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Abstract 

 

Epileptic seizures are known to follow specific changes in brain dynamics. While some algorithms can 

nowadays robustly detect these changes, a clear understanding of the mechanism by which these alterations 

occur and generate seizures is still lacking. Here, we provide cross-validated evidence that such changes are 

initiated by an alteration of physiological network state dynamics. Specifically, our analysis of long intracranial 

EEG recordings from a group of 10 patients identifies a critical phase of a few hours in which time-dependent 

network states become less variable ("degenerate") and is followed by a global functional connectivity reduction 

before seizure onset. This critical phase is characterized by an abnormal occurrence of highly correlated network 

instances and is shown to particularly affect the activity of resection regions in patients with validated post-

surgical outcome. Our approach characterizes pre-seizure networks dynamics as a cascade of two sequential 

events providing new insights into seizure prediction and control. 
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Introduction	
Epilepsy is among the most common neurological disorders with an estimated prevalence of 

about 1% of the world’s population and almost 2% in low-income families in developed 

countries (CDC, 2010). Epilepsy is characterized by the seemingly random occurrence of 

seizures, which can greatly affect the quality of life of patients. Approximately one third of 

all epileptic patients are resistant to pharmacotherapy (Kwan et al., 2011) and could benefit 

from a variety of surgical options. Among them, closed-loop neuromodulation based on an 

accurate prediction of seizure occurrences is a promising tool. 	

	

Over the last decades, several studies have showed that seizures are preceded by detectable 

changes in brain dynamics that can be measured via intracranial recordings. Although not 

being fully understood, these changes have been associated to the existence of a transition 

from interictal activity to pre-ictal state (Lopes da Silva 2003, Stacey et al., 2011). These 

findings have motivated intense research on the development of seizure prediction algorithms 

for therapeutic use in patients with refractory epilepsy (Park et al., 2011, Valderrama et al., 

2012, Cook et al., 2013, Gadhoumi et al., 2015). Although significant progress has been 

made to attain above-chance level performance results (Brinkmann et al., 2016), there is yet a 

long road to turn seizure prediction into therapeutic devices (Freestone et al., 2017). A major 

caveat of current seizure prediction is the lack of understanding about the neurophysiological 

processes associated to the emergence and maintenance of the pre-ictal state. Indeed, most 

studies have resorted to fully data-driven methods to discriminate the pre-ictal state with 

multiple signal features, which are typically patient-specific and difficult to interpret 

(Gadhoumi et al., 2015).  	

	

Nowadays, epilepsy research is gradually adopting a network approach to study seizure 

dynamics at a global level and assess the contribution of the epileptogenic zone (Van Diessen 

et al. 2013, Van Mierlo et al., 2014, Goodfellow et al., 2016, Khambati et al., 2016). In this 

growing field, the majority of published studies have identified specific graph-theoretical 

properties of functional networks during ictal and interictal periods (Kramer et al., 2008, 

Bartolomei et al., 2011, Haneef et al., 2014, Stam 2014). In particular, a few groups have 

started to characterize the temporal variability of such functional networks during ictal 
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(Rummel et al. 2013, Burns et al., 2014, Khambati et al., 2015) and interictal epochs 

(Takahashi et al., 2012, Geier et al., 2015a, Khambati et al., 2017). Specifically, some 

authors have employed state spaces to classify recurrent functional networks during seizures 

to pinpoint those states that were responsible for the generation, maintenance and termination 

of ictal activity (Burns et al., 2014, Khambati et al., 2015). More recently, a similar approach 

has been applied to a large sample of 10-minutes interictal epochs showing that interictal 

activity exhibits larger fluctuations than ictal periods over a common set of states (Khambati 

et al., 2017). In this context, however, the crucial question on whether there exist network 

dynamics changes pointing towards an upcoming seizure remains unaddressed. It is therefore 

due to ask: (1) how are recurrent network states dynamically altered before epileptic 

seizures? More generally, can network dynamics provide a common principle of the pre-ictal 

state?  

	

In the current study, we addressed these questions for the first time by analyzing time-

dependent alterations in the dynamic repertoire of the functional connectivity (Hutchinson et 

al., 2013) during long pre-seizure periods preceding seizures. Based on insights from other 

dysfunctional models (Hudetz et al., 2014, Barttfeld et al., 2015) and recent findings showing 

network dynamics alterations between interictal and ictal epochs (Khambati et al., 2017), we 

hypothesized that the variability of physiological (non-dysfunctional) network states was 

reduced as interictal activity approached epileptic seizures. Under this hypothesis, we 

developed a novel analysis to study specific variability changes prior to seizures preceded by 

long interictal periods in 10 epileptic patients monitored with video-SEEG 

(stereoencephalography) during pre-surgical diagnosis. We made use of a graph-theoretical 

property, the eigenvector centrality, to characterize network states (Burns et al., 2014) as 

instances of a time-varying multivariate continuous variable, and resorted to the Gaussian 

entropy (Cover and Thomas, 2012) to describe their variability. A controlled analysis using 

time-matched periods of interictal activity from additional days revealed a consistent and 

sustained decrease of the variability of network states before the seizure occurred. 

Remarkably, in all patients this loss of variability was specifically associated to an abnormal 

occurrence of high-connectivity states during the pre-seizure period. We also investigated the 

contribution of the epileptogenic sites to the measured effect in two patients with a long-
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lasting (>4 years) very good post-operative outcome. In particular, the application of our 

analysis to the mapped epileptogenic sites of these seizure-free patients showed a significant 

alteration in the resected areas of the patients’ epileptic networks. Overall, our approach 

provides two main contributions in the analysis of epileptic network dynamics. First, it 

characterizes the pre-ictal state as a two-stage process in which epileptic networks undergo a 

functional reorganization before seizure onset. Second, it develops methodological aspects 

that may be considered to improve seizure prediction algorithms. More broadly, the results 

presented here open new lines to investigate critical alterations in pathological networks by 

studying the time-varying nature of brain networks.   

