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Abstract 

 

Alterations to mitochondrial function and mutations in mitochondrial genes have been 

reported for a wide variety of cancers, however the mitochondrial transcriptome remains 

largely unexplored in cancer despite an emerging appreciation of the role that post-

transcriptional regulation plays in the etiology of these diseases. Here, we quantify and 

assess changes to mitochondrial RNA processing in human cancers using integrated 

genomic analysis of RNA Sequencing and genotyping data from 1226 samples across 12 

different cancer types.  We find significant changes to m1A and m1G post-transcriptional 

methylation rates at functionally important positions in mitochondrial tRNAs in tumor 

tissues across all cancers. Pathways of RNA processing are strongly associated with 

methylation rates in normal tissues (P=2.85x10-27), yet these associations are lost in 

tumors. Furthermore, we report 18 gene-by-disease-state interactions where altered 

methylation rates occur under cancer status conditional on genotype, implicating genes 

associated with mitochondrial function or cancer (e.g. CACNA2D2, LMO2 and FLT3) and 

suggesting that nuclear genetic variation can potentially modulate an individual’s ability to 

maintain unaltered rates of mitochondrial RNA processing under cancer status. Finally, we 

report a significant association between the magnitude of methylation rate changes in 

tumors and patient survival outcomes. These results highlight mitochondrial post-

transcriptional events as a clinically relevant mechanism and as a theme for the further 

investigation of cancer processes, biomarkers and therapeutic interventions. 
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Introduction 

 

The role of mitochondria in cancer has long been controversial. Although mitochondria are 

essential for tumor cell growth (1-3), many lines of evidence indicate that altered 

mitochondrial bioenergetics are required for tumor initiation and persistence. First, the up-

regulation of anaerobic energy production via glycolysis, the so-called Warburg effect, is 

well documented and recognized as a hallmark of cancer (4, 5). Second, mutations in 

nuclear encoded mitochondrial genes have been identified in patients with cancer, with 

links to the disease well established in some cases (6). Third, increased numbers of 

mutations are consistently found in the mitochondrial genomes of tumor cells when 

compared to normal samples (7-9).  These mutations may merely tag carcinogenesis, but 

whether other genetic properties of mitochondrial genomes are important in 

tumorigenesis remains one of the important unanswered questions in cancer biology. 

  

In line with this, recent studies have looked beyond mitochondrial DNA mutations to 

consider other important genetic processes. Mitochondrial copy number has been found to 

vary between paired normal and tumor samples, with low numbers generally observed in 

cancer tissue (10); previous work has also highlighted the higher rates of mitochondrial 

duplication and transcription in tumors (11). Furthermore, Stewart et al (12) recently 

observed mutations in mitochondrial transfer RNA (tRNA) genes with higher alternative 

allele frequencies in tumor mitochondrial RNA compared to corresponding mitochondrial 

DNA from the same individuals, suggestive of altered processing of mitochondrial RNA as 

some transcripts accumulate differently in cancer tissues. However, it is not known 

whether similar processes also occur in healthy individuals and therefore elucidating the 

importance of these events in cancer requires further investigation. 

  

Even so, the idea that post-transcriptional processing of the mitochondrial transcriptome 

may be altered in disease is intriguing. Mitochondrial RNA is transcribed as continuous 

polycistrons, which are then processed under the ‘punctuation model’, whereby tRNAs that 

intersperse mRNAs are targeted for modification and cleavage by nuclear encoded proteins 

(13-16). The polycistronic nature of mitochondrial transcription means that post-
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transcriptional events are particularly important: knockdown of RNA processing enzymes 

influences mitochondrial mRNA and protein levels, and mitochondrial function (17) and 

the rate of m1A and m1G post-transcriptional methylation at the 9th position of 

mitochondrial tRNAs (p9 sites) may dictate downstream metabolic phenotypes (18). 

Indeed, p9 methylation is thought to influence the correct folding of mitochondrial tRNAs, 

thus influencing the rate of cleavage within the polycistronic transcript and potentially 

impacting upon their downstream roles in protein translation (19-21). There are several 

reasons to believe that altered processing of mitochondrial RNA, hereinafter referring to 

post-transcriptional nucleolytic processing and nucleotide modifications, may be involved 

in cancer. For example, mutations within the mitochondrial processing enzyme RNase Z 

were found to be segregating with prostate cancer incidence in human pedigrees (22) and 

mutations within mitochondrial tRNAs, which are heavily post-transcriptionally modified, 

have been previously linked with cancer (23). Despite these observations, no large-scale 

analysis of tumor specific post-transcriptional processing of mitochondria has ever been 

carried out. 

