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Abstract
The focus of the computational structural biology community has taken a dramatic shift over the
past one-and-a-half decade from the classical protein structure prediction problem to the possible
understanding of intrinsically disordered proteins (IDP) or proteins containing regions of disorder
(IDPR).  The  current  interest  lies  in  the  unraveling  of  a  disorder-to-order  transitioning  code
embedded  in  the  amino  acid  sequences  of  IDPs  overtaking  the  well  established  sequence  to
structure  paradigm.  Disordered  proteins  are  characterized  by  enormous  amount  of  structural
plasticity  which  makes  them  promiscuous  in  binding  to  different  partners,  multi-functional  in
cellular  activity  and  atypical  in  folding  energy  landscapes  resembling  partially  folded  molten
globules. Also, their involvement in several human diseases including cancer, cardiovascular, and
neurodegenerative  diseases makes them both attractive as drug targets, as well as important for a
biochemical understanding of the diseases.  The study the structural ensemble of IDPs is  rather
difficult, in particular for transient interactions. When bound to a partner the IDPRs adapt to an  an
ordered structure in the complex. The residues that undergo this disorder-to-order transition are
called protean residues, and the first step in understanding the interaction with a disordered partner
would be to predict the residues that are responsible for the interaction and will undergo disorder-to-
order transition, i.e. the protean residues. There are a few available methods which predict these
protean segments given their amino acid sequences, however,  their  performance reported in the
literature  leaves  clear  room  for  improvement.  In  this  background,  the  current  study  presents
'Proteus',  a  random-forest-based  protean  predictor  that  predicts  the  likelihood  of  a  residue  to
undergo disorder-to-order transition upon binding to a partner protein. The prediction is based on
features that can be calculated using the amino acid sequence alone. Proteus compares favorably
with existing methods predicting twice as many true positives as the second best method (55% vs.
27%) at a much higher precision on an independent data set. The current study also shades some
light on a possible 'disorder-to-order' transitioning consensus, untangled, yet embedded in the amino
acid  sequence  of  IDPs.  Some  guidelines  have  also  been  suggested  to  proceed  for  a  real-life
structural modeling of an IDPR using Proteus.
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Introduction

After  extensive  research  over  one  and  a  half  decades,  it  is  now evident  that  many  functional
proteins  lack  well-folded  3D  structures  which  could  either  be  intrinsically  disordered  proteins
(IDPs) or could contain intrinsically disordered protein regions (IDPRs)  [1–4]. In contrast to the
classical view of protein folding  [5], where a nascent cytoplasmic polypeptide chain immediately
begins to fold into a stable three-dimensional globule (within the limits of their essential dynamics
[6]) even while being synthesized  [7,8], these proteins are born disordered  [3] and remain either
completely or partially unstructured throughout their entire life span. It is only when they interact
with functionally relevant suitable binding partners, they switch to stable ordered structures [4].

They are highly abundant in nature and involved in a number of functions within living cells, most
of which belong to the non-classic (non-enzyme) type  [9,10]. They possess remarkable binding
promiscuity  [4] in  a  wide  range  of  intermolecular  interactions,  complementing  the  functional
repertoire of ordered proteins, likewise to the phenomena of enthalpy-entropy compensation [11].
The promiscuity is primarily manifested by their ability to interact specifically with structurally
unrelated partners and thereby gaining different structures upon binding. It  is  highly likely that
these peculiar characteristics are attributed by their non-native-like rough and relatively flat energy
landscapes  [12,13], whereupon the favored conformations closely resemble to the partially folded
molten-globules [13] and also the ability to keep necessary amount of disorder even in the bound
form [4]. Considering this flexible nature, they have been referred to be part of the 'edge of chaos'
systems [14], serving as a bridge between well-ordered and chaotic systems – extremely critical in
the context of a living cell. In addition to these peculiar biophysical and folding attributes, they are
also of considerable biomedical interests due to their functional importance. In fact, their existence
in a biologically active form without adapting to unique 3D-structure contradicts the traditional
notion of “one protein–one structure–one function” paradigm [1]. In particular, they are involved in
regulation, signaling, and control, where high specificity / low-affinity interactions [15] are crucial. 
Recent  studies  have  also  highlighted  their  multifarious  key  activities  as  molecular  rheostats,
molecular clocks, in tissue specific and alternative splicing of m-RNA, transport of r-RNA and as
protein  and RNA-chaperons  [16].  Also,  the  unique  structural  feature  of  this  'intrinsic  disorder'
enables IDPs to participate in both one-to-many and many-to-one signaling [2]. The promiscuity in
binding also suggests that not only misfolding [17], but also misidentification or mis-signaling [2]
in  biomolecular  recognition  could  serve  as  the  root  cause  of  some extremely  complex  human
diseases [3] including cancer, diabetes, amyloidoses, cardiovascular and neurodegenerative diseases
[18]. 