	

Results	
We studied network dynamics prior to epileptic seizures in 10 drug-resistant patients using 

continuous multichannel intracranial recordings via stereoelectroencephalography (SEEG) 

during pre-surgical monitoring evaluation (See details in Fig 1). To capture long-term 

changes in network dynamics, we considered patients whose first spontaneous clinical seizure 

occurred after at least 30 hours (average value: 71.4±19.1 hours; mean±std) of intracranial 

implantation. This ictal activity exhibited variable onset times over patients that were more 

concentrated during the 0:00-8:00 period (Fig 2A). For every patient, we analyzed a long 

continuous period (average value: 10.4±1.9 hours; mean±std) of intracranial activity before 

the seizure occurred (pre-seizure period, Fig 2B). We controlled for the specificity of our 

findings by independently analyzing time-matched periods of interictal activity from different 

days (e.g., control period, Fig 2B).  In this study, we separately analyzed eight patients 

(Patients 1-8, Main patients) with no clinically relevant events before the first seizure and two 

patients that presented potential factors perturbing the pre-seizure period (Patients 9 and 10, 

Control patients). More precisely, Patient 9 had been electrically stimulated 16.5 hours before 

the first recorded seizure and Patient 10 presented a subclinical seizure 6.1 hours before the 

first clinical seizure onset. 

 

Network dynamics analysis 

We tracked network state dynamics for each patient separately over each SEEG recording 

session. To do so, we computed functional connectivity using Pearson correlation across all 
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recording sites (also referred to as sites, average value: 98.3±25.1 sites; mean±std) over 

consecutive and non-overlapping time windows of 0.6s (Fig 2D). Networks in each window 

were characterized as a weighted undirected graph, where electrode contacts represented the 

nodes and absolute-valued pairwise correlations represented their weighted edges (Fig 2D). 

We then evaluated a centrality measure for each connectivity matrix to track network 

dynamics in a reduced and interpretable dimensionality space. Indeed, we computed the 

eigenvector centrality to reduce each N x N connectivity matrix to a N-dimensional vector, 

where N was the total number of recording sites, thus obtaining a centrality sequence for each 

recording site (Fig 2D).  This measure can be equivalently interpreted as the first principal 

component of the normalized covariance matrix of the set of intracranial recordings in each 

window. 

 

Our initial hypothesis was that the pre-ictal state was associated with a reduction of 

physiological network states. We therefore tested this hypothesis by quantifying changes in 

the distribution of the eigenvector centrality sequences representing these network states. In 

particular, we assumed that the centrality time series could be approximated by a multivariate 

Gaussian distribution for a sufficiently large number of samples (n>100). In principle, the 

second-order variability of a multivariate variable may exhibit two components: the temporal 

component, i.e., how the centrality of a recording site varies as a function of time, and the 

spatial component, i.e., how the centrality consistently varies across recording sites at a given 

time instance. A measure that simultaneously quantifies both components is the multivariate 

Gaussian entropy, which monotonically depends on the product of the covariance matrix’s 

eigenvalues (Fig 2C). This measure corresponds to the differential entropy of multivariate 

normally distributed variables (Cover and Thomas, 2012) but it can be proved useful to 

approximate the variability of more general variables whose distribution is asymptotically 

Gaussian (Chen et al., 2010).	

	

Network state variability identifies time-dependent alterations before seizure 

onset 
First, we centered our analysis on the pre-seizure period and the time-matched period from 

the previous day (pre-seizure, control). Over both periods we computed the multivariate 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 27, 2017. ; https://doi.org/10.1101/080739doi: bioRxiv preprint 

https://doi.org/10.1101/080739


6	

Gaussian entropy in consecutive and non-overlapping time windows of 200 centrality 

samples (120s) and normalized the measure to lie within the interval [0,1] per patient. We 

shall refer to this applied measure as centrality entropy in the remaining of the article. The 

straightforward application of the centrality entropy to both periods in the main patients 

showed that centrality sequences were generally less entropic during the pre-seizure period 

(See Fig S1A) showing a gradual increase and successive decrease of this cross-period 

difference as the seizure onset approached. In order to localize this effect in a specific and 

significant time segment, we grouped consecutive entropy values into intervals and made use 

of a non-parametric test to identify the cluster of consecutive centrality entropy intervals that 

was significantly yielding the largest entropy decay per patient (Materials and Methods). The 

results of this test are illustrated for the main patients in Fig 3A where average centrality 

entropy curves are plotted for the control (in blue) and pre-seizure period (in red) together 

with the identified significant time segment (in cyan) during the 9.5 hours preceding the 

seizure. In each patient, this segment highlighted intervals where the same centrality entropy 

reduction could not be achieved by shuffling the entropy values within each interval across 

the pre-seizure and control periods (P<0.01, Fig S1B).  Intriguingly, the pinpointed segment 

was rather patient-specific exhibiting offset times that were not generally attached to the 

seizure onset. However, when grouping samples across the main patients, significant intervals 

turned out to be regularly distributed around the proximity of the seizure onset with the 

interval [-2.5, -1.5] being the most frequent (87.5%, Fig 3B). In particular, this distribution 

was statistically different (P<0.01, Kolmogorov-Smirnov test) from a surrogate distribution 

obtained by randomly placing the same segments per patient in every possible location of the 

pre-seizure period (Fig 3C). In addition, relevant features of the significant segment such as 

the onset and offset times, and the test’s statistic value were not correlated with the seizure 

onset time (Fig S2B, C and D). These findings corroborated that our analysis controlled for 

posible underlying circadian modulations of the iEEG data (Fig S2A). Finally, the results 

obtained in both control patients were rather different between each other (Fig S3A). In 

particular, the cross-period difference measured in Patient 9 was the least significant across 

all patients (Fig S3B), suggesting that the previous received electrical stimulation might have 

had an effect on the pre-seizure dynamics. In contrast, the occurrence of a subclinical seizure 

in Patient 10 did not yield a quantitatively different significance effect. We analyzed the 
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stability of the results over the main patients using a synchronization measure (phase-locking 

value) over difference frequency bands and an alternative network measure (node strength, 

Materials and Methods). The separate application of both measures unravelled similar trends 

with weaker statistical effects (Figs. S4 and S5). In conclusion, our initial findings suggested 

that significant and sustained reductions of network state variability over a precedent-day 

baseline could be related to a pre-ictal state. Further, this reduction in variability was 

statistically mapped to a patient-specific time sub-period per patient. This sub-period will be 

referred to in the following as the critical phase. 