  

Here, we assess whether mitochondrial RNA processing is altered in cancer by analyzing 

RNA sequencing data from 1226 paired normal and tumor samples across 12 cancer types 

from The Cancer Genome Atlas (TCGA). We find significant and consistent signatures of 

increased mitochondrial tRNA methylation in tumor tissue when compared to paired 

adjacent normal tissue. These changes are associated with differential mitochondrial RNA 

cleavage and mitochondrial gene expression profiles, indicative of altered mitochondrial 

RNA processing in cancer. Furthermore, the changes in mitochondrial tRNA methylation in 

tumor cells is associated with specific altered nuclear gene expression signatures. We also 

find evidence of context-specific SNPs that are associated with p9 methylation rates in 

tumor, but not normal samples (gene-by-disease-state interactions). Finally, we find a 

significant relationship between the magnitude of change in mitochondrial tRNA 

methylation in tumor tissue compared to adjacent normal tissue and the survival outcome 

of patients with Kidney renal clear cell carcinoma, highlighting the potential importance of 

these events in tumorigenesis. 
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Results 

  

Post-transcriptional changes in tumor cells 

  

To study the patterns of mitochondrial RNA processing in human cancers we mapped and 

filtered raw RNA sequencing data from 1226 samples from matched tumor-normal pairs 

across 12 cancer types from The Cancer Genome Atlas (TCGA) (Figure 1A). Using these 

data we inferred the level of m1A and m1G post-transcriptional methylation occurring at 

eleven functionally important positions within mitochondrial tRNAs (the 9th position of 

eleven different tRNAs, as identified in (18), henceforth referred to as p9 sites) by using the 

proportion of mismatches observed at these positions, in line with approaches taken by 

previous studies (17, 18, 24). For each of the eleven p9 sites and within each of the 12 

cancers (11x12=132 sites in total), we then compared the level of methylation observed 

between between paired normal and tumor samples. 

 

In total, 52/132 sites show significant differences between normal and tumor tissues at a 

5% significance level (paired t-tests) and 46 of these sites show increases in the observed 

methylation rate in cancer tissue (Figure 1B for examples showing all eleven p9 sites in 

KIRC, Supplementary Table 1). After applying Bonferroni correction (within each cancer 

type, P<0.0045), 21 sites remain significant, 20 of which show increases of methylation rate 

in cancer tissues.  Resampling sequencing reads to the same depth in paired normal and 

tumor samples (thus accounting for potential biases in sequencing coverage) gives very 

similar results (Supplementary Table 2, see methods). These observations strongly suggest 

an increase in the level of post-transcriptional methylation of mitochondrial tRNAs across a 

large number of sites in tumor tissue from multiple cancer types. 

 

Next, we investigated whether the observed differences in methylation rates are a general 

trend in cancer. For each p9 site we standardized the data within each cancer (but not 

across normal or tumor sample types, thus maintaining cancer associated patterns in 

methylation rates) and tested differences between tumor and normal pairs across all 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2016. ; https://doi.org/10.1101/080820doi: bioRxiv preprint 

https://doi.org/10.1101/080820


 6

cancer types combined. In total, 8 out of the 11 p9 sites show highly significant differences 

(P<0.0045, Supplementary Table 3, Figure 1C for p9 sites 1610, 5520 and 7526). Following 

this, we averaged methylation rates by group and find that, strikingly, 2-way hierarchical 

clustering using all p9 sites data from 24 cancer-sample type sets revealed how groups 

cluster largely by sample type (normal or tumor) with the exception of BRCA Tumor, COAD 

Normal and PRAD Normal not clustering within their respective sample type (Figure 1D). 

These results suggest that altered processing of mitochondrial RNA is a consistent trend 

across multiple cancer types. 