All these factors pile up to raise an increasing demand for greater structural knowledge on IDPs,
presenting  a  tough challenge to  crystallographers  owing  to  their  inherent  disorder  and thereby
providing  a  realistic  scope  for  computational  model  building  tightly  coupled  with  realistic
confidence estimates. According to the most popular  description of IDPRs, only a subset of them
can  undergo  the  'disorder-to-order'  transitions  and  thereby  adapt  an  ordered  structure  only  via
binding to a suitable protein partner, giving birth to the concept of 'folding coupled with binding'
[19]. There are different terms in the literature to address these segments but the most popular is
perhaps the  term 'protean'  [19] borrowed from Greek mythology,  meaning 'ever-changeable'  or
'mutable'. Thus, in an attempt to solve the structure of an IDPR, a computational structural biologist
should  first  aim to  predict  the  potential  'disordered'  regions  followed  by  the  prediction  of  the
potentially 'mutable' protean regions. Important to note that, due to intrinsic disorder, these regions
in an isolated X-ray structure are presented as 'missing electron density' regions and, in principle,
should only appear as available 3D coordinates in a complex form, bound to a competent molecular
partner. In fact this is one of the more established definitions of the 'protean' segments amongst a
few similar ones. 
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Thus, it is highly challenging to decipher the root cause of intrinsic disorder from pure sequence-
based investigation given the limitation of available structural data. Concerted efforts have been
devoted  in  that  line  which  include  formulation  of  statistical  mechanical  potentials  describing
sequence-derived elasticity  (or  plasticity)  [20],  and even proposition of  an alphabet  of intrinsic
disorder [21]. Machine learning algorithms have been extensively used to develop knowledge-based
Predictors  which  can  not  only  predict  the  disordered  regions  [22–26],  but  also  the  'protean'
segments  [26–29]. However, the 'protean prediction' part can still be regarded as at a very early
stage, offering much room for improvement. In this background, the current study not only attempts
to shade some light on a possible yet unexplored 'sequence consensus' of such 'disorder-to-order'
transitions,  but  also  presents  a  random  forest  classifier,  namely  'Proteus',  which  predicts  the
potential protean (or protein binding) segments from the amino acid sequence of an IDP. Proteus
compares favorably to the existing predictors. 

Materials and Methods

Training dataset 
Two databases containing proteins with annotated protean segments were pulled together to build
the  final  training  dataset:  IDEAL and  MoRF.  IDEAL (Intrinsically  Disordered  proteins  with
Extensive  Annotations  and  Literature  [19])  contains  557  proteins  with  experimentally  verified
protean segments.  However,  only 203 of 557 proteins  in this  database actually  contain protean
segments. The rest are intrinsically disordered proteins where no protean segments has yet been
experimentally  verified  and  thus  serve  as  negative  examples  in  training.  MoRF  comes  from
MoRFpred [28], one of the existing classifiers. It contains 840 proteins, and all of them has at least
one protean segment. More importantly, all members of MoRF has direct structural evidence from
the PDB. Members from IDEAL and MoRF will henceforth be referred to as 'ProS' and 'MoRF'
respectively, and the combined dataset as 'PnM'. The details of all datasets have been enlisted in
Table 1.

Independent Validation Benchmark
The proposed methodology is somewhat limited in the number of available targets in form of an
independent  validation  set  and  uses  the  same  9  proteins  that  were  used  in  the  DISOPRED3
benchmark  [26].  DISOPRED3 initially  culled  29  chains  by  database  annotations  and scientific
reports which were then reduced to this small set of 9 proteins, as the rest of the chains were found
to be used in the training datasets of the competing methods, ANCHOR [27], MorFPred [28] and
MFSPSSMPred [29]. 

Target Function
The 1-0 binary status for each amino acid residue in the sequence (as assigned by the corresponding
training dataset) serves as the target function in training the classifier, Proteus. Protean and non-
protean residues are denoted by 1 and 0 respectively, meaning positive and negative examples in
training. 

Data Clustering and Cross-validation Benchmark
To avoid training and testing on similar examples,  BLASTclust was used to cluster the protein
sequences in the combined dataset 'PnM'. Sequences with a pairwise similarity of at least 30% over
at least 50% of the sequence length (-S 30 -L 0.5) were clustered in the same group (fold). This
resulted in 774 clusters, with the largest cluster containing 38 proteins, and 253 clusters containing
more than one protein.  1/3rd of all ProS sequences were found to be similar to at least one MoRF
sequence and vice-versa. 

The five groups were built while keeping together all proteins in the same cluster. As the proteins
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vary largely in length, it was not possible to maintain equality in size (in terms of the number of
amino acid residues) amongst the five-folds. Instead, care was taken to keep the number of target
proteins consistent amongst the groups: 280 in four of them and 279 in the fifth. The number of
examples varied from 158,651 for the smallest to 218,870 amino acid residues for the largest group,
whereas the proportion of positive examples (i.e., predicted 'disordered' residues) ranged from 1.42
to 2.23%. It should be noted, that, each of the 5-fold cross-validation training set has been trained
on 4/5th of the whole training data exclusive of the corresponding test examples (1/5th). 

Another independent BLASTClust was run with identical constraints on the combined training and
independent  validation  test  to  ensure  that  they  shared  no homologs.  One of  the  ProS proteins
clustered with one protein from the independent validation set  and was thus removed from the
combined training set, PnM.

Random Forest Classifier 
The Random Forest Classifier (RFC) module part of the Python machine learning package scikit-
learn  [30] was  used  for  training.  Every  decision  tree  in  the  forest  get  to  vote  for  the  binary
classification of every example, and the examples are classified positive according to the majority
vote. In parallel, Extremely Randomized Trees (ERT), a more randomized variant of the Random
Forest was also used in training, which is not only slightly cheaper to compute, but also, makes the
classifier more resistant to over-fitting (i.e., lower variance). However, in the course of lowering the
variance,  ERT increases  the  bias  slightly,  owing  to  the  heavy  randomization  involved  in  the
classifier causing it to miss low-relevance features. 