 

As observed earlier, the critical phase was not in general attached to the seizure onset of 

every patient. Hence, how could the critical phase be related to earlier reported evidences on 

the pre-ictal state? To address this question, we divided both recording sessions into the 

critical phase, and sub-periods immediately before (pre-critical phase) and after (post/ending 

critical phase) the critical phase (Fig 3C, Fig S3C for control patients). For those patients 

with critical phases attached to the seizure onset (Patients 1, 6 and 8) we considered the post-

critical phase to comprise the last window time samples of the critical phase. In each sub-

period we evaluated the mean functional connectivity during both recording sessions. Fig 3C 

shows that the mean connectivity exhibited a non-significant increase during the critical 

phase of the pre-seizure period (Fig 3C, P>0.2, paired Wilcoxon test, n=7 patients).  In 

contrast, when comparing the critical and the post/ending-critical phases of the pre-seizure 

period, the mean connectivity decreased significantly over all patients (Fig 3C, P=0.02, n=8 

patients) in concordance with previous works (Mormann et al. 2003, Le Van Quyen et al. 

2005, Stacey et al., 2011). This result was validated at a single-patient level in 7 out of 8 

main patients (Fig S6).  Importantly, the post-critical effect was not present during the control 

period (P>0.9), suggesting that the global connectivity decrease was specific of the pre-

seizure period and could be driven by the critical phase.  

	

Reduced network state variability spans across spatial and temporal domains 

As introduced earlier, the centrality entropy quantified the (spatio-temporal) variability of 

simultaneous centrality sequences in a single scalar value. Then, how was the variability 

reduction individually expressed along recording sites and along time samples? To answer 
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this question, we repeated the previous non-parametric statistical analysis (Fig 3A) over both 

recording periods using the spatial and temporal versions of centrality entropy independently 

(Materials and Methods). Fig S7B shows that the statistical effect was present in both 

dimensions for every patient but it was not equally distributed over space and time in all 

cases. In sum, the decrease of network state variability observed during the pre-seizure period 

was associated with the occurrence of more similar centrality values over time (less temporal 

variability), which in general exhibited more homogeneous centrality values across recording 

sites (less spatial variability).    

  	

Altered occurrence of high-connectivity states explains reduction of variability. 
The previous results described that network states (as modelled by the eigenvector centrality 

measure) became more temporally redundant and more spatially homogeneous during the 

critical phase. In turn, this reduced variability was associated to a non-significant variation of 

the mean connectivity across patients (Fig 3C). Yet, how was the actual interplay between 

network dynamics and connectivity alterations during the pre-seizure period? An initial time-

varying analysis of the mean functional connectivity (averaged over all recording sites’ pairs) 

did not reveal consistent and sustained cross-period differences over patients (Fig S9). We 

then related the reduction in network variability to alterations in the occurrence of certain 

states. In particular, were there specific time-varying states producing the reported effect? We 

here explored this question and inspected the eigenvector centrality sequences during the 

control and pre-seizure periods. A visual inspection on these vector sequences for every 

patient suggested the hypothesis that the amount of “homogeneous states” (represented as 

yellow strips in the plot) was larger during the pre-seizure period than in the control period. 

Interestingly, these homogeneous states were specifically associated with high-connectivity 

correlation matrices in most of the patients (Fig 4A).   

 

Centrality vector sequences like the one presented in Fig 4A were observed to be recurrent 

over time. Then, we used a clustering algorithm to extract the 12 most representative vectors 

over both periods of interest and classified each centrality vector at any given time 

accordingly (Materials and Methods). Consequently, the sequence of centrality vectors 

turned into a sequence of discrete states whose frequency over any time interval (probability) 
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could be computed and compared across control and pre-seizure periods.  Then, we formally 

tested the hypothesis that the larger presence of homogeneous states during the pre-seizure 

period was associated to the observed reduction in network state variability in each patient. 

For each patient, we linearly regressed the cross-period centrality entropy difference over two 

independent state regressors: state probability and state heterogeneity (measured via the 

standard deviation across recording sites of the same state) differences (Fig 4B). We then 

computed the variance explained by each regressor via its coefficient of determination (R 

squared). To investigate the group-level influence of every state’s connectivity into these 

associations, states were sorted for each patient in decreasing order of connectivity (i.e., mean 

connectivity of its associated correlation matrix), and coefficients of determination linked to 

state probability (Fig 4C, top) and state heterogeneity (Fig 4C, bottom) differences were 

distributed in boxplots for each state. Interestingly, Fig 4C (left) shows for both regressors 

(state probability and state heterogeneity) that the most influential states on the reduced 

variability effect were those with largest connectivity associated matrices Specifically, the 

difference between the variance explained by the highest-connectivity states and the 

remaining ones was significant in both state probability (P<0.001, Wilcoxon test) and state 

heterogeneity (P<0.05) with large effect sizes (D=3.2, D=1.6, Cohen’s d). Then, we 

computed the Spearman correlation between the highest-connectivity regressors and the 

centrality entropy reduction to unravel group-level correlation trends. Correlation values were 

of r=0.63 (P<1e-5) and r=-0.45 (P<1e-5) for state probability and heterogeneity increases 

respectively indicating that the reduction of network variability was mostly explained by an 

increase in the frequency rate and homogeneity of the highest connectivity states.  