 

To infer the impact of changes at sites and cancers where we observe significant 

differences (at P<0.05), we compared the rates of methylation across both normal and 

tumor samples with the rate of cleavage occurring at the 5’ end of each respective tRNA, 

which we measured as the proportion of sequencing reads starting or ending either side of 

this position. As a control, we considered cleavage rates a further 9bp upstream from each 

p9 site. Methylation rates significantly correlate with cleavage rates for 10/45 comparisons 

after Bonferroni correction (P<0.001, vs 1 significant correlation for the control) and for 

18/45 comparisons at a 5% significance level, with all significant correlations being in the 

positive direction (Supplementary Table 4). Furthermore, we considered the influence of 

changes in tRNA methylation in cancer on mitochondrial gene expression: in normal 

samples, p9 methylation rates significantly correlate with mitochondrial gene expression in 

25 comparisons across cancer types (Supplementary Table 5, Spearman Rank P<0.05 after 

Bonferroni correction within cancer type, mostly negatively correlated with MTCO3, 

MTCO2 and MTCO1 abundance and positively correlated with MTND2 abundance), yet in 

tumor samples these relationships break down and only two pairwise comparisons are 

significant. In all, these analyses further indicate that major changes to mitochondrial RNA 

processing take place in human cancers. 

 

Nuclear transcriptional signatures associated with changes in mitochondrial RNA processing 

 

Mitochondrial RNA transcription and processing, like many other molecular processes 

taking place in mitochondria, is under strong nuclear control. As such, we tested the 
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hypothesis that the expression of nuclear-encoded genes involved in mitochondrial RNA 

processing is altered in tumors by performing differential expression analysis. Raw RNA 

sequencing data were aligned, filtered and normalized as detailed in the Methods and 

expression data for 99 mitochondrial RNA-binding proteins (as listed in (25)) were 

retrieved and compared between normal and tumor samples. In this section we report 

results for BRCA only, since this is the cancer type for which we have the most paired 

samples (>100) and thus the most power, however we also see the same broad trends in 

other cancer types with the next largest sample sizes (see methods). In total, we detected 

55 genes differentially expressed at Bonferroni significance (Fig 2A) and the heatmap of all 

99 gene expression traits surveyed shows that samples cluster largely by sample type 

(normal or tumor, Supplementary Figure 1). 

 

Following this, we tested for associations between the expression levels of the 99 nuclear-

encoded factors and the observed changes in mitochondrial RNA methylation. We 

performed cross-correlation analysis (Spearman Rank) across all individuals for all 

possible 1,089 p9 site methylation rate-nuclear gene expression trait pairs in normal and 

tumor samples separately. The test revealed significant associations for 8 of the 11 p9 sites 

in normal samples and the total cumulative number of Bonferroni-significant associations 

was 369 across all eight p9 sites (P<0.0005, Figure 2B for distributions of coefficients, 

variance explained ranges between -0.64 and 0.47). In sharp contrast, no significant 

associations were detected in tumor samples (Figure 2B), indicating major deregulation of 

these processes in cancer. A 2-way hierarchical clustering heatmap of the full correlation 

matrix (Supplementary Figure 2) shows the consistency of the associations across different 

p9 sites in normal samples, whereas these associations are highly perturbed under cancer 

status. 

 

Next, we identified cell-wide processes associated with the observed changes in 

mitochondrial RNA processing by performing global cross-correlation analysis between the 

expression levels of all nuclear genes and the methylation rate at each p9 position using the 

same strategy as outlined above and using a Bonferroni corrected p-value threshold of 

3x10-6 (00.5/16,736). In normal samples, the test revealed an average of 2311 significant 
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associations for 8 of the 11 p9 sites (Figure 2C, Supplementary Table 6, three sites show no 

significant associations, variance explained ranges between -0.66 and 0.62). To investigate 

the functional characteristics of nuclear genes whose expression levels are associated with 

methylation rate at the p9 site showing the strongest signal in normal cells (p9 site 10413, 

6061 genes) we used Ingenuity Pathway Analysis. We find that “RNA Post-Transcriptional 

Modification” is the top and most highly enriched molecular and cellular function category 

with 5 significantly enriched sub-functions (Benjamini-Hochberg P-value range 8.48x10-6 – 

2.85x10-27, Figure 2D, “Processing of RNA” was the most enriched sub-function), 

supporting the idea that many nuclear genes play a role in mitochondrial RNA processing. 