Evaluation Measures
In  binary  classification,  there  are  four  possible  outcomes  when  predicting  (i.e.  classifying)  an
example:  (i)  True  Positive  (TP):  a  positive  example  correctly  classified  as  positive;  (ii)  True
Negative (TN): a negative example, correctly classified as negative; (iii) False Negative (FN): a
positive example incorrectly classified as negative; and (iv) False Positive (FP): a negative example
incorrectly classified as positive. Based on these four possible outcomes and their corresponding
counts, the following evaluation measures were calculated. 

Precision
Precision, also known as specificity or the Positive Predicted Value (PPV), measures how many
examples classified as positive were actually positive, and, calculated by the ratio, TP / (TP + FP). 

Recall
Recall  (or  coverage)  measures  how many positive  examples  were  correctly  classified  as  (true)
positives. It is also called the 'True Positive Rate' (TPR) and calculated by the ratio, TP / ∑P, where
∑P is the total outcome positives, i.e., ∑P = TP + FN. 

F1-score
F1-score is  the harmonic mean between PPV and TPR and could be interpreted as  a  trade-off
between PPV and TPR. It is defined by the following equation: F1=2PPV× TPR/(PPV+TPR).

Matthews Correlation Coefficient
Another direct evaluation measure is the Matthews Correlation Coefficient (MCC) ranging between
-1  (perfect  inverse  prediction)  to  +1  (perfect  prediction)  and  calculated  as:  MCC=((TP×TN)-
(FP×FN))/((TP+FP)(TP+FN)(TN+FP)(TN+FN))1/2 and was used in conjugation with the F1-score to
estimate the overall performance of the predictor. 

Tuning Training Parameters
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Decision tree depth
In general the deeper the tree, the more complex patterns it can fit. However, this can easily lead to
over-fitting.  Thus,  finding  an  optimal  tree  depth  is  important.  The  number  of  leaves  (N)  in  a
decision tree is an exponential function of the leaf-depth (d) of the tree (N = f(d) = 2 d) which
increases by successive binary branching, leading to a geometric sequence (N = 1, 2, 4, 8, 16, 32
…). 

Since the combined training dataset (PnM) contained ~850,000 examples (which is close to 220),
the  maximum  depth  was  varied  between  1  and  25  (Supplementary  Fig.S1).  Random  Forest
Classifier (RFC) gave slightly better results (MCC, MCC+F1 scores) than Extremely Randomized
Trees (ERT), and a depth of 13 (213 = 8192 possible leafs) yielded the highest MCC and F1 scores.
Hence, all further experiments were designed using RFC with a maximum decision tree depth of 13.

Number of trees in the forest
Another important parameter is how many decision trees to use. In theory, the more trees the better,
but there is a saturation in performance, beyond which the increase in performance is only marginal.
Therefore, it is important to find the optimal  number of trees to save computation time. As can be
seen from the Supplementary Fig.S2, 50 decision trees yield a reasonable performance, which is
only slightly increased (by ~5%) by using more trees. Therefore, using 50 trees was considered to
be enough for the computationally expensive feature selection part. However, for the final selected
combination of features 500 trees were used to achieve maximum performance.

Probability cut-off 
The classifier needs a user-defined probability cutoff (Pcut) above which an example is classified as
positive.  Pcut was  varied  in  the  whole  range  of  0.0  to  1.0  and  based  on  the  performance
(Supplementary Fig.S3), was set to 0.5 (majority vote). Therefore, if 50% or more decision trees
voted for the particular example to be positive, it was classified as positive. 

Amino Acid Propensity
Propensity  (Pr)  for  a  particular  amino  acid,  X  to  occupy  a  particular  'class'  (e.g.  protean  vs.
disordered  residues)  has  been  calculated  as  the  ratio  of  two  probabilities  (P)  as:  Pr(X)  =
P(X)class/P(X)full = (N(X)class/N(All)full) / (N(X)full / N(All)full) where 'full' stands for the entire training
dataset and N denotes the raw count of amino acid(s) in the said 'class'. A propensity value of 1
represents no preference whereas a higher and lower value to that of 1 represents higher and lower
preference of the amino acid to occupy the given class with respect to the baseline, usually taken to
be the whole dataset. 

Secondary Structural Content
PSIPRED [31] was used to predict the secondary structure in three classes (H: Helix, E: Strand, C:
Coil).  For each amino acid,  the relative fraction of each of the three main secondary structural
classes (H, E, C) were calculated for protean, non-protean, disordered and ordered sequences. The
aim was to decipher if there was any preference in disorder vs. order sequences that might have
propagated to protean segments during the 'disorder-to-order' transitions.  

Design of the sequence-driven features 

Consideration of local and global effects
Intrinsic  disorder,  which is  essential  for  the 'protean'  segments,  is  a  function of  both  the  local
sequence and the global three dimensional fold of the protein. The design of features should give
proper weights to both. However, it is highly non-trivial to take into account, the global effect of the
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overall  protein  fold  without  actually  attempting  to  build  homology  models  for  the  predicted
'structured' regions, obviously in their bound form.  This will not only be computationally costly but
will also have a very low confidence associated with the built models, due to the lack of enough
structural  data.  One alternative  way to  indirectly  take  into  account  the  global  constraints  is  to
perform a homology search against all sequences and then convert the sequence into a profile. To
this end, PSI-BLAST [32] was used to construct sequence profiles. In addition, PSI-PRED [31] was
used  to  predict  secondary  structure  of  each  amino  acid  residue  of  each  input  sequence  and
DISOPRED [26] to predict their disorder probability score. This is an implicit way to account for
the possible global constraints in the designed features. 