 

To further investigate the interplay of high-connectivity states with the pre-seizure period, we 

evaluated cross-period state probability and heterogeneity differences at a patient level during 

the critical phase previously identified in Fig 3A (Fig 4C right). First, we found that the 

probability of HCS was significantly different in all patients across both periods (paired t-test, 

P<0.01, multiple test corrected, D>0.5). In 6 out of 8 patients HCS occurred significantly 

more often during the critical phase while they were less frequent in the remaining patients 

(Patients 2 and 5). Second, the homogeneity of HCS was significantly increased in most of 

the patients (paired t-test, P<0.01, multiple test corrected, D>0.5), except in Patient 5 were it 
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significantly decreased, and in Patient 2 where it remained statistically equal (P>0.05). 

Although the influence of HCS into the pre-seizure period was consistent across all patients, 

the differentiated trends found in some specific patients (Patients 2 and 5) suggest that this 

influence might be modulated by context-dependent variables. In sum, HCS strongly 

contributed to make state dynamics less variable over time by reducing the occurrence of 

alternate states and imposing homogeneous centrality values across recording sites.    

 

The key influence of HCS into pre-seizure dynamics prompted us to evaluate the underlying 

traces of iEEG data during their corresponding time instances in periods of high and low 

centrality entropy. Our inspection of iEEG data from distinct epileptogenic sites over 

sequences of HCS and nHCS instances (See Fig S11 for an example) identified these states as 

time segments where the electrical fields became transiently (low centrality entropy epoch) or 

more persistently (high centrality entropy epoch) synchronized. This synchronization was 

manifested through diverse patterns of oscillatory activity, which often included a slow wave. 

In parallel, a clinical evaluation by the epileptologists discarded any stereotyped epileptiform 

activity.  

 

Cross-validation analysis in additional interictal periods 

We identified network dynamics changes in the pre-seizure period that were consistently 

expressed with a similar trend (sustained variability reduction) across a heterogeneous cohort 

of patients (Fig 1). Critically, these time-dependent changes could be associated to a common 

factor in all patients, namely, an alteration of recurrent high-connectivity time instances 

(0.6s) across recording sites.  However, was this characterization specific of the pre-seizure 

period? Or could be alternatively ascribed to a post-implantation effect? To shed light into 

these questions, we analyzed additional 121 hours of interictal activity in 6 patients from 

time-matched periods that were placed two days before the seizure (‘pre-control’ period) and 

a varying number (across patients, mean=3,83) of days after the seizure (‘post-control’ 

period). These new interictal data was introduced in the analysis as schematized in Fig 5A. 

As control experiments, we defined two additional time-matched comparisons: a comparison 

between the pre-control and control periods (‘C1’) and a comparison between the seizure and 

post-seizure period (‘C2’). These new comparisons were then confronted with the original 
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comparison particularized to the 6 patients. The overall analysis was made under the 

condition that period lengths were time-matched and balanced across comparisons for each 

patient. First, for every comparison, we repeated the non-parametric statistical analysis of Fig 

3A to determine the existence of putative critical phases in other periods.  While comparison 

C2 only yielded one patient with a significant effect, C1 revealed that entropy reductions 

could also occur in non pre-seizure periods in 5 out of 6 patients (Fig 5B). Nonetheless, when 

grouping the six patients in Fig 5C, the sub-periods found with C1 were not followed by a 

post-critical functional connectivity decrease, which was present in C0 as a significant trend 

(P<0.1, Wilcoxon test). Finally, we repeated the regression analysis of Fig 4B in patients with 

significant entropy reductions of C1 (five patients) and C0 (original comparison in six 

patients) and represented the results along analogous lines for each comparison. Crucially, for 

C1 periods, the variability decrease was more weakly explained by cross-period HCS 

differences than in C0 periods. Indeed, the significant trend in the gap between the variance 

explained by HCS states and the variance explained by non-HCS states in state probability 

(P<0.1, D=1.5) and in state homogeneity (P<0.1, D=1.6) in C0 could not be reproduced in C1 

(P>0.1). Although decreases in network state variability may occur across consecutive days 

(C1) preceding a seizure, we provided evidence that those occurring during the pre-seizure 

period were specifically tied to high-connectivity states alterations and a subsequent 

functional connectivity decrease.  

 

Influence of the critical phase into epileptogenic sites 

Importantly, network dynamic changes observed during the pre-seizure period could be 

associated to an altered occurrence of HCS in all patients. Yet, how this seemingly 

physiologic alteration could evolve into generating seizures? In particular, how was this 

effect manifested in those regions that were involved in seizure generation? To further relate 

our findings to the ictogenesis process, we particularized our analysis to the clinically 

mapped epileptogenic sites of two patients with very good post-surgical outcome (Engel I) 

and a follow-up period of more than four years (Patients 1 and 3, Fig 1, Materials and 

Methods). Both patients are seizure free (Engel 1) with Patient 3 exhibiting some residual 

ictal symptomatology (seizure auras). In these patients, we specifically investigated the 

influence of epileptogenic sites in the pre-seizure network dynamic changes. To provide a 
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complete comparison of sites, we independently analyzed seizure-onset zone sites (SOZ, 

brain zone involved in the initial stages of the seizure spread), resected zone sites (RZ, brain 

zone that rendered seizure-freeness after its resection) and the remaining sites (nEZ, non-

epileptogenic sites). In both patients, we note that SOZ was not fully included in the RZ and 

thus, SOZ and RZ were partially overlapping regions. To carry out this region-specific 

analysis, we first evaluated the temporal mean and standard deviation of the recording sites’ 

centrality in the SOZ, RZ, and nEZ sites over the control and pre-seizure periods. Fig 6A 

plots the time-average centrality of RZ and nEZ as a function of the remaining time to seizure 

onset. Interestingly, this figure illustrates in both patients that the time-average centrality of 

the RZ was higher than the nEZ over each period of interest and during the critical phase (in 

cyan) the centrality of RZ sites was reduced at the expense of an increase in the centrality of 

nEZ sites. This preliminary observation suggested that both regions could participate in the 

pre-ictal dynamics. However, was this participation equal across the three considered 

regions? Fig 6B characterizes the network dynamics of the three regions by comparing the 

temporal standard deviation of their recording site’s centrality in SOZ (inner left), RZ (inner 

central) and nEZ (inner right) regions for control (blue) and pre-seizure (red) period, inside 