However, we again find striking differences in tumor samples, where we detect only 2 

significant associations across all p9 sites, pointing to major deregulation of nuclear-

associated mitochondrial RNA processing in cancer (Supplementary Figure 3). 

 

Joint action of genotype and cancer state on post-transcriptional methylation 

 

Given the general increase in p9 methylation in cancers, we assessed whether nuclear 

genetic variants could modulate the observed changes in mitochondrial RNA processing 

differentially in tumor relative to normal samples. To do this, we looked for genotype-by-

state (tumor or normal) interaction effects on p9 methylation rates across cancer types. We 

obtained genotyping data for the same samples for which we inferred p9 methylation rates, 

and limited the analysis to SNPs in Hardy-Weinburg Equilibrium (P>0.001), those where at 

least 40 individuals had methylation data available and with at least five individuals 

carrying a minor allele. Under a dominant model and after filtering SNPs for MAF>5%, this 

analysis identified 18 peak genotype-by-state interactions at genome-wide significance 

across cancer types and p9 sites (Table 1, and Figure 3 showing examples).  In 15 cases the 

minor allele is associated with increased methylation rates in tumor but not normal 

samples, suggesting that mitochondrial RNA processing is affected differently in individuals 

carrying these alleles under cancer status. 

 

After initial discovery, we attempted to replicate each genome-wide significant interaction 

effect in other cancer types at any p9 site (P<0.001, under the same criteria outlined 
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above). In doing so, we find an interaction effect for rs317391 in KIRC at p9 site 12146 

(P=2.16x10-5, interaction effect originally observed in BRCA at p9 site 7526, P= 2.46 x10-9). 

This SNP falls within an intron of the gene ASIC2, which is part of a sodium channel 

superfamily. We also find that rs341737 is an interaction SNP for methylation rates at p9 

site 14734 in PRAD (P=0.000745, interaction effect original observed in LUAD at p9 site 

14734, P=9.86 x10-9). This SNP falls in an intergenic region near to CMSD1, a known tumor 

suppressor gene. The fact that these SNPs are also associated with similar effects in other 

cancer types suggests that our initial observations are robust. 

 

Biological implications of altered post-transcriptional events 

 

In order to relate changes in mitochondrial RNA processing to potential biological 

outcomes we used cox proportional hazards tests to determine if changes in p9 

methylation rates between paired normal and tumor samples are a significant predictor of 

patient survival outcomes.  To ensure power to detect significant associations, we focused 

on cancers where we had data for at least 50 individuals with >25% death rate within 60 

months of diagnosis (KIRC and LUAD). Treating p9 methylation differences as a 

quantitative trait we find that methylation differences do not significantly predict patient 

survival in LUAD. However for KIRC, seven p9 sites are significant predictors of patient 

survival (P<0.05, Supplementary Table 7), with larger increases in p9 methylation rates in 

tumor compared to paired normal samples being associated with worse survival. The 

strongest effect occurs for p9 site 10413 (9th position of TRNR, P=0.000476). Treating the 

change in methylation rate as a categorical variable with data binned into two equal sized 

groups of high and low methylation differences (Figure 4, P=0.036), the model suggests 

that those in the larger methylation differences group are 2.784 (95% confidence interval 

(1.07,7.25)) times more likely to die over a 60 month period after diagnosis. 

 

Discussion 

 

By analyzing RNA sequencing data across a large number of individuals and sample types, 

we find significant and consistent changes in the rate of m1A and m1G post-transcriptional 
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modification at functionally important positions within mitochondrial tRNAs in tumor 

samples when compared to paired normal data. These changes appear to be a widespread 

phenomenon across different types of tumor and suggest that altered mitochondrial RNA 

processing is a hallmark of cancer. We hypothesize that oncogenic signals trigger these 

changes, which in turn serve as a common mechanism by which oncogenetic pathways 

promote tumorigenesis.  