To describe the neighboring environment  a  sliding window of  15 residues  centered around the
current residue was considered in the design of most features. This will produce an average property
of the said feature, taking into account the local sequence dependence associated with order-to-
disorder transitions. The size of the window was optimized by trying different sizes in the  range of
9-21. The optimal size agrees with average length of protean segments (Fig.1).

In total 342 features, in seven different feature groups, were used and described in detail below
(Table 2)

Feature Group 1: Sequence Profiles (Features: 1-300)
Considering the influence of the local sequence to disorder, it is likely to find empirical trends (over
and under-representations) in the distribution of amino acids in protean compared to non-protean
regions. In other words, certain amino acids might preferentially occur in the protean segments but
not others. This was represented by Position Specific Scoring Matricies (PSSM) constructed by
running three iteration (-j 3) of PSI-BLAST [32] against UniRef90 [33] with an inclusion E-value
threshold of 10-3  (-h 0.001). The PSSM contains scores for each of the 20 possible amino acid
substitutions in each position, representing the amino acid mutability at any given position. The
higher  the  score,  the  higher  the  probability  that  these  amino  acids  occurs  at  that  position.  To
improve  convergence,  the  raw  PSSM  scores  were  linearly  scaled  to  [0.0,  1.0]  based  on  the
maximum and minimum values observed for each amino acid in the whole training set. To account
for the local sequence bias a 15 residues window of the PSSM was used centered around the current
residue, giving 300 (15x20) features in total for each residue.

Feature Group 2: Amino Acid Conservation (Feature: 301)
The conservation score is derived by PSI-BLAST [32] from the PSSM matrix, and, as the name
suggests, conceptually, it  is complementary to that of 'mutability'.  Numerically,  it  is a modified
Shannon Entropy  [34] term representative of the heterogeneity of amino acid substitutions for a
given position  in  the  input  sequence.  Again,  to  take  care  of  the  neighboring  environment,  the
conservation score was averaged over a 15 residue window. In contrast to all other feature groups,
this group consists of only a single value. 

Feature Group 3: Amino Acid Composition (Features: 302-321)
This feature group describes the individual concentration of all amino acids, in a 15 residue long
window, i.e. 20 features in all. Representing a coarse-grain estimation of the amino acid properties
in the local neighborhood around the central residue. 

Feature Group 4: Amino Acid Properties (Features: 322-330)
Physiochemical properties of amino acids might serve crucial consensus for disorder and disorder to
order  transitions.  In  contrast  to  the  'amino  acid  composition  group'  above,  Polarity,  Charge,
Hydrophobicity and Molecular Weight were explicitly described, in a 15 residue sliding window.
Polarity were divided into polar, non-polar, acidic-polar or basic-polar, and  Charge into positive,
negative, and neutral  [35]. Hydrophobicity was described using the Kyte Doolittle scale  [36] For
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each of these seven features, the corresponding counts were averaged over the 15 residue window.

Feature Group 5: Predicted Secondary Structure (Features: 331-333)
Secondary structural propensities of individual amino acids in the close neighborhood of a residue
might have major influence on disorder and might serve as a discriminative feature between protean
and  non-protean  fragments.  For  example,  if  this  likelihood  continually  keeps  altering  between
helices to sheets along the sequence, the resultant main-chain trajectory would potentially only keep
wobbling giving  rise  to  an  unstructured region.  The other  possibility  is  of  course having most
residues as predicted 'random coils'. The probabilities of each amino acid residue in a sequence to
form one of  the  three  main  secondary  structures  (Helix,  Strand,  Coil)  were  predicted  by  PSI-
PRED[31] and averaged over a 15 residue sliding window, serving as three distinct features. 

Feature Group 6: Predicted Disorder Probability (Features: 334-340)
The probability for disorder was predicted using DISOPRED  [26]. The disorder prediction score
from DISOPRED is a confidence estimate (or probability) for a residue in a protein sequence to be
disordered.  It  is  defined in  the range [0,  1] and DISOPRED assigns the disordered status to  a
residue if the score is greater than 0.5. The disorder prediction score, averaged over the 15 residue
window centered on the current  residue was directly  used as the first  feature in this  group.  In
addition, to describe the local properties of the disorder prediction, the length of disordered and
ordered segments and the start and end positions relative to the total sequence length were also
used. In detail, if the score is greater than 0.5, the positions on either side of the current residue
where the score drops below 0.5 are identified, from this the length, start and stop positions of the
segment can be calculated. This was performed for residues predicted to be disordered (score > 0.5)
and for residues predicted to be ordered (score < 0.5), resulting in 7 (1+3+3) features and depending
on the predicted disorder of the segment three of the seven features will always remain zero. 

Feature Group 7: Disorder Topography (Features: 341-342)
Disorder topography measure the topography of peaks and valleys in the predicted disorder score
graph (Supplementary Fig.S4). Each residue is classified as being part of a peak (1), valley (-1) or
neither (0). A residue is part of a peak if on both sides there exists another residue with a score at
least 10% lower than the current residue. Likewise, a residue is part of a valley if there are residues
with disorder scores at least 10% higher than the current residue. If a residue is neither at a peak or
in a valley it is classified as neither. In addition, the length of the current peak or valley residue are
also calculated and used as a separate feature. Thus, the disorder topography feature consist of the
peak/valley/neither classification and the length of the current peak/valley. 