(outer left) and outside (outer right) the critical phase. To assess cross-period differences 

across regions of variable size we highlighted significant differences (P<0.05, paired t-test, 

multiple-test corrected) exceeding an effect size threshold of 0.5 (large effect, Cohen’s d). 

Using this quantification, Fig 6B shows that the largest decrease in the centrality variability 

(D>0.5) of Patient 1 was only localized in the RZ during the critical phase. For Patient 3, 

large effect sizes were found in RZ but also in nEZ during the critical phase. Outside the 

critical phase, cross-period differences attained lower effect sizes (D<0.3).   

We next investigated the influence of HCS on epileptogenic and non-epileptogenic sites to 

further describe the functional alterations occurring during the critical phase. More 

specifically, we compared the average connectivity per site (node strength) in the RZ, SOZ 

and nEZ during the presence of the HCS and the remaining states (nHCS) in each patient for 

control and pre-seizure periods in the critical phase (Fig 6C). This analysis revealed several 

findings. First, in both patients cross-period differences in strength occurred more 

prominently during HCS (average D >1.8) than in nHCS (average D <0.7). Second, during 

HCS, strengths increased from control to pre-seizure periods consistently in the three studied 
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regions while the differences were of varying sign across regions during nHCS. Third, the 

region that exhibited the highest increase in strength was the resected zone for both patients 

(D=2.9, 2.8), followed by the non-epileptogenic sites (D=2.2, 1.4) and the seizure-onset zone 

(D=1.2, 0.6).  Hence, the abnormal occurrence of HCS altered the connectivity gradient 

between epileptogenic and non-epileptogenic regions by strongly boosting the connectivity of 

the RZ sites. In particular, during the critical phase of the pre-seizure period, this increased 

connectivity was more persistent than in the control period resulting in a reduced variability 

of RZ centrality values (Fig 6B).  We finally evaluated in both patients how the post-critical 

functional connectivity decrease (Fig 3C) was spread over the three regions. Fig S12 shows 

that this effect was reproduced in each region (D≥0.9) with epileptogenic sites showing a 

more prominent decay (average D=1.7) than non-epileptogenic sites (average D=1.35).   

To relate some our regional findings with the patients’ post-operative outcome, we extended 

the analysis of the sites’ temporal variability (Fig 6B) to the main patients’ entire cohort (Fig 

S13). This included three patients that underwent RFTH with variable outcomes (Patients 2,6, 

Engel I and Patient 8, Engel III), two patients with bad post-surgical outcome after a follow-

up period of more than one year (Patients 4 and 5, Engel III) and one patient that was seizure-

free after SEEG monitoring (Patient 7). The results are depicted for each patient in Fig S13 

and summarized in Fig S14, providing preliminary evidence that bad post-operative outcomes 

could be associated with non-resected and non-ablated sites exhibiting pre-seizure alterations 

(Fig S14). 

 

Discussion	
This study examined the existence of a common alteration principle in brain network 

dynamics during long-lasting periods of activity preceding the first clinical seizure in 10 

patients with focal refractory epilepsy. Using a comparative analysis between genuine pre-

seizure periods and time-matched periods of interictal activity per patient, we were able to 

consistently show a sustained decrease in the variability of network states that was followed 

in most of the patients by a functional connectivity drop of approximately 30 minutes before 

the seizure onset (Fig 7). Further analysis revealed factors altering this variability in the 

temporal (time samples) and spatial (recording sites) domains. First, this decrease in network 

variability was associated with an abnormal occurrence of high-connectivity states during 
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pre-seizure periods as compared to previous days. Second, the reduction in temporal 

variability was mainly localized in the resected zone of two patients with best post-surgical 

outcome.	

	

Over the last decade, fMRI studies have showed growing evidence that dynamic connectivity 

patterns (“brain dynamic repertoire”) may be an intrinsic property of brain function and 

disease (Hutchinson et al., 2013). Particular examples of disrupted dynamics have been found 

in Alzheimer’s disease (Jones et al., 2012) and neuropsychiatric disorders (Damaraju et al., 

2014) whose translation to new clinical biomarkers is still matter of discussion (Deco and 

Krigelback 2014, and references therein). In modern epilepsy research, the dynamic principle 

of brain function has been postulated to be commonplace to understand the ictogenesis 

process (Richardson 2012) but most network studies have studied alterations in static 

functional network paramters with a few recent exceptions (Kuhnert et al., 2010, Dimitriadis 

et al., 2012, Kramer et al., 2011, Burns et al., 2014, Morgan et al., 2015, Khambhati et al., 

2017).  In this context, our approach differs from previous works in several key elements. To 

name a few, the formulation of an hypothesis about the variability of functional network 

states at short time scales (rather than using a grand-average measure), the analysis of long-

lasting (~10h) continuous interictal periods (rather than a selection of short epochs), and more 

importantly, the use of time-matched reference epochs outside the pre-seizure period to 

assess specificity. We next elaborate further on the latter point.  