 

Pathway enrichment analysis of genes implicated in associations between mitochondrial 

RNA processing and nuclear gene expression unambiguously links methylation rates in 

mitochondria from normal samples to cell-wide processes of RNA modification and 

processing. In tumour samples, these relationships completely break down, and focused 

analysis of genes encoding mitochondrial RNA-binding proteins (25), many of which 

directly modulate mitochondrial RNA processing, indicates that their misexpression in 

tumors is driving the observed changes. Proving causality of such events is challenging but 

is a hypothesis worth pursuing. Based on the fact that mitochondrial tRNAs are key 

elements in protein translation of genes of the oxidative phosphorylation system (16) and 

given the connection between cell growth and protein synthesis, it stands to reason that 

increased rates of tRNA processing would augment the translational and metabolic 

capacity of mitochondria, modulate the cell cycle and ultimately promote uncontrolled 

growth. Further studies are warranted to illuminate the molecular mechanisms likely 

coupling altered levels of mitochondrial RNA processing to cell growth and other 

tumorigenesis steps such as cell invasion and migration.  

 

The observed differences in the rate of methylation between normal and tumor samples 

are significant. However, a subset of tumor samples exhibit methylation rates in the range 

detected in normal samples. As such, we hypothesized that nuclear genetic variation could 

potentially modulate an individuals’ ability to maintain normal levels of mitochondrial RNA 

processing. Our test to uncover genotype-by-state interactions revealed 18 peak variants at 

genome-wide significance that at least partially explain the observed differences between 

normal and tumor samples. In the vast majority of cases, individuals carrying a minor allele 

at specific sites saw increased p9 methylation rates in tumor tissues compared to normal, 
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whereas those only carrying the major allele saw no such differences. These in vivo 

interaction effects serve as a promising starting point for a potential method to uncover 

allelic variation that conditions the change in mitochondrial RNA processing. Although, no 

single interaction should be taken as strong evidence of a role for the given SNP in tumor 

development, among the genome-wide significant interaction SNPs that fall within intronic 

or exonic regions (11 in total), there are several noteworthy examples where these genes 

may be interesting for further study. Four genes have a link to mitochondrial function, 

cellular proliferation or apoptosis (CACNA2D2, CLVS1, OTUD7A and FLT3), three genes have 

been linked to neurological function (and Amyotrophic Lateral Sclerosis in particular), 

where dysfunctional mitochondria have a known role (26, 27) (ASIC2, CLVS1, PARD3B) and 

four genes have been previously linked with cancer (LMO2, CACNA2D2, FLT3 and PREX1). 

  

Finally, we find that altered mitochondrial tRNA methylation profiles in cancer samples 

correlate with patient survival outcome in one cancer type. Although these analyses are 

naturally underpowered to draw firm conclusions about the underlying processes, these 

results are suggestive of important downstream consequences of altered mitochondrial 

RNA processing. An alternative hypothesis is that other confounding factors strongly linked 

to survival may influence mitochondrial RNA processing. Further analysis with larger 

sample sizes is required to truly understand these relationships. 

 

Taken as a whole, these results highlight the alteration of the mitochondrial post-

transcriptional modification and processing landscape taking place in cancer. Furthermore, 

these observations complement an emerging appreciation of the role that post-

transcriptional and post-translational regulation plays in the etiology of cancer (28-31). 

Although the mechanisms underlying these alterations remain to be resolved, it is tempting 

to speculate that restoring normal levels of modification and processing of RNA would 

represent a promising area of investigation for the development of new anticancer 

therapeutic interventions. 
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Materials and Methods 

 

RNA sequencing data 

  

Institutional approvals from NIH, KCL and NYUAD were obtained to access TCGA data. Raw 

sequencing files (fastq format) were obtained from TCGA through the CGHub repository via 

dbGaP accession number phs000178.v9.p8 (32, 33) for twelve cancer types where at least 

25 paired tumor and adjacent normal samples were available. These included Breast 

invasive carcinoma (BRCA), Colon adenocarcinoma (COAD), Head and Neck squamous cell 

carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC), 

Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), Lung 

adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Prostate adenocarcinoma 

(PRAD), Stomach adenocarcinoma (STAD) and Thyroid carcinoma (THCA). In total, we 

obtained 1226 RNA sequencing datasets for analysis (Supplementary Table 8). 

