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Empirical Bayes estimation of semi-parametric hierarchical mixture models  

for unbiased characterization of polygenic disease architectures 

 

 

 Abstract 

Genome-wide association studies (GWAS) suggest that the genetic architecture of complex 

diseases consists of unexpectedly numerous variants with small effect sizes. However, the 

polygenic architecture of many diseases has not been accurately assessed due to lack of simple 

and fast methods for unbiased estimation of the underlying proportion of disease-associated 

variants and their effect-size distribution. Applying empirical Bayes estimation of 

semi-parametric hierarchical mixture models to GWAS summary statistics, we confirmed that 

schizophrenia was extremely polygenic (~30% risk variants of independent genome-wide 

SNPs, most within odds ratio (OR)=1.03), whereas rheumatoid arthritis was less polygenic 

(2.5~5.0% risk variants, significant portion reaching OR=1.05~1.1). For rheumatoid arthritis, 

stratified estimations revealed that expression quantitative loci in blood explained large 

genetic variance, and low- and high-frequency derived alleles were prone to be risk and 

protective, respectively, suggesting a predominance of deleterious-risk and 

advantageous-protective mutation. Despite genetic correlation, effect-size distributions for 

schizophrenia and bipolar disorder differed across allele frequency. These analyses 

distinguished disease polygenic architectures and provided clues for etiological differences in 

complex diseases. 
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 Genome-wide association studies (GWAS) have identified numerous susceptibility 

variants for complex diseases1. The sets of variants identified from GWAS, however, can 

generally explain only a small proportion of the heritability estimated from family studies, the 

so called “missing heritability” problem2. Many researches have suggested that the variance 

explained by all SNPs in dense genotyping arrays, i.e., SNP heritability, often accounts for a 

large proportion of the family-based heritability3–11. 

Quantitative evaluation of the polygenic architecture, in particular, the estimation of 

the proportion of disease-associated SNPs and their effect-size distribution, is essential to 

further determine the source of observed heritability7,8,12–16. The estimation of these 

components also contributes to accurate power and sample size calculations of GWAS7,12,13,17–19 

and estimation of the predictive capability of disease risks12,15,16. 

However, we are still far from understanding the polygenic architecture of most 

complex diseases, because so far, there have been no feasible or fast methods to unbiasedly 

evaluate various polygenic architectures using the entire SNPs across the genome. Stahl et al. 

proposed estimating the proportion of disease-associated SNPs and the effect-size distribution 

using an approximate Bayesian polygenic analysis8. Its application, however, has been limited 

to few studies7,8 because of technical complexity and excess computational burden with many 

simulations. On the other hand, some authors estimated the effect-size distribution based on a 

power evaluation for SNPs reaching genome-wide significance13–15. This method, however, is to 

evaluate effect sizes only for those SNPs with relatively large effects, not all the 

disease-associated SNPs, requiring adjustment for the winner’s curse (selection bias in using 

top significant SNPs) in the effect-size estimation.  

To address the aforementioned limitations of the existing methods, we propose an 
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empirical Bayes estimation of semi-parametric hierarchical mixture models (SP-HMMs)20,21 of 

GWAS summary statistics on effect sizes, such as estimated log-odds ratios to associate 

genotypes with disease susceptibility. Mixture modelling refers to decomposing the underlying 

distribution of SNP-specific summary statistics into a non-null distribution for SNPs associated 

with disease occurrence, which corresponds to a signal component, and a null distribution for 

the remaining SNPs without association, which corresponds to a noise component, with a 

mixing probability or proportion of disease-associated SNPs, π. For non-null distribution, 

semi-parametric hierarchical modelling incorporates standard asymptotic normality for 

summary statistics, while the true effect sizes follow a non-parametric prior distribution g. 

With an expectation-maximization (EM) algorithm22, we can accurately estimate the prior 

probability π and distribution g using the data, i.e., empirical Bayes estimation. The empirical 

Bayes estimation of hierarchical mixture models is also applicable for SNP heritability 

estimation3 and adjustment for the winner's curse23. 

The features of our approach are summarized as follows: 1) the polygenic 

architecture for the entire set of SNPs, represented by π and g, can be flexibly and accurately 

estimated, 2) it requires only summary data from GWAS or meta-analysis of GWAS (e.g., 

estimated log-odds ratios and standard error for individual SNPs are used), and 3) the 

estimation algorithm is easily implemented and fast. 

