10

Temperature × Water 20.7 1 5.3 ×10−6

Population × Temperature 5.6 15 0.985
Population × Water 8.6 15 0.897
Population × Temperature × Water 0.2 15 1.000
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Table S7: Important climatic variables predicting latitude of M. cardinalis populations
(‘Climate-Latitude’) and the first principal component of traits measured in a common gar-
den (‘Climate-TraitPC1’). Point estimated climatic variables were measured from the exact
location of collection; spatially averaged climatic variables were averaged from a 62-km neigh-
borhood around population (see Material and Methods). Importance and significance were
determined using the variable selection using random forests (VSURF) algorithm (see Material
and Methods). Climatic variables are described in Table S2. µ signifies the mean of the climate
variables from 1981–2010; σ indicates coeffiecient of variation among years.

Climate-Latitude variables Climate-TraitPC1 variables
Point estimated Spatially averaged

Precipitation of wettest quarter (σ) Precipitation of wettest quarter (σ) Mean diurnal range (σ)
Annual precipitation (σ) Annual precipitation (σ) Mean temperature of coldest quarter (σ)
Precipitation of coldest quarter (σ) Chilling degree-days (σ) Precipitation seasonality (σ)
Mean temperature of coldest quarter (σ) Annual mean relative humidity (σ)
Precipitation seasonality (µ) Precipitation seasonality (σ)
Chilling degree-days (σ)
Precipitation of warmest quarter (σ)
Mean temperature of warmest quarter (σ)
Temperature seasonality (µ)
Precipitation as snow (σ)
Precipitation of driest quarter (µ)
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Supporting Figures
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Figure S1: Southern populations germinate faster. Each point is a population of M. cardinalis
showing its latitude of origin (x-axis) and model-predicted days to germination in days under
growth chamber conditions (see Material and Methods). Bars around each point are 95%
confidence intervals. Predicted time to germination and confidence intervals are based on
survival regression (see Materials and Materials). The line is the linear regression of log(model-
predicated days to germination) ∼ latitude. The P -value of the regression is given in the upper
left corner.
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Figure S2: Southern populations grow faster. Each point is a population of M. cardinalis
showing its latitude of origin (x-axis) and model-predicted leaf expansion rate during the rosette
phase. Bars around each point are 95% confidence intervals. Predicted leaf expansion rate based
least-square mean estimates and confidence intervals were calculated from linear mixed-effects
models (see Materials and Materials). The line is the linear regression of model-predicated leaf
expansion rate ∼ latitude. The P -value of the regression is given in the upper right corner.
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Figure S3: Southern populations grow faster. Each point is a population of M. cardinalis
showing its latitude of origin (x-axis) and model-predicted stem elongation rate during the
bolting phase. Bars around each point are 95% confidence intervals. Predicted stem elongation
rate based least-square mean estimates and confidence intervals were calculated from linear
mixed-effects models (see Materials and Materials). The line is the linear regression of model-
predicated stem elongation rate ∼ latitude. The P -value of the regression is given in the upper
right corner.
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Figure S4: Southern populations photosynthesize faster. Each point is a population of M.
cardinalis showing its latitude of origin (x-axis) and model-predicted instantaneous photosyn-
thetic rate. Bars around each point are 95% confidence intervals. Predicted photosynthetic
rates based least-square mean estimates and confidence intervals were calculated from linear
mixed-effects models (see Materials and Materials). The line is the linear regression of model-
predicated photosynthetic rate ∼ latitude. The P -value of the regression is given in the upper
right corner.
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Supporting Material and Methods

Temperature treatments

We simulated typical growing season (June 1 - August 15) air temperatures at the two most

thermally divergent focal sites in our study, Whitewater Canyon (WWC, Hot) and Little

Jameson (LIJ, Cool). We downloaded daily interpolated mean, minimum, and maximum

air temperature from 13 years (2000-2012) at both sites from ClimateWNA (Wang et al.,

2012). This range was chosen because seeds used in the experiment were collected around

2012, thus their presence in that location at that time suggests that populations were able

to persist there for at least some years before collection. Monthly temperatures from Cli-

mateWNA are highly correlated with the air temperature recorded from data loggers in

the field at these sites (A. Angert, unpub. data). Hence, the ClimateWNA temperature

profiles are similar to actual thermal regimes experienced by M. cardinalis in nature. We

simulated realistic temperature regimes by calculating the mean temperature trend from

June to August using LOESS (Cleveland et al., 1992). The residuals were highly autocor-

related at both sites (warmer than average days are typically followed by more warm days)

and there was strong correlation (r = 0.65) between sites (warm days in WWC were also

warm in LIJ). The ‘VARselect’ function in the vars package for R (Pfaff, 2008) indicated

that a lag two Vector Autoregression (VAR(2)) model best captured the within-site auto-

correlation as well as between-site correlation in residuals. We fit and simulated from the

VAR(2) model using the package dse (Gilbert, 2014) in R. Simulated data closely resem-

bled the autocorrelation and between-site correlation of the actual data. From simulated

mean temperature, we next selected minimum and maximum daily temperatures. Mean,

min, and max temperature were highly correlated at both sites. We chose min and max

temperatures using site-specific fitted linear models between mean, max, and min tem-

perature, with additional variation given by normally distributed random deviates with

variance equal to the residual variance of the linear models. For each day, the nighttime
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(22:00 - 6:00) chamber temperature was set to the simulated minimum temperature. Dur-

ing the middle of the day, temperature was set to the simulated maximum temperature,

with a variable period of transition between min and max so that the average temperature

was equal the simulated mean temperature.

Watering treatments

For watering treatments, we simulated two extreme types of streams where M. cardinalis

grows. In the well-watered treatment, we simulated a large stream that never goes dry

during the summer growing season. In the drought treatment, we simulated a small stream

that has ample flow at the beginning of the season due to rain and snow melt, but gradually

dries down through the summer. In both treatments, plants were bottom-watered using

water chilled to 7.5℃. Plants in the well-watered treatment were fully saturated every two

hours during the day. Watering in the drought treatment gradually declined from every

two hours to every day between May 20 (36 days after sowing) and 10 June (57 days after

sowing). Simultaneously, the amount of bottom-watering per flood decreased, such that

only the bottom of the cone-tainers were wetted by the end of the experiment.
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