 

When studying the variability of brain dynamics along long recording periods, one is 

confronted with the confounding effect of circadian rhythms (Kuhnert et al., 2010, Rocamora 

et al., 2013, Geier et al., 2015a), which span across sleep and wake phases. These rhythms 

may become critical when one characterizes specific brain configurations associated with the 

pre-ictal state, which has been shown to approximately last 4 hours (Mormann et al., 2007). 

Previous studies on the pre-ictal state have analyzed pre-ictal changes with reference to 

previous interictal periods, not necessarily time-matched. Inspired by a previous work 

(Andrzejak et al., 2003), the strategy used here tackled this issue by defining time-matched 

reference periods from precedent and subsequent days, thus allowing for a more specific 

identification of pre-ictal changes in brain network dynamics. Although this approach may 
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not be sufficient to control for all daily physiological state transitions, our preliminary results 

on the relationship between patients’ putative critical phases and seizure onset times discard 

the influence of daily rhythms into our main results.  However, a larger cohort of patients 

with variable seizure times and a good readout of their sleep phases will be necessary to 

address this question in the future. Another key aspect of the study was the use of the first 

monitored clinical seizure occurring during the first implantation days. This choice was 

pivotal to analyze comparable long-term network dynamic changes across patients with 

limited influence of confounding factors such as the reduction of antiepileptic drugs, the 

effect of previous ictal processes and the response to clinical stimulation. In most of the 

studied patients, this first seizure was the first event of a succession of seizures separated by 

short interictal periods of a few hours or minutes, which are clinically known as seizure 

clusters (Rose et al., 2003). Hence, understanding the pre-ictal process of this initial seizure 

can also have important consequences for the control of later correlated events. In any event, 

the analysis introduced here should be extended to subsequent seizures in future studies to 

determine whether the presented characterization is specific of seizures preceded by long 

interictal periods. 

	

A central question in seizure prediction research has been the role of synchronization (Jiruska 

et al., 2013) during the pre-ictal period. Some studies have reported drops in synchronization 

a few hours before seizure onset (Mormann et al., 2003) while others have pinpointed the 

coexistence of distinct synchronization states depending on the recorded structures (Le Van 

Quyen et al., 2005, Van Mierlo et al., 2014). Even though a clear mechanism of such 

alterations is still missing, the most successful algorithms applied to large data sets make use 

of correlation matrices as key data features (Binkmann et al., 2016). The findings presented 

in this study support the view that pre-ictal correlation patterns are state dependent (Le Van 

Qyuen et al., 2005, Takahashi et al., 2012, Khambati et al., 2017) over time windows of 

600ms and hence, their alterations should be analyzed and interpreted at this time scale. More 

precisely, our results suggest that a time-dependent variation in the occurrence of highly 

correlated time instances may be at the origin of the pre-ictal state. This variation was 

manifested in most of the patient as an excess of high-connectivity states, while in two 

patients it was manifested as a deficit. Although pre-ictal connectivity trends are known to be 
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patient-specific (Jiruska et al., 2013), they should be further investigated against the influence 

of patient-dependent variables (e.g., implantation schemes, monitored behavioural states), a 

question that was out of the scope in this study.	

	

In recent years, there has been accumulated evidence that seizure generation and spread 

involves complex interactions between seizure-generating and surrounding areas (Rummel et 

al. 2013, Khambati et al., 2015, Khambati et al., 2016). Evaluating network dynamics in 

patients with good post-surgical outcome (>4 years), we were able to relate our findings to 

clinically mapped epileptogenic sites, namely the seizure onset zone and the resected zone, as 

well as the remaining sites. In these patients, the average contacts’ centrality was higher in 

the epileptogenic sites for the entire analyzed periods in line with previous studies (Wilke et 

al., 2011, Van Mierlo et al., 2013). However, this gap was mainly produced by sites in the 

resected zone that were not part (but in nearby regions) of the seizure onset zone (Fig 6A and 

6C), also in concordance with a recent study (Geier et al., 2015b). Not surprisingly, changes 

in this average centrality level within periods occurred during the critical phase where 

centrality values from both regions approached (Fig 6A). Crucially, this centrality change 

was accompanied by a significant decrease in the centrality (temporal) variability of the 

resected zone (Fig 6B), which was specific in Patient 1 and also present in the non-

epileptogenic sites in Patient 3, who presented a slightly worse post-surgical outcome. The 

analysis on the influence of high-connectivity states into validated epileptogenic sites 

provided initial evidence that these states might destabilize physiological state dynamics by 

increasing the connectivity of key sites within the epileptic network (resected zone) during 

the critical phase (Fig 6C). The consequence of this phase is shown to be a global functional 

connectivity decrease, which is more prominently manifested across epileptogenic nodes (Fig 

S10). We speculate that this decrease in connectivity could be the result of critical parts of the 

epileptic network adopting a more autonomous activity that would result in the generation of 

a seizure. The extension of our analysis to additional patients with different post-operative 

outcome suggest that pre-seizure alterations in centrality variability may be a promising 

biomarker of targetable epileptogenic regions during surgery and ablation (Fig S14).  Yet, a 

larger study including more seizure-free patients will be necessary to fully elucidate the 
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mutual influence of physiological network dynamics and the epileptic network during the 

transition from interictal activity to focal seizures.   

 

The results shown in this study prompt to introduce new ingredients in seizure-prediction 

algorithms such as the control for daily rhythms (Karoly et al., 2017) and the continuous 

tracking of time-dependent linear connectivity alterations at short time scales (<1s). Some 

considerations are yet to be mentioned. First, the use of intracranial recordings is a limiting 

factor in the spatial analysis of brain states, thus making them a priori subject-dependent. 