Throughout this paper, we fit the SP-HMM to summary data from 

meta-/mega-analyses for various diseases such as rheumatoid arthritis24, schizophrenia25, 

bipolar disorder26, and coronary artery disease27,28, to estimate the respective polygenic 

architectures and compare them across diseases. We also assess the liability-scale variance 

explained by SNPs based on this estimation. In order to obtain further insight into the 

underlying polygenic architectures, our approach can easily incorporate important functional 
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categories, such as expression quantitative trait loci (eQTL), coding, non-synonymous, 

promoter, 5’ or 3’ UTR, enhancer, and DNase I hypersensitivity sites29–32. We focus on eQTLs, as 

gene expression levels have been increasingly recognized as notable endophenotypes or 

important mediators between genetic variations and disease phenotypes29,30,33,34. Lastly, we 

also incorporate derived allele frequency (DAF), rather than minor allele frequency 

(MAF)14,35,36. A minor allele with low MAF can represent an allele with high DAF possibly under 

positive selection, as well as an allele that is maintained at low DAF by negative selection. Thus, 

our DAF-based analysis facilitates interpretation from the perspective of population genetics37, 

possibly contributing to further understanding of the genetic etiology for complex diseases. 

 

RESULTS 

We first confirmed the adequacy of our estimation method in unbiasedly estimating the 

proportion of disease-associated SNPs, π, and the effect-size distribution, g, in simulation 

experiments (see Supplementary Note, Supplementary Tables 1-5 and Supplementary Figs. 

1-4). The non-parametric estimation for g could flexibly capture various forms of the 

underlying effect-size distributions.    

For application to real GWAS datasets, we used publicly available summary statistics 

from large meta-/mega-GWAS for the four complex diseases (see Supplementary Tables 6 and 

7 for details of the GWAS data). In associating each genotype with disease susceptibility, we 

defined the effect size as a log-odds ratio of the derived allele relative to the ancestral allele, 

denoted by β. We obtained an estimate of β and its variance estimate from the summary data. 

The ancestral/derived alleles for each SNP were determined from dbSNP.  

 

Estimated proportion of disease-associated SNPs and effect-size distribution 
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To estimate the proportion of disease-associated SNPs, π, and the effect-size distribution, g, 

based on independent SNPs, we used two pruned SNP sets: P-value-based and random-pruned 

sets. The P-value-based method preferentially selected SNPs with stronger associations (hence 

more closely linked to causal variants) while using other GWAS data to correct for selection 

bias (see Online Methods for details). The random-pruned method sampled SNPs randomly. In 

both methods, pruned SNPs with linkage disequilibrium (LD, 𝑟𝑟2 ≤ 0.1) were selected. Of note, 

one causal variant would not be redundantly tagged by SNPs in the pruned SNP sets, whereas 

not all causal variants would be well tagged by SNPs even in the P-value-based sets. Thus, the 

estimates 𝜋𝜋�  × (the number of SNPs in the SNP sets) using the pruned sets would give 

conservative estimates of the number of causal variants. 

We fit the SP-HMM to the P-value-based pruned SNP sets in each GWAS (Table 1; Fig. 

1). For rheumatoid arthritis, π was estimated as 2.5% for Asian and 5.0% for European 

populations, which were lower than the other diseases. The estimates of π were larger for two 

psychiatric diseases: 31.7% for schizophrenia and 20.5% for bipolar disorder. For coronary 

artery disease, using CARDIoGRAM and C4D data, π was estimated to be 8.0% and 10.7%, 

respectively. 

With regard to the estimation of g, rheumatoid arthritis was shown to have a 

distribution with larger effects, spanning to |β| = 0.05 (odds ratio of 0.95 or 1.05) or larger, 

when compared with the other diseases (Fig. 1). Interestingly, we also observed that a group of 

SNPs with very large effects at |β| > 0.05 formed clear peaks. It is noteworthy that, for 

rheumatoid arthritis, the proportion of positive effects was clearly larger than that of negative 

effects, indicating that the derived alleles are more likely to be risk alleles for the disease. 