  

Sequencing reads were trimmed for adaptor sequences, terminal bases with quality lower 

than 20 and poly-A tails of 5 nucleotides or greater before being aligned to a reference 

genome (1000G GRCh37 Reference) with STAR 2.51a (34), using default parameters, two-

pass mapping and version 19 of the Gencode gene annotation. Careful attention was paid to 

minimize the likelihood of incorrectly placed reads, particularly those associated with 

NUMT sequences. To achieve this, a stringent filtering pipeline was applied, as we 

previously demonstrated (18), focusing only on properly paired and uniquely mapped 

reads. 

 

Gene expression levels 

  

To calculate transcript abundances, we used HTseq (35) with default parameters, the 

‘intersection-nonempty’ model and Gencode gene annotation file v19. Raw counts were 

then converted to transcripts per million (TPM). Within the TPM calculation, for 

mitochondrial genes the total number of fragments mapping to the mitochondrial 

transcriptome was used to normalize for library size, thus accounting for differences in 
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mitochondrial copy number across samples.  For nuclear genes, the total library size was 

used. TPM scores were then log10 transformed and median normalized. Principal 

component analysis and distribution analysis were used identify outlier samples. Samples 

greater than three standard deviations from the mean in any of the first three principal 

components were deemed outliers. All samples paired with these outliers were also 

removed from subsequent analysis resulting in a set of 1196 samples across all cancers. 

Distribution analysis shows that samples within each cancer type had similar distributions 

suggesting that variations due to technical reasons in the data are minimal. 

 

Methylation rates at tRNA p9 sites 

  

Previous studies have highlighted that sequencing mismatches observed at particular 

positions in the mitochondrial transcriptome represent post-transcriptional modification 

events (17, 18, 24). In particular, Hodgkinson et al (18) found that the proportion of 

mismatches at the 9th position of eleven different mitochondrial tRNAs (p9 sites) 

represents the level of post-transcriptional methylation. Under this assumption, within 

each sample we inferred the level of p9 methylation by using samtools v1.2 mpileup (36) 

with default parameters to generate allele count files, from which we calculated the 

proportion of non-reference alleles at each p9 site (positions 585, 1610, 4271, 5520, 7526, 

8303, 9999, 10413, 12174, 12246 and 14734 in the mitochondrial transcriptome). It is 

important to note that these p9 positions in the mitochondrial transcriptome have 

previously been shown not to overlap with known variants in NUMT sequences in the 

human reference using a careful and stringent mapping and filtering strategy (18). 

  

We compared levels of methylation at each p9 site and within each cancer using paired t-

tests (132 tests in total) for individuals and sites where the p9 position had at least 20X 

coverage for both the tumor and paired normal sample.  In order to control for any biases 

in coverage, we repeated the analysis after resampling sequencing reads within each 

individual and at each site to the lowest coverage found at that site in either the normal or 

tumor sample. To directly compare p9 methylation across cancers, we standardized rates 

at each p9 site within each cancer by dividing by the maximum value observed across 
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normal and tumor samples. To compare p9 methylation with cleavage rates at the 5’ end of 

mitochondrial tRNAs, we calculated the proportion of reads that started or ended either 

side of the position 9bp upstream of the p9 site compared to all reads covering that 

position. We considered only sites with at least 20 individuals with 20X coverage at both 

cleavage and p9 positions and used Spearman rank correlation tests. For comparisons to 

mitochondrial gene expression, we performed spearman rank correlation tests for each p9 

site and within each cancer for normal and tumor samples separately. 

 

Differential expression and cross-correlations with nuclear gene expression 

 

We evaluated the magnitude and significance of differential expression of transcripts of 

nuclear-encoded mitochondrial RNA-binding proteins (25) using analysis of variance and 

Bonferroni thresholds to infer statistical significance. In total, 99 transcripts out of 107 

listed in Wolf and Mootha (25) were deemed expressed in BRCA and KIRC datasets (100 

transcripts in THCA). Two-way clustering of gene expression data of the full set of genes 

encoding mitochondrial RNA-binding proteins was generated using Ward’s method in JMP 

Genomics 8.0 (SAS Institute). To investigate the relationships between nuclear gene 

expression traits and p9 methylation rate we performed an unbiased genome-wide 

association between methylation rate at eleven p9 sites and 16,736 expression traits in the 