Results and Discussion 

Propagation of sequence consensus during disorder-to-order transitions
To understand the possible relationship between sequence-derived properties of protean segments
and the associated disorder, sequence-derived properties like amino acid propensities and secondary
structural  content  were  individually  studied  in  disorder  vs.  order  and  protean  vs.  non-protean
regions. This knowledge will serve not only to explore and understand certain plausible empirical
trends  in  the  designed  features,  but  also  as  a  guide  in  determining  which  features  are  more
discriminative, and which can act like filters.

All characteristics were investigated in (i) protean vs. non-protean as well as in (ii) disordered vs.
ordered sequences (as predicted by DISOPRED). The aim was to identify any pattern that might be
responsible for disorder-to-order transitions of the protean segments.
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In other words, the focus was to collect the most discriminative trends in the disordered vs. ordered
regions that were also maintained in the protean vs. non-protean segments. Hence, they could be
interpreted as properties propagating during the disorder-to-order transitions, implicit in the protean
segments. However, since the 'disorder vs. order' classification is clearer and more distinct, it is
expected that the trends for 'disorder vs. order' should be more prominent than the 'protean vs. non-
protean' trends. 

Amino acids preference in protean and disorder residues
The first and most fundamental characteristic investigated was the propensity of amino acids in
disorder/ordered and protean/non-protean residues. The predicted disordered regions show drastic
under-representations of hydrophobic amino acids compared to predicted ordered regions (Fig.2A).
Even among  the  distribution  of  hydrophobic  amino acids,  there  is  an  unmistakable  trend with
respect to the size of the hydrophobic side-chain. The gradual increase in the propensity of the
hydrophobic side-chains in the predicted ordered regions appears directly proportional to their side-
chain volume (Ala → Val → Leu → Ile → Phe → Tyr → Trp) (Fig.2B); whereas in the predicted
disordered regions, the relationship appears inversely proportional. This trend is perfectly consistent
with the notion of hydrophobic core formation within ordered protein tertiary structures [37], and
on the other hand, bulky aromatics (Phe, Tyr, Trp) should be unfavorable in disordered regions, due
to their potential incompatibility with regard to side-chain volume and entropy. The other noticeable
features are the significant over-representation of cysteines in ordered regions with a concomitant
under-representation in disordered regions, again consistent with the idea of fold stabilization by
disulfide bridges [38] in the ordered, structured proteins, which must be avoided during the natural
design  of  intrinsic  disorder.  On  the  other  hand,  prolines  are  significantly  over-represented  in
disordered regions  compared to  ordered,  which  is  consistent  with their  ability  to  break regular
secondary structures [39], especially helices [40]. Even if found in regular secondary structures (β-
sheets for example), proline needs additional structural constraints from pre-prolines (e.g., glycine
rescue) to get stabilized [41]. In line with these observations, proline has been identified as the most
disorder promoting amino acid residue [21].

The other well-known residue, responsible for backbone flexibility, glycine [39] was also found to
be over-represented in disordered compared to ordered regions. This is in accord with the well-
established idea that proline and glycinces are general indicators of  entropic elasticity  [20] and
hence control self-organization of elastomeric proteins (e.g., amyloid fibrils)  [42]. In fact, recent
studies have formulated correlation functions of elasticity in terms of coiling propensity based on
sequences rich in proline and glycines in disordered proteins [20]. 

The  other  noticeable  difference  was  seen  for  serine,  again  a  small  and  polar  amino  acid,
significantly  over-represented  in  disordered  and  under-represented  in  ordered  regions.  Indeed,
serine-rich proteins in bacterial enzymes like kinases [43] and eukaryotic splicing factors [44] have
been reported to be part of intrinsically disordered proteins. The other polar (Thr, Asn, Gln) and
charged (Asp, Glu, Lys, Arg) amino acids were found to have similar or slightly higher propensities
in disordered compared to ordered sequences. These results agree well with the previously proposed
alphabet of intrinsic disorder [21]. 

But as mentioned earlier, the focus of the current work was to identify patterns that were not only
discriminative in disorder vs. order sequences but were also maintained in protean vs. non-protean
sequences and therefore might form crucial  consensus in the understanding of disorder-to-order
transitions. However as expected, the patterns in protean vs. non-protean sequences were not as
prominent as in disorder vs. order sequences (Fig. 3). The collection of all (non-ProS + non-MoRF)
sequences served as the (non-protean) baseline which raised a value of ~1.00 (+/- 0.01) for the
baseline  propensities  of  all  the  amino  acids  (Fig.  3B).  This  was  not  surprising  since  the  bulk
majority of the training dataset contained negative examples (non-protean sequences). Similar to
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ordered residues, all large hydrophobic residues (Leu, Ile, Phe, Tyr, Trp) were found to be over-
represented in the protean segments (Fig. 3A) and at the same time these residues were drastically
under-represented in disordered regions (Fig. 2A). The same is true for all charged residues (Glu,
Asp, Lys, Arg) that acquired much larger propensities compared to what they had in disordered
sequences, and also noticeably higher than ordered sequences in general (Fig. 2B and Fig. 3A). The
results clearly indicate that both large-hydrophobic and charged residues get preferentially selected
during the 'disorder-to-order' transitions (via binding). In other words, not all disordered regions
undergo the same transition, rather, there is a preferential selection of sequences containing large
hydrophobic  and charged residues  leading to  stabilization  through hydrophobic  and salt  bridge
interactions at the protein-protein interface. This is in accord with the general notion of stability
upon binding in protein-protein interfaces where both shape and electrostatic complementaries are
crucial for binding [45,46]. 