Bipolar disorder was also estimated to have a distribution with relatively large effects. In 

contrast, schizophrenia was shown to have the narrowest distribution with very small effects. 
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Coronary artery disease was also estimated to have a distribution with relatively small effects, 

next to schizophrenia. 

The estimates of π for the random-pruned SNP sets were similar to those for the 

P-value-based SNP sets for each GWAS (Supplementary Table 8). For the estimation of 

effect-size distribution, 𝑔𝑔�, the absolute effect size, |β|, tended to be slightly greater when using 

the P-value-based SNP sets than when using the random-pruned SNP set (Supplementary Fig. 

5). 

 

Liability-scale variance explained by SNPs 

Using the estimates of the polygenic architecture (π and g), together with disease prevalence 

and allele frequencies, we could immediately evaluate the liability-scale variance, V, explained 

by SNPs (i.e., SNP heritability). For evaluating V, the SP-HMM could directly model binary traits 

(i.e., disease occurrence) via log-odds ratios obtained from GWAS summary data. 

Using the P-value-based pruned SNP sets, for rheumatoid arthritis, the estimates of V 

were 14.0% for Asian and 20.0% for European data (Table 1). Based on the estimated variance 

of 12% explained by the major histocompatibility complex (MHC) region (removed from the 

SNP set) and family based heritability of 55% (Supplementary Table 1 of Stahl et al.8), SNPs 

explained 47.3% (= (0.14 + 0.12)/0.55) and 58.2% (= (0.20 + 0.12)/0.55) of the family based 

heritability for the Asian and European populations, respectively, which were generally 

consistent with the previous estimate of 65%8. The estimates of V in schizophrenia and bipolar 

disorder were around 40% and 50%, respectively, which were higher but almost within the 

range of previously reported estimates of 23-43% and 37-47%, respectively, for these 

diseases5,7,9,10. For cardiovascular disease, the estimates of V from the CARDIoGRAM and C4D 

data were 20.7% and 22.0%, respectively.  
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 The estimates of V for the P-value-based pruned SNP sets (Table 1) were greater than 

those for the random-pruned SNP sets, but the differences were not substantial except for 

bipolar disorder (Supplementary Table 8). 

 

Stratified estimation for eQTL/non-eQTL-SNPs 

In order to gain insights into mediator effects of gene expression level, we fit the SP-HMM to 

‘eQTL’ SNPs, detected as cis-eQTLs using peripheral blood samples38, and the remaining 

‘non-eQTL’-SNPs, separately (Fig. 2). All the SNPs in this analysis were selected to be nearly 

independent using a LD-pruning method based on LD (r2 > 0.1) (see Online Methods).  

For rheumatoid arthritis in Asian and European populations, the proportions of 

disease-associated SNPs in the eQTL-SNPs were estimated to be larger than that in the 

non-eQTL-SNPs (Fig. 2). In addition, the estimated effect-size distributions in terms of π × g 

(frequencies in the entire set including both null and non-null SNPs) in Fig. 2 indicated that 

there was a significant portion of SNPs with large effects, |β| > 0.05, for the eQTL-SNPs, but a 

small portion for the non-eQTL-SNPs, suggesting that the set of eQTL-SNPs included more 

components with distinctive large effects for rheumatoid arthritis. For the other diseases, there 

was a tendency for the frequencies of disease-associated SNPs in the set of eQTL-SNPs to be 

larger than those of the non-eQTL-SNPs.  

We also estimated V for the eQTL-SNPs and non-eQTL-SNPs, separately 

(Supplementary Table 9). For rheumatoid arthritis, as expected from Fig. 2, the per-SNP 

variance for the eQTL-SNPs was much larger than for the non-eQTL-SNPs. Interestingly, 

although ‘eQTL’ was defined using European samples38, the enrichment of per-SNP variance 

(10.7-fold) in the eQTL-SNPs in the Asian population was larger than the 5.7-fold enrichment 

seen in the European population.  
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Estimation across derived allele frequencies 

The effect size estimation of GWAS data stratified with the derived allele frequency (DAF) could 

provide another perspective on polygenic architecture, which facilitates assessment based on 

population genetics (see Discussion). We classified all SNPs into ten equally-sized DAF bins and 

estimated the effect-size distribution for each bin. For rheumatoid arthritis, the estimated 

distributions across the DAF bins were similar between Asian and European data (Figs. 3a, b). 