Nonetheless, it is recognized that the SEEG methodology offers an optimal temporal and 

spatial resolution of neurophysiological recordings for neural signal analysis in comparison 

with other techniques in patients with epilepsy. Second, this study was aimed at defining 

network states in a linear and instantaneous form using zero-lag functional connectivity rather 

than effective connectivity (Friston 2011). Although our results were validated against a non-

linear coupling measure at different narrow bands, the extension of our analysis to non-linear 

(Tauste Campo et al., 2015) and linear (Gilson et al., 2017) directional methods in follow-up 

studies may provide additional information on specific connectivity changes underlying pre-

seizure alterations. In conclusion, this work provides electrophysiological evidence for 

characterizing the pre-seizure period as a long-lasting process in which epileptic networks 

undergo a sequential functional reorganization. Further investigations under this conception 

will help unravel seizure generation mechanisms from a network perspective, provide 

practical insights into how to predict and control ictal activity, and may constitute a general 

approach to analyze dynamic alterations of other neuropathologies.  

 

Materials and Methods 

Patients and recordings	

A total number of 344 hours of SEEG recordings from ten patients with pharmacoresistant 

focal-onset seizures were analyzed. A summary of the patients’ characteristics is given in Fig 

1. We included patients who presented the first spontaneous clinical seizure in a time frame 

that allowed us to perform a controlled analysis of EEG recordings during the pre-seizure 

period. Specifically, each patient in the study was selected if her first video-SEEG monitored 
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clinical seizure had occurred after at least 30 hours (average value: 71.4±19.1 hours; 

mean±std) with no presence of spontaneous clinical seizures. Among the selected patients we 

included two patients presenting potential perturbation factors affecting the pre-seizure period 

(Patients 9 and 10). Patient 9 had been electrically stimulated 16.5 hours before the first 

recorded seizure and Patient 10 presented a subclinical seizure 6.1 hours before the first 

clinical seizure onset.	

	

For each patient, the selection of recording sessions was as follows. We considered up to 12 

hours before the first monitored clinical seizure occurred. As a baseline reference, we 

selected the same time period from the previous day (control period).  For independent 

validation of our results, we selected additional time-matched periods of variable length in 6 

patients (Patients 2-6 and 8, average period length: 10 hours) from two days before the 

seizure onset (pre-control period), and a few days after the seizure onset (post-control period, 

average value=3.83 days). No more patients could be added to the validation analysis for pre-

ictal time limitations (Patients 7 and 10), a substantial modification on the implantation 

montage during the first monitoring days (Patient 1) or the presence of direct electrical 

stimulation sessions in the iEEG (Patient 9). 

After detecting recording cuts in a few patients, we restricted the analysis to 11 hours per 

session in patients 1-9 and to 2.4 hours per recording session in Patient 10 to ensure a time-

matched cross-period comparison. Among the selected patients, two patients achieved seizure 

freedom after surgical resection and radiofrequency thermocoagulation (RFTC, Cossu et al. 

2015) with a follow-up of 3 years and 2 years respectively (Patients 1 and 2, Engel 1A). An 

additional patient only exhibited seizure auras after surgical resection and a follow-up of 3 

years (Patient 3, Engel 1B). We considered Patients 1 and 3 to have a validated very good 

post-surgical outcome. Hence, for the purpose of analyzing epileptogenic sites, we separately 

considered the diagnosed seizure onset zone and the resected zone of these two patients.  The 

seizure-onset zone was independently marked by two epileptologists (AP and RR) and 

consisted of n=5 (anterior hippocampus) and n=9 (anterior hippocampus, amygdala) 

recording sites for Patient 1 and 3 respectively. The resected zone covered 24 contacts in 

Patient 1 (parts of anterior hippocampus, temporal pole and entorhinal cortex) and 12 

contacts in Patient 3 (parts of anterior, posterior hippocampus, and amygdala). The remaining 
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patients presented one of these cases: they had not undergone surgery (Patients 2, 6, 8, 9), had 

a non-sufficiently long follow-up period (<6 months, Patients 4 and 5), had not been yet 

operated (Patient 7) or exhibited a bad post-operative outcome (Patients 10). All recordings 

were performed using a standard clinical EEG system (XLTEK, subsidiary of Natus Medical) 

with a 500 Hz sampling rate. A uni- or bilateral implantation was performed accordingly, 

using 5 to 15 intracerebral electrodes (Dixi Médical, Besançon, France; diameter: 0.8 mm; 5 

to 15 contacts, 2 mm long, 1.5 mm apart) that were stereotactically inserted using robotic 

guidance (ROSA, Medtech Surgical, Inc).  

Data pre-processing 

EEG signals were processed in the referential recording configuration (i.e., each signal was 

referred to a common reference). The sets of electrodes included in this analysis are reported 

in Fig 1 and displayed in Fig 1 (top row). All recordings were filtered to remove the effect of 

the alternate current (Notch at 50 Hz and harmonics using a FIR filter). Then signals were 

further band-pass filtered between 1Hz and 150 Hz to remove slow drifts and aliasing effects 

respectively. Artifacts were removed in each period by detecting time window samples 

(600ms) where mean (over pairs of sites) correlation values and mean (over sites) voltage 

amplitudes were 3 standard deviations larger than the median values across each period. To 

perform functional connectivity analysis each EEG signal was divided into consecutive and 

non-overlapping 0.6s-long windows (300 samples with 500Hz sampling rate) to balance the 

requirements of approximate stationarity of the time series (requiring short epochs) and of 

sufficient data to allow accurate correlation estimates (requiring long epochs). 	