BRCA dataset. We calculated Spearman correlation across all individuals in each sample 

type. The significance of correlations was assessed by correcting for multiple testing 

resulting in a Bonferroni threshold of 3 x 10-6. In the main text we present results for BRCA, 

however we see the same general trends for THCA and KIRC as significant associations in 

normal tissue are altered in tumor samples (Supplementary Figure 4). Gene set enrichment 

analysis was performed using the Core Analysis Workflow implemented in the Ingenuity 

Pathway Analysis package to measure the likelihood that the association between nuclear 

genes whose expression was significantly associated with p9 methylation rate and a given 

process or pathway is due to random chance. The P-value is calculated using the right-

tailed Fisher Exact Test that takes into consideration the number of focus genes that 

participate in that process in question and the total number of genes that are known to be 

associated with that process in the human reference set. P-values are corrected for multiple 
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testing based on the Benjamini-Hochberg method. The same analysis parameters were 

used for BRCA, KIRC and THCA (Supplementary Table 9). 

 

Interaction effects 

  

Where available, we downloaded birdseed genotype files generated from Affymetrix 

Genome-wide Human SNP arrays (6.0) for all individuals for which we had RNA sequencing 

data. Samples that did not pass TCGA quality control were not used and in total, data were 

available for 569 individuals (Supplementary Table 8). For each cancer type, we filtered 

genotypes with birdseed quality scores above 0.1 and kept SNPs in Hardy-Weinberg 

Equilibrium (P>0.001). Since sample sizes within cancers were generally small, we 

converted minor homozygote alleles to heterozygotes (dominant model). SNPs with 

MAF<5% were removed and we then ran a quantitative trait model (GxE) in plink 1.07 

(37), using the rates of p9 methylation at sites where paired normal and tumor samples 

had at least 20X coverage. Within these tests, p9 methylation rates were used as the 

quantitative trait, sample type (normal or tumor) as the environment and regression 

coefficients were compared between normal and tumor association tests to generate a P-

value for the interaction term. In order to ensure robust findings, we considered only sites 

that had data for at least 40 individuals. QQ plots for p9 sites and cancers showing 

significant interaction effects are shown in Supplementary Figure 5. After identifying SNPs 

that passed genome-wide significance, we visually inspected data plots and made sure that 

the uncovered associations are not driven by outliers. The GxE test using paired datasets is 

robust as both contrasted groups (Normal and Tumor) have the same phenotypes. 

However, to ensure that age and sex are not affecting the results, we tested whether age or 

gender are correlated with methylation rates within either normal or tumor samples for 

individuals that we had genotyping data for; in all cases we find no significant relationships 

(P>0.05 after Bonferroni correction). SNP annotations were taken from the Affymetrix 

annotation file associated with the array. 
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Survival analysis 

  

We obtained patient survival data from TCGA and performed survival analysis in R using 

the package ‘Survival’.  We limited analysis to cancers for which we had RNA sequencing 

data for at least 50 individuals, with a death rate of 25% (Kidney renal clear cell carcinoma 

and Lung adenocarcinoma). Censoring was limited to 60 months, since most events happen 

during this time. Cox proportional hazards tests were used to model survival as a function 

of changes in p9 methylation rates in tumor versus normal samples. For significant 

associations, we tested Schoenfeld residuals to ensure that the proportional hazards 

assumption was being met (P>0.05 in all cases). To calculate meaningful hazard ratios, 

tests were repeated after binning changes in p9 methylation rates into two equal sized 

groups. Results reported in the main text include no covariates. Repeating the analysis 

including age, sex and ethnicity gives similar results: for KIRC, 5 out of 7 remain significant 

at P<0.05, and the strongest effect for the 9th position of TRNR has a P-value of 0.00151. 
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Figure Legends 

  

Figure 1: Methylation differences between paired tumor and normal samples at tRNA 

p9 sites within mitochondrial tRNAs. (a) Number of normal-tumor pairs for each cancer 

type, including Breast invasive carcinoma (BRCA), Colon adenocarcinoma (COAD), Head 

and Neck squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal 

clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver 

hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell 

carcinoma (LUSC), Prostate adenocarcinoma (PRAD), Stomach adenocarcinoma (STAD) 

and Thyroid carcinoma (THCA), (b) Observed methylation rates for all eleven p9 sites 

within KIRC, split into normal and tumor, (c) Standardized methylation rates split into 

normal and tumor for all cancers combined for p9 sites 1610, 5520 and 7526 and (d) Two-

way hierarchical clustering of mean standardized methylation rates for normal and tumor 

samples across all cancer types. The clustering was generated with the Ward method. 