We observed sharp peaks at positive effects, i.e., β > 0, for lower DAF bins, especially for DAF ≤ 

0.1, and at negative effects for higher DAF bins, especially for DAF > 0.9. This indicates that 

low-frequency-derived and high-frequency-derived alleles are prone to act as risk and 

protective variants for disease occurrence, respectively. Further, the proportions of 

disease-associated SNPs were clearly higher at DAF ≤ 0.1 and DAF > 0.9 (Supplementary Fig. 

6). For coronary artery diseases, there was no substantial difference in the estimated 

effect-size distribution among DAF bins, compared with rheumatoid arthritis. For 

schizophrenia and bipolar disorder, we observed opposite tendencies: for schizophrenia, 

positive and negative effects were over-represented, especially at DAF < 0.1 and DAF > 0.9, 

respectively, whereas, for bipolar disorder, negative and positive effects were over-represented 

at DAF ≤ 0.1 and DAF > 0.9, respectively. 

 

DISCUSSION 

We have developed a simple and fast method for unbiasedly estimating the proportion of 

disease-associated variants and the effect-size distribution based on the empirical Bayes 

estimation of SP-HMM. The proposed method can effectively distinguish various polygenic 

architectures, including the degree of polygenicity, across diseases, and can also provide 
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various perspectives of the polygenic architecture based on important variant categories such 

as DAF and eQTL. 

Schizophrenia, which has been suspected to be highly polygenic39,40, was estimated to 

have ~ 30% disease-associated variants with very small effects (most within |β| = 0.03) of 

independent SNPs in the genome (Table 1, Fig. 1, Supplementary Table 8, and Supplementary 

Fig. 5). This suggests at least ~ 30,000 causal variants exist in the genome, which does not 

contradict a recent study that estimated at least ~ 20,000 causal variants by a 

simulation-based method41. In contrast, rheumatoid arthritis was found to be less polygenic. 

Our estimates of π , 2.5% for Asians and 5.0% for Europeans, were generally consistent with 

previous estimates of 2.7%8 or 5.4%10 for Europeans, and the estimate for g ranged to |β| = 

0.05 or even 0.1 (Table 1 and Fig. 1). In fact, the effect sizes of validated variants for 

rheumatoid arthritis were generally larger than those for schizophrenia24,25. Our estimate of g 

means that the effect sizes of variants that can be detected would also be relatively larger 

among complex diseases. 

In the rheumatoid arthritis stratification analysis based on eQTLs, we observed a high 

enrichment of per-SNP variance due to eQTLs determined by peripheral blood samples 

(Supplementary Table 9), similar to the enrichment on per-SNP variance by blood-specific 

DNaseI hypersensitivity sites (DHS)33, which were also strongly associated with expression 

variation42. As peripheral blood samples include multiple types of leukocytes, the eQTLs have 

the potential to control immune-related gene expressions that are associated with the 

occurrence of rheumatoid arthritis. Although ‘eQTL’ was defined using European samples38, the 

enrichment of 10.7-fold in the Asian population was larger than the 5.7-fold enrichment 

observed in the European population. The same tendency has been observed for the validated 

100 non-MHC SNPs (Extended Data Fig. 5 in Okada et al.24). This might be explained by 
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non-eQTL-SNPs with large effects, such as non-synonymous SNPs in genes PTPN22 (R620W) 

and TYK2 (P1104A), which exist in Europeans but are absent or exist to a lesser degree in 

Asian populations. Some eQTL-SNPs were estimated to have large effect size |β| > 0.05 (Fig. 2) 

in rheumatoid arthritis.  

The SP-HMM can also provide posterior effect-size estimates of individual SNPs based 

on the estimated genetic architecture, 𝜋𝜋�  and 𝑔𝑔�.20,43 To evaluate individual eQTL-SNPs, we 

used the estimated genetic architecture as the prior and listed the top SNPs with larger 

posterior means of effect size, |β| > 0.05 (Supplementary Data Set 1). As this list includes 

eQTLs such as RNASET2 and ADO, which have not been previously linked to rheumatoid 

arthritis24, this approach might be effective for identifying disease associated eQTL-SNPs. For 

the other diseases, enrichments of per-SNP variance due to the eQTLs in peripheral blood cells 

were also observed. Since eQTL-SNPs are associated with immune-related gene expression, 

these observations were consistent with the fact that coronary artery disease is a chronic 

inflammatory disorder and that genetic overlap between immune diseases and schizophrenia 

has been previously reported44. However, it should be noted that precise estimation of the 

eQTL effects in these diseases needs additional eQTL data covering all the tissues and cells 

related to the diseases. 