Finally, as for disorder residues cysteines are clearly under-represented in protean residues as well,
reflecting the fact the stability of protean residues should not involve disulfide bridges (at the cost
of massive loss of plasticity). However, in contrast to disordered residues both proline and glycine
are under-represented in protean residues, indicating these residues do not undergo disorder-to-order
transition, but rather remain disordered. 

Secondary structure preference in protean and disorder residues
It is also important to conceptualize the secondary structural trends during the course of disorder-to-
order transitions.  The relative content of coil (C), including loops and turns are higher than helix
(H) and strands (E) in all classes of sequences ranging from disorder to order and from protean to
non-protean. But when comparing between two opposite class (e.g. disordered vs. ordered), it is the
relative increment in (H+E)/C that is interesting. On that note, ordered sequences naturally have far
greater  regular  secondary  structures  (H+E)  amounting  to  ~50% of  the  whole  population  than
disorder sequences (H+E: ~15%; C: ~85%) (Fig.4). As expected, the relative low fraction (~15%)
of helices and strands in disorder residues has a definite rise upon the disorder-to-order transitions
in protean segments (H+E:~40%), which is roughly the same as in non-protean sequences (Fig.5).
Recall that the large majority of the non-protean sequences are in fact the usual ordered sequences
and the subset of disordered sequences that get ordered are only the leftover minority. Among the
regular  secondary structures,  helices  appear  to  be more prevalent  in  protean (~32%) than non-
protean segments (~27%) whereas beta-strands seem to be slightly more preferred in non-protean
(~10%) compared to protean segments (~5%). 

Indecisiveness in adapting a particular secondary structure class from sequence
Another property investigated based on secondary structure is the indecisiveness of an amino acid
sequence  in  adapting  a  particular  secondary  structure.  This  was  based  on  the  assumption  that
protean  segments,  when  disordered  in  isolation,  might  keep  on  altering  the  choice  to  adapt  a
particular secondary structure (H, E or C) along their main-chain trajectory and thereby end up
being unstructured. Given the current lack of structural data for these sequence, PSIPRED [31] was
used to predict secondary structure to try to shade some light on the above hypothesis. A measure
for the indecisiveness or randomness in secondary structure prediction called Altscore was defined
as the average number of transitions (H→C, C→E etc.) for each protean and non-protean segment.
Regions with an Altscore value of 'zero' were omitted for both protean and non-protean regions,
since they will only add noise to any potential signal.  Focusing on the regions with Altscore> 0, the
frequency distribution  (Fig.6) clearly discriminate between protean and non-protean classes with a
wider spread being obtained for the protean class followed by a peak-shift towards higher values
(0.1 compared to 0.05 for non-protean). The results indicate that the intrinsic disorder associated
with the unbound protean segments potentially suffers from the indecisiveness of the main-chain
trajectory to adapt a particular secondary structure. 
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Both the above observations, (i) the reappearance of large hydrophobic and charged amino acids
into  the  protean  segments,  as  well  as  (ii)  the  indecisiveness  associated  with  their  predicted
secondary structures should serve constructively in unraveling a hidden consensus in promoting
disorder-to-order transition. 

Training a classifier to predict protean residues
To be able to predict protean residues from sequence, a random forest classifier was trained on the
features described above. Most features have been calculated using a sliding window of 15 residues,
optimized by trying different window sizes in the range of 9-21 and maximizing the performance
(Supplementary Fig.S5). The optimal window size is in the center of the distribution of the length
of protean segments (Fig. 1) and similar to what is used for predicting disorder residues[26]. Note
that for all feature groups except Feature Group 1: Sequence Profiles, the number of features will
remain the same even with a different window size. Among all features, some  features might be
non-informative,  other  might  be  redundant.  Indeed,  some  features  are  similar  in  their
physiochemical  descriptions  and therefore  might  be excluded without  loss  in  performance.  But
sometimes it might be an advantage for the classifier to learn from explicit rather than implicit
features. To find the best combination of the 7 feature groups, all 127 possible combinations were
exhaustively examined by measuring the final cross-validated performance using MCC and F1-
scores for each feature group combination.

The twenty best feature group combinations according to the MCC and F1-scores have been shown
in  Supplementary Fig.S6 & Fig.S7 respectively. The difference is small between the top feature
group combinations. Also, the top-combinations as evaluated by MCC and F1 are not identical,
whereas, using all features result in good scores being attained in both evaluations. Therefore, the
combination of all feature groups was chosen judiciously. The absolute MCC and F1 score values
are relatively small ~0.13, owing to a large number of false positives and negatives. However, the
magnitude  of  the  scores  are  comparable  to  other  studies  [26–29],  and  reflect  the  difficulty  of
predicting  residues  that  will  be  ordered  upon binding  from information  in  one  of  the  binding
partners  only.  Further  illustrated  in  the  receiver  operating  characteristic  (ROC)  curves  of  the
precision (PPV) vs. recall for the best combination (Fig.7). The ROC curves were constructed by
varying the cutoff (Pcut) and calculating precision and recall for each cutoff. The random base line
precision is 1.9% and the curve for the best combination is clearly above that and it can also be seen
that 500 trees is slightly better than 50. But the question remains, if the rather modest 10% precision
at 23% recall (Pcut>0.5) is useful at all? Considering that it is still five times better than expected by
chance we would argue that it is useful given the alternative. But there is of course plenty of room
for improvement, by incorporating additional information not directly obtained from the sequence,
such as structure prediction to filter out residues that actually are ordered by themselves, and to
predict  the  surrounding residues,  and to  be  used as  starting points  in  molecular  simulations  or
docking studies. 