  

Figure 2: Differential expression and correlations between tRNA p9 methylation 

rates and nuclear gene expression in BRCA. (a) Volcano plot of statistical significance 

(shown as the negative logarithm of the p-value on the y-axis) versus magnitude of 

differential gene expression (shown as the log base 2 of magnitude of mean expression 

difference on the x-axis) of 99 genes encoding mtRNA-binding proteins. The dashed line 

indicates Bonferroni statistical significance. (b) Distribution of Spearman correlations 

between gene expression levels of the 99 genes and methylation rate at p9 site 10413. 

Associations that are significant at Bonferroni threshold in Normal samples are highlighted 

with the dark green color. (c) Two-way clustering of Spearman correlations of expression 

levels of 16,736 genes (columns) and methylation rate at 11 p9 sites (rows) in the BRCA 

dataset. Correlation values are visualized using a red-to-gray-to-blue color theme (values 

range from 0.62 to -0.66). (d) Ingenuity pathway enrichment analysis of nuclear genes 

whose expression levels are associated with methylation rate at p9 site 10413 in the BRCA 

dataset. Biological functions enriched at Benjamin-Hochberg significance threshold are 

shown. 
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Figure 3: Interaction effects on tRNA p9 sites methylation. The three plots show 

examples of SNPs that have different relationships with p9 methylation rates in normal 

(blue) and tumor (red) samples. 

  

Figure 4: Survival analysis. Data shows relationship between methylation rate 

differences between paired tumor and normal samples at p9 site 10413 and survival rates 

for patients with KIRC. 

 

Tables 

 

Table 1: Interaction effects on tRNA p9 sites methylation rate 

 

Cancer p9 Site rs Number  Chr Position Location Gene N MAF P-value 

BRCA 7526 rs3781574 11 33885268 intron LMO2 46 0.161 4.61E-11 

BRCA 7526 rs17690328 11 33885390 intron LMO2 46 0.135 1.17E-08 

BRCA 7526 rs317391 17 32174605 intron ASIC2 44 0.085 2.46E-09 

KIRC 1610 rs258701 7 81761122 intron CACNA2D1 61 0.058 8.27E-10 

KIRC 8303 rs10266772 7 14132727 Intergenic --- 61 0.080 2.27E-08 

KIRC 10413 rs1028014 8 40698232 intron ZMAT4 64 0.174 2.88E-08 

KIRC 12146 rs17164416 5 99387447 Intergenic --- 65 0.051 9.95E-09 

LIHC 12146 rs41465346 1 219059708 Intergenic --- 48 0.052 3.73E-08 

LIHC 12146 rs16926871 8 62027498 intron CLVS1 47 0.074 1.24E-08 

LUAD 585 rs13029285 2 205916078 intron PARD3B 49 0.057 1.81E-10 

LUAD 10413 rs7328699 13 28615701 intron FLT3 46 0.107 9.15E-10 

LUAD 10413 rs12591927 15 31833911 intron OTUD7A 44 0.077 2.44E-08 

LUAD 10413 rs17003208 22 43073031 Intergenic --- 45 0.074 1.13E-08 

LUAD 10413 rs17003212 22 43079754 Intergenic --- 46 0.063 1.18E-11 

LUAD 12146 rs4741498 9 15424938 intron SNAPC3 45 0.063 3.68E-08 

LUAD 12146 rs7026970 9 15445219 intron SNAPC3 45 0.063 3.68E-08 

LUAD 12146 rs7046713 9 15458921 intron SNAPC3 45 0.063 3.68E-08 

LUAD 14734 rs341737 8 2782370 Intergenic --- 54 0.107 9.86E-09 

PRAD 10413 rs7631369 3 1028679 Intergenic --- 48 0.070 3.45E-08 

PRAD 10413 rs7301597 12 30175147 Intergenic --- 48 0.050 3.85E-09 

THCA 585 rs17033484 4 156686737 intron GUCY1B3 54 0.089 3.78E-08 

THCA 4271 rs2145836 20 47421064 intron PREX1 44 0.054 4.41E-08 
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