Using DAF-stratified analysis for rheumatoid arthritis, we estimated more 

risk/protective derived alleles in low/high DAF (Fig. 3) and larger π in low or high DAF 

(Supplementary Fig. 6). Simple models based on a theory of population genetics for DAF45 (see 

Supplementary Fig. 7) could help interpret results from the DAF analysis, and thus provide 

another perspective on the difference among diseases (see Supplementary Note for details). 

Among such models, the ‘deleterious-risk and advantageous-protective mutation’ model with 

weak selection was best fitted for rheumatoid arthritis (Supplementary Fig. 8). Because most 
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of the risk genes for rheumatoid arthritis are implicated in immune system regulation24, these 

low- and high-derived alleles would tend to skew individual’s immune function towards either 

deleterious or beneficial directions. Meanwhile, this skewing may result in breaking the 

balance between immunity and tolerance, leading to rheumatoid arthritis.  

Although some authors have reported that bipolar disorder and schizophrenia share 

a large amount of genetic factors6,40, we observed opposite tendencies in the genetic 

architecture for these diseases: risk (protective) and protective (risk) derived alleles were 

over-represented, especially at DAF ≤  0.1 and DAF >  0.9 for schizophrenia (bipolar 

disorder) (Fig. 3). This paradoxical result was consistent with a previous report that, among 

low minor allele frequency (1-5%) SNPs, the R/P ratio (ratio of the number of detected 

variants with risk in minor allele to those with protective effect) for schizophrenia was 

significantly larger than one, while for bipolar disorder it was less than one (see Table 1 in 

Chan et al. 35). Again, applying the same population genetics models, it was found that both the 

‘deleterious-risk and advantageous-protective mutation’ and ‘deleterious-risk mutation’ 

models were better fitted for schizophrenia, whereas the ‘advantageous-risk and 

deleterious-protective mutation’ model was the best fitted for bipolar disorder (Supplementary 

Fig. 7). Recently, genetic correlations between creativity and both schizophrenia and bipolar 

disorder were reported, but they were much stronger for bipolar disorder46,47. Taken together 

with our estimation, these results might provide a clue for resolving the shared and specific 

genetic etiologies between the two genetically related diseases. 

 Lastly, the SP-HMM and empirical Bayes method, which can provide fine 

characterization of genetic architecture, can also contribute to accurate power analysis of 

GWAS7,13 and estimation of predictive capability of disease risk15. The SP-HMM can also be 

extended to multi-dimensional settings, e.g., for quantification of sex or ethnic differences in 
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genetic architecture for a disease, or (antagonistic) pleiotropic genetic architecture in multiple 

diseases. This kind of multi-dimensional analysis is novel and could provide new perspectives 

on multi-dimensional genetic effects, e.g., through a two-dimensional visualization of 

effect-size distributions for schizophrenia and bipolar diseases. Such analyses will be reported 

in future reports. 
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ONLINE METHODS 

Semi-parametric hierarchical mixture model (SP-HMM)  

We defined the effect size, 𝛽𝛽𝑗𝑗, for the j-th SNP of the total m SNPs as the genotype log-odds 

ratio under the additive allele dosage model. We considered the dosage of ‘derived mutant’ 
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alleles. Namely, the genotypes 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, and 𝑎𝑎𝑎𝑎 in each SNP had dosages 𝑥𝑥𝑗𝑗  = 0, 1, and 2, 

respectively, where 𝑎𝑎 was the derived and A was the ancestral allele. 𝑌𝑌𝑗𝑗 = 𝛽̂𝛽𝑗𝑗 was an estimate 

of log-odds ratio for the j-th SNP (e.g., the standard maximum likelihood estimate). For 𝑌𝑌𝑗𝑗’s, we 

assumed a mixture structure with two components, null and non-null SNPs, in terms of 