Relative Importance of Features 
In an effort to learn what features contributed to the overall prediction, the relative importance of
each feature  group was  outputted  from the  classifier.  To take  care  of  the  inherent  randomness
associated with the classifications, this relative importance was averaged over predictions of 500
decision trees. As we can see, there are three features that stand out above the rest (Fig.8): Feature
342 ('topographic length': Feature Group 6) is by-far the most important feature which describes the
length of the topographic region where the current residue is located. Interestingly, the second most
important feature (feature 340: Feature Group 5) is  also a length descriptor,  namely  the more
coarse-grained length of the ordered region corresponding to the current residue.  Note that this
feature will be 'zero' for all residues predicted to be disordered. The third most important feature
(feature 334: Feature Group 5) is the predicted disorder score averaged over the current window
size.
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The other seven features in top ten were (4) the relative position of the ending residue with respect
to the current one, which is detected to reside in an ordered region (feature: 339, group: 6, set to
'zero'  if  residue is  predicted disordered),  (5) length of the disordered region the current residue
resides in (feature: 335, group: 6, set to 'zero' if the fragment is ordered), (6) the topography score
(feature: 341, group: 7), (7) probability of the current residue to form a coil (feature: 333, group: 5),
(8)  probability  of  the  current  residue  to  form a  helix  (feature:  335,  group:  5),  (9)  the  relative
position of the starting residue with respect to the current one, detected to reside in an ordered
region (feature: 339, group: 6, set to 'zero' if the residue is predicted disordered), and (10) charge-
neutrality of the current amino acid (set to 'zero' if charged). 

True Positive Enrichment by analyzing the Proteus Score
A common  test  of  machine  learning  predictors  is  to  analyze  the  true  positive  enrichment  by
constructing score plots,  which is  more detailed compared to  the ROC curves.  Score plots  are
conventionally defined as the overlay of two independent evaluation measures, Positive Predicted
Value (PPV) and recall as two distinct functions of the predicted score (the Proteus score in this
case). Ideally, both the PPV and recall should be high but there is a conflict in finding as many true
positive as possible (high recall) and at the same time have a high PPV (few false positives). In
reality there will always be at a trade-off between the two, which is also the main reason to use the
combined measure F1. In the current case (Fig. 9A), F1 peaks at around the score of 0.5, which is
also the cutoff chosen for positive prediction in the final predictor (Pcut=0.5); corresponding to 10%
PPV and 23% recall as discussed above. It can be noted that after that point the PPV increases quite
rapidly, and scores >0.7 have PPV > 40%. Unfortunately there are rather few examples that obtain
this high score resulting in a rather modest recall overall. Still, if the score is high we can certainly
trust it to be a relatively accurate prediction. This is also reflected by analyzing the distribution of
scores for protean and non-protean residues (Fig. 9B), where the score was found to be much higher
for predicted protean residues than non-proteans with median values of 0.4 and 0.24 respectively
with roughly equivalent median absolute deviations. It can also be seen that there are quite many
high scoring outliers in the non-protean residues. These might of course be completely wrong, but
there is also a possibility that these predictions are actually  sites for yet unknown interactions.
Since  the  study  of  transient  interaction  is  difficult,  and  the  focus  of  the  structural  biology
community so far has been on stable interactions that can even form crystals, there is still a lot more
to be discovered if the dynamics is also taken into account.

Benchmark on Independent Data Set
In any machine  learning scheme it  is  an advantage  if  the  final  classifier  can  benchmarked on
independent data, and against other classifiers. In the recent DISOPRED3 paper [26] the following
methods  were  benchmarked  ANCHOR  [27] MoRFpred  [28],  MFSPSSMpred  [29],  and
DISOPRED3  [26] using  a  set  of  2,209 residues  out  of  which  163 were  protean  (i.e.,  positive
examples) from 9 proteins (see Material and Methods). None of the examples in the independent set
were similar to any example used in training Proteus, thus before classifying, Proteus was retrained
on the full non-cross validated training set. The predictions for the other methods were generously
made  available  by  the  authors  of  DISOPRED3  through  the  following  link:
http://bioinfadmin.cs.ucl  .ac  .uk/  downloads/  DISOPRED/suppl_data/.  The  evaluation  measures
precision, recall, F1, and MCC were calculated for all methods using the binary classification of
each method (Fig.10) or as ROC curves using the raw scores from each method (Supplementary
Fig.S8),  and  overall  Proteus  is  better  in  all  measures.  Proteus  has  the  highest  precision  (0.26
compared to 0.22 for DISOPRED3, the second best), for a much larger recall (0.56 compared to
0.28 by ANCHOR, the next best). This combined improvement in both precision and recall is also
naturally reflected in a concomitant increase in their trade-off, the F1-score (0.35 compared to 0.18
by DISOPRED3, the next best). It also attained a higher MCC value than the other methods (0.30
compared to 0.13 by DISOPRED3). Even though the independent set is small, the high recall is
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particular encouraging if Proteus should be used as initial step before more elaborate approaches as
discussed above, it is crucial not to lose too many true positives at an early stage.