association with disease susceptibility. To be specific, 

𝑓𝑓𝑗𝑗�𝑦𝑦𝑗𝑗�   =    (1− 𝜋𝜋)𝑓𝑓0𝑗𝑗�𝑦𝑦𝑗𝑗�      +      𝜋𝜋𝑓𝑓1𝑗𝑗�𝑦𝑦𝑗𝑗�, 

where 𝑓𝑓0𝑗𝑗  and 𝑓𝑓1𝑗𝑗  are the probability densities for null and non-null SNPs, respectively, and π 

is the prior probability of being non-null. For null SNPs, we specified 𝑦𝑦𝑗𝑗  ~ 𝑓𝑓0𝑗𝑗�𝑦𝑦𝑗𝑗� = 𝑁𝑁�0,𝑉𝑉�𝛽𝛽�𝑗𝑗� 

based on the asymptotic distribution of 𝛽̂𝛽𝑗𝑗, where 𝑉𝑉�𝛽𝛽�𝑗𝑗 is an empirical variance estimate of 𝛽̂𝛽𝑗𝑗 

(e.g., the standard Wald-type variance estimate for 𝛽̂𝛽𝑗𝑗). For non-null SNPs, we assumed the 

hierarchical structure: 𝑦𝑦𝑗𝑗|𝛽𝛽𝑗𝑗  ~ 𝑓𝑓1𝑗𝑗�𝑦𝑦𝑗𝑗|𝛽𝛽𝑗𝑗� = 𝑁𝑁�𝛽𝛽𝑗𝑗 ,𝑉𝑉�𝛽𝛽�𝑗𝑗� and 𝛽𝛽𝑗𝑗  ~ 𝑔𝑔, where the prior effect-size 

distribution g was unspecified. In this model, the standard asymptotic normality was assumed 

for 𝛽̂𝛽𝑗𝑗 at the individual SNP level, while its true effect size β j followed a non-parametric prior 

distribution g, forming a semi-parametric hierarchical mixture model (SP-HMM)20,21. The 

assumption that 𝑦𝑦𝑗𝑗’s are mutually independent would be reasonable for a set of LD-pruned 

SNPs. 

 

Empirical Bayes estimation 

We estimated the priors, 𝜋𝜋  and 𝑔𝑔 , in the SP-HMM based on the data by applying an 

expectation–maximization (EM) algorithm, called the smoothing-and-roughening algorithm22, 

to incorporate the non-parametric prior distribution g20,21. The non-parametric estimate of g 

was supported by fixed discrete mass points p = (p1, p2, ..., pB) at a series of nonzero points b = 

(b1, b2, ..., bB) (b1 < b2 <･･･< bB ). We specified a wide range for the mass points, such as b1 = –

0.3 to bB = 0.3 (0.74 to 1.35 in odds ratio), to support the effect-size distributions in many 
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complex diseases. We set the number grid points as 120, such that b = (–0.300, –0.295, …, –

0.005, 0.005, …, 0.295, 0.300). The recursion of the EM algorithm was stopped when the 

relative changes in the estimate of π were small and the first two moments of g became stable, 

following the guideline by Shen and Louis22. We applied a parametric bootstrap method based 

on the estimated SP-HMM to estimate standard errors of the estimate for 𝜋𝜋. 

 

Liability-scale variance explained by SNPs 

The log odds ratio, 𝛽𝛽𝑗𝑗, together with the allele frequency and the disease prevalence, were 

transformed to the variance explained by the j-th SNP, denoted as vj, in the liability threshold 

model48. In the liability threshold model, we assumed that an underlying liability to disease 

follows a normal distribution and individuals that exceeded a threshold of liability, T, were 

affected with the disease. Individuals with the genotypes of AA, Aa, and aa at the j-th locus had 

liability distributions with different means, but the same residual variance. We let 𝑝𝑝𝑗𝑗 be the 

derived allele frequency and ℎ𝑗𝑗,𝑥𝑥𝑗𝑗  be the frequency of genotype 𝑥𝑥𝑗𝑗  (𝑥𝑥𝑗𝑗 = 0, 1, 2) in the general 

population. Assuming the Hardy-Weinberg equilibrium in the population, the genotype 

frequencies are given by ℎ𝑗𝑗,0 = (1 − 𝑝𝑝𝑗𝑗)2, ℎ𝑗𝑗,1 = 2𝑝𝑝𝑗𝑗�1− 𝑝𝑝𝑗𝑗�, and ℎ𝑗𝑗,2 = 𝑝𝑝𝑗𝑗2. Using the overall 

mean liability, 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 , and the mean liabilities of genotype 𝑥𝑥𝑗𝑗 , 𝜇𝜇𝑗𝑗,𝑥𝑥𝑗𝑗 , the variance explained by 

j-th SNP is given by 

𝑣𝑣𝑗𝑗∗ = � ℎ𝑗𝑗,𝑥𝑥𝑗𝑗  (𝜇𝜇𝑗𝑗,𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎)2
2

𝑥𝑥𝑗𝑗=0
. 

For evaluating 𝜇𝜇𝑗𝑗,𝑥𝑥𝑗𝑗 , we used the penetrance of genotype 𝑥𝑥𝑗𝑗 , denoted by φ𝑗𝑗,𝑥𝑥𝑗𝑗 = 1/(1 +

𝑒𝑒−𝛼𝛼𝑗𝑗−𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗) under the additive allele dosage model, where 𝛼𝛼𝑗𝑗  was determined under the 

constraint involving the disease prevalence K, 𝐾𝐾 = ∑ ℎ𝑗𝑗,𝑥𝑥𝑗𝑗  𝜑𝜑𝑗𝑗,𝑥𝑥𝑗𝑗
2
𝑥𝑥𝑗𝑗=0 . Assuming that the residual 

variance of each genotype was 1, the mean liability of each genotype was given by 

𝛷𝛷−1 �1 − 𝑓𝑓𝑗𝑗,𝑥𝑥𝑗𝑗� = 𝑇𝑇 − 𝜇𝜇𝑗𝑗,𝑥𝑥𝑗𝑗  for 𝑥𝑥𝑗𝑗 = 0,1, and 2, 
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from which we obtained values of 𝜇𝜇𝑗𝑗,𝑥𝑥𝑗𝑗 , where 𝛷𝛷 was the cumulative distribution function of 

the standard normal distribution. Of note, one of the mean liabilities of genotypes can be set as 

an arbitrary value, as it does not affect the variance estimate. Finally, 𝑣𝑣𝑗𝑗 was obtained by 𝑣𝑣𝑗𝑗 =

𝑣𝑣𝑗𝑗∗/(1 + 𝑣𝑣𝑗𝑗∗)R. This corresponded to the variance under the standard liability threshold model 

with the unit total variance of liability, as is assumed in heritability estimation49,4 

We estimated the distribution of vj for non-null effects using the estimated effect-size 

distribution 𝑔𝑔� , together with using allele frequencies and the prevalences. The allele 

frequencies were retrieved from the 1000 Genome phase III50 and the same prevalences as 

previously assumed in estimating SNP heritability were used8,9. Then, the point estimate of vj, 

𝑣𝑣�𝑗𝑗, was gained as the product of the estimate 𝜋𝜋�  and the mean of the estimated distribution of 

vj for non-null effects. The total liability-scale variance, V, explained by the pruned SNP sets, 

was then estimated as a simple sum of 𝑣𝑣�𝑗𝑗 over all SNPs in the sets. 

 

GWAS data analysis 

The six sets of GWAS summary statistics that we used were available online (see URLs). The 

characteristics of individual GWASs are shown in Supplementary Tables 1 and 2. To restrict 

analysis to well-imputed, high-quality variants, we used only SNPs that existed on the HapMap 

3 reference panel51 and the 1000 Genome phase III data50. For rheumatoid arthritis, the MHC 

region (chromosome 6, 25 – 35 Mb) was removed. The derived/ancestral states of alleles were 

determined by using the dbSNP. 

We used two kinds of pruned SNP sets, P-value-based and random-pruned sets, in the 

non-stratified SP-HMM analysis (Table 1 and Fig. 1). To gain the P-value-based pruned set for a 

GWAS, we began by selecting the most strongly associated SNP, i.e., the SNP with the lowest P 

value, in a reference GWAS as a SNP of the pruned set, and all other SNPs in LD (r2 > 0.1) with 
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the selected SNP were removed. The process was repeated until no SNPs remained. LD 

information was retrieved from the HapMap data base (HapMap phases I+II+III, release 27). In 

selecting SNPs with strong associations for Asian rheumatoid arthritis GWAS, European 

rheumatoid arthritis GWAS data were used as a reference for association, and vice versa. For 

coronary artery disease, the data of two GWAS, CARDIoGRAM and C4D, were used reciprocally. 