Conclusion 

With the realization that protein disorder is involved in a range of human diseases, including cancer,
cardiovascular and neurodegenerative diseases, it is important to compile more and more structural
information  for  these  proteins  to  under  their  modus  operandi.  A first  step  in  this  direction  is
classification and prediction of protean segments. The literature shows that there is indeed much
room for improvement for the existing predictors  [26].  Proteus seems to perform better than the
existing predictors on the available independent dataset. Of course this has to be re-evaluated when
more data becomes available. It is also possible that combining different individual methods to
build  hybrid  methods  could  be  one  way  to  increase  the  performance  even  further.  It  is  also
important to conceptualize the multiple sequence driven factors and their coordination holding the
key 'consensus' in promoting the 'disorder-to-order' transitions. The 'consensus' is yet untangled and
needs other exclusive studies to eventually be resolved, however, the current work explores certain
empirically observed trend which appears to be instrumental in the transition from disorder to order.
These factors include the reappearance of large hydrophobic and charged amino acids in the protean
segments, which are significantly under-represented in the originally 'disordered' regions. The study
also shows that there is an inherent indecisiveness in predicted secondary structure assignments
associated with the protean segments, where protean regions seem to alters its path along the main-
chain trajectory so frequently that it ends up being flexible. This is consistent with the notion of
sustaining enough 'disorder'  even in  the  bound form  [4] which potentially  help  the  proteins  to
sustain their binding promiscuity. To conclude, the study has both a basic and an applied content
and should serve the IDP as well as the broad biological community in both ways.

The software package is available at https://github.com/bjornwallner/proteus

Tables

Table 1. Description of the datasets 
Dataset Proteins Protean Residues Non-Protean Residues Total Residues

ProS 557 6,245 356,053 362,298

MoRF 840 10,549 494,264 504,813

ProS + MoRF (PnM) 1,397 16,794 850,317 867,111

Validation 9 163 2,046 2,209

Table 2. A Summary of Feature groups

Feature Group Name Feature Number Count

1 Sequence Profile 1-300 20×15=300

2 Amino Acid Conservation 301 1

3 Amino Acid Concentration 302-321 20x1=20

4 Amino Acid Properties 322-330 4+3+1+1=9
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5 Predicted Secondary Structure 331-333 3×1=3

6 Predicted Disorder 334-340 3+3+1=7

7 Disorder Topography 341-342 1+1=2

Figure Legends:

Fig.1. Distribution of size of the 'originally classified' Protean segments.  The distribution is
obtained from the combined 'PnM' training dataset. 

Fig.2. Amino Acid Propensities in the 'predicted' disordered vs. ordered regions.  The Black
Horizontal Line (Propensity = 1.0) serves as the baseline; meaning no preferential occurrence of the
said amino acid in the said class. A propensity greater and lesser than 1.0 represents over and under
representations respectively. 

Fig.3. Amino Acid Propensities in the 'originally classified' protean vs. non-protean segments.
The  Black  Horizontal  Line  (Propensity  =  1.0)  serves  as  the  baseline;  meaning  no  preferential
occurrence  of  the  said  amino  acid  in  the  said  class.  A propensity  greater  and  lesser  than  1.0
represents over and under representations respectively. 

Fig.4. Secondary Structural probabilities in the 'predicted' disordered vs. ordered regions. H,
E and C stands for α-Helix, β-Strand and Random Coil (non-helix, non-strand) respectively.

Fig.5. Secondary Structural probabilities in the 'originally classified' protean vs. non-protean
segments.  H,  E  and  C  stands  for  α-Helix,  β-Strand  and  Random Coil  (non-helix,  non-strand)
respectively.

Fig.6. Indecisiveness in adapting a particular secondary structure for the 'originally classified'
protean vs. non-protean segments.  Probability Distribution of the Altscore (see Text) have been
drawn for both sets. Segments assigned as purely 'Coil' were excluded from both sets.

Fig.7.  Receiver  Operating  Characteristic  (ROC)  curves  to  analyze  the  cross-validated
performance of Proteus. All five separate training / test folds as well as the final five-fold cross-
validated  'Proteus'  predictions  (mean)  are  tabulated.  The  dashed  line  (-  -)  with  a  slope  of  1.0
represents the random baseline.

Fig.8. Relative feature importance.  Feature 342 describes the topographic length , Feature 340
describes the 'length of the ordered region' and feature 334 is the predicted disorder score.

Fig.9. Analysis of Proteus Score for the cross-validated predictions. (A) Proteus score vs PPV
(solid, blue), recall (dashed, red), and F1 (dotted, orange) for the cross-validated predictions.  (B)
Box plots showing the distribution of predicted Proteus scores for protean and non-protean residues.
The median of the two distributions are shown by the horizontal red line in the middle of the two
boxes. 

Fig.10.  Comparison of  Proteus with other classifiers  using ROC curves.  All  methods were
tested on the same validation set of 9 proteins containing 2209 residues (total number of examples)
with 163 protean (positive examples). AUC stands for Area Under the Curve which were calculated
using the Trapezoidal numerical integration (trapz) function of MATLAB. The random baseline
(dashed black line) corresponds to a purely random classifier. 
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