For the two genetically correlated diseases, schizophrenia and bipolar disease, the data of two 

GWAS for the two diseases were used reciprocally. For the random-pruned sets, we included 

SNPs randomly, irrespective of degrees of association, i.e., P values in the reference GWAS data, 

such that no SNPs in the set were in r2 > 0.1. 

For stratified analysis by eQTL/non-eQTL-SNPs, we defined ‘eQTL SNP’ as cis-eQTL 

SNPs detected with false discovery rate < 0.5 using peripheral blood samples (Westra et al., 

2013). In the eQTL/non-eQTL-SNPs set analyzed, all the eQTL and non-eQTL SNPs were 

selected to be nearly independent of one another (r2 ≤ 0.1). In this data set, eQTL SNPs 

showing stronger associations (i.e., lower P values) with gene expressions were preferentially 

included, and LD pruning was conducted as in the P-value-based pruned sets. Non-eQTL SNPs 

were randomly selected. 

In DAF-stratified analysis, the allele frequencies of SNPs were determined by the 

1000 Genome phase III data50. For each DAF bin, we used 100,000 SNPs randomly selected 

from GWAS SNPs regardless of LD. This was because estimates of SP-HMM were unstable due 

to small number of SNPs (e.g., a few thousand SNPs) when LD pruned sets were used. The 

obtained results (i.e., estimates of π and g) using the pruned sets (data not shown) were close 

to those sampled regardless of LD, and both results had the same trends over DAF bins.  

For selecting high quality SNPs and LD information in the above section, HapMap data 

of Japanese individuals in Tokyo (JPT) and European-ancestry individuals from Utah (CEU) 
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were used for Asian rheumatoid arthritis GWAS data and the other GWAS data, respectively. 

Similarly, for information of allele frequencies, East Asian and European 1000 Genome Project 

data were used for Asian rheumatoid arthritis GWAS data and the other GWAS data, 

respectively. 
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Table 1 Estimated proportions of disease-associated SNPs, �𝜋𝜋, and liability-scale 
variance explained by SNPs, �𝑉𝑉

�𝜋𝜋 (SE a)
(%)

�𝑉𝑉 (SE a)
(%)

Rheumatoid arthritis
(Asian) 2.5 (0.5) 14.0 (1.8)

Rheumatoid arthritis
(European) 5.0 (0.6) 20.0 (1.4)

Coronary artery disease
(CARDIoGRAM) 8.0 (0.7) 20.7 (1.2)

Coronary artery disease 
(C4D) 10.7 (0.9) 22.0 (1.2)

Schizophrenia 31.7 (0.4) 40.2 (0.8)

Bipolar disorder 20.5 (0.6) 50.0 (1.7)

Estimates for the P-value-based SNP sets are shown. For �𝑉𝑉 , disease 
prevalences are assumed to be 1% for rheumatoid arthritis and 
schizophrenia,  6% for coronary artery disease and 0.5% for bipolar disorder. 
aEstimated based on 100 parametric bootstrap samples based on the 
estimated SP-HMM. 
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Figure 1 Estimated effect-size distributions for disease-associated SNPs, �𝑔𝑔. The P-value-based pruned 
SNP sets are used.
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Figure 2  Estimated effect size distributions for eQTL-SNPs and non-eQTL-SNPs, �𝜋𝜋 × �𝑔𝑔. Green and 
orange lines show the results for the eQTL-SNP and non-eQTL-SNP sets, respectively. Estimated 
proportions of disease-associated SNPs, �𝜋𝜋,  correspond to the areas under the curves.
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Figure 3 Estimated effect size distributions , �𝜋𝜋 × �𝑔𝑔, by derived allele frequency (DAF) bins. The upper 
panels (heatmap colors) for each GWAS results show �𝜋𝜋 × �𝑔𝑔 . The lower panels show means of �𝜋𝜋 × �𝑔𝑔.
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Figure 3 Continued.
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Figure 3 Continued.
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