Functional connectivity analysis 

There are different methods to assess functional connectivity from time series data based on 

coupling measures (Pereda et al., 2005, Wendling et al., 2009). Previous research on the 

comparison of linear and non-linear coupling measures has resulted in having distinct “ideal” 

measures for distinct studied situations (Stefan et al., 2013). Here we chose to employ a zero-

lagged linear correlation measure for its good tradeoff between simplicity and robustness 

(Wendling et al., 2009) and more importantly, because it allowed for a convenient definition 

of network state as it will be explained later. 	
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Leat x and y be two N-length time series representing two recorded signals and let 

� 

x  and 

� 

y  

be their respective sample means. Their sample (Pearson) is estimated as  

� 

r(x,y) =
(x(i) − x )(y(i) − y )

i=1

N

∑

(x(i) − x )2 (y(i) − y )2
i−1

N

∑
i=1

N

∑
  .                                                                                   (1)	

For each patient and each consecutive 0.6s-long window we computed the absolute value of 

the coupling measure across all pairs of electrode contacts. For most of the patients, the 

overall pairwise computations resulted in approximately 123000 sequential connectivity 

matrices combining both recording sessions (control and pre-seizure periods).  In the current 

study, we did not test the statistical significance of each pairwise coupling since our purpose 

was to track the overall network dynamics regardless of pairwise thresholding methods. 

Definition of network states  
For each patient, we characterized each correlation matrix as a functional network. This 

network was modelled as a weighted undirected graph, where electrode contacts represented 

the nodes and pairwise correlation values across represented their weighted edges (Ponten et 

al., 2007). Then, we computed the network measure of eigenvector centrality for each 

connectivity matrix (Newman, 2010). For a given graph G=(V,E), let A=(av,t) be its weighted 

adjacency matrix. The relative centrality score xv of vertex v can be defined as	

� 

xv =
1
λ

av,t xt
t∈V
∑  ,                       (2)  

which can be rearranged in a matrix form as  

� 

λx = Ax . 	

Given the requirement that all entries in x must be non-negative, the Perron-Frobenius 

theorem implies that only the greatest eigenvalue results in a proper centrality measure 

(Newman 2010). Hence, the centrality measure is given by the eigenvector associated with 

the largest eigenvalue of the connectivity matrix. Then, the ith contact is assigned the ith 

component of this eigenvector where i goes from 1 to number of recording sites in a patient. 

The eigenvector centrality is by definition a self-referential measure of centrality, i.e., nodes 

have high eigenvector centrality if they connect to other nodes that have high eigenvector 

centrality (Rubinov and Sporns, 2010), which ultimately provides a measure of relative 

importance of each node in the network. The eigenvector centrality measure has been applied 
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to resting-state fMRI studies (Lohmann et al., 2010) and more recently to ECoG recordings 

of epileptic patients (Burns et al., 2014).  

By computing the centrality in each 0.6s-long connectivity matrix we obtained for each 

patient independent eigenvector centrality sequences along each recording session. If we 

consider each connectivity matrix to represent a brain state (Allen et al., 2014), these vectors 

can be regarded as representative elements of these states in a vector space of dimension 

equal to the number of recording sites. Further, these vectors point to the direction that best 

summarizes the original brain state. In particular, every time that a significant change arises 

in the connectivity matrix, the eigenvector centrality rotates to update the relative importance 

(“centrality”) of each contact within the new network configuration.   

Choice of zero-lag correlation and eigenvector centrality 

Computing the eigenvector centrality over zero-lag connectivity matrices was key to regard 

our network state measure as an informative summary of how the set of simultaneous iEEG 

recording were instantaneously coupled within a short time window.  Indeed, under these 

conditions, the eigenvector centrality corresponds by definition to the first principal 

component of the (normalized) covariance matrix, i.e., the vector in the space of recording 

sites that accounts for the largest variance of the whole set of (normalized) iEEG recordings 

in a given time window. Combinations of other coupling measures and network features 

could lead to alternative definitions of network states. For the sake of comparison, we also 

provide in the Supplementary Information the results obtained by combining zero-lagged 

correlation with a different network feature, the node strength, which can be defined as the 

average pairwise connectivity of this node with the remaining ones (Rubinov and Sporns 

2010, Khambhati et al., 2016). Fig S3 shows that the node strength yielded in general 

statistically weaker results than the eigenvector centrality. Further, we investigated the 

possibility of combining a synchronization measure such as the phase-locking value 

(Lachaux et al., 1999) with the eigenvector centrality.  This measure may capture 

contributions of non-zero lag couplings as well as non-linear effects. To illustrate the 

difference between both measures in the frequency domain, we repeated the cluster-based 

statistical analysis of Fig 3A for consecutive frequency narrow bands of 4Hz (from 1 to 120). 

Fig S4 shows that the results were qualitatively similar across all bands for most of the 
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patients. Yet, in those patients where discrepancies were found, the phase-locking value 

measure yielded weaker peaks than the zero-lag correlation.  

Evaluating network state dynamics via Gaussian entropy 

Our goal was to evaluate the variability of these representative states in each period. The long 

sequence of centrality vectors for each period can be equivalently regarded as a stream of 

simultaneous centrality time series, one for each recorded contact. Then, one can evaluate the 

spatio-temporal variability of the centrality time series through the application of the 

multivariate Gaussian entropy (Cover and Thomas, 2012) in a given estimation time window 

that we choose for this study to be 120s. The multivariate Gaussian entropy is defined as  

� 

Hc =
k
2
1+ ln(2π )( ) +

1
2
lndet(Σ) ,                                                                                             (3)                                                                              	

where k is the number of recording sites, and ∑ is the covariance matrix of the centrality time 

series estimated in a the estimation windows. By considering centrality vectors to be 

independent, ∑ in (4) becomes a diagonal matrix, and the Gaussian entropy captures the 

aggregated variability of the centrality vectors across the temporal dimension:  

� 

Hc
(1) =

k
2
1+ ln(2π )( ) +

1
2

lnΣ i,i
i=1:k
∑ .                                                                                      (4) 

By subtracting (5) from (4), one can evaluate the variability of the centrality vectors across 

the spatial dimension: 

� 

Hc
(2) =

1
2
lndetΣ − lnΣ i.i

i=1:k
∑⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟   .                                                                                        (5) 

Hence, the two contributions sum up to give the Gaussian entropy (4):	

� 

Hc=Hc
(1) + Hc

(2) .																																																																																																																																									(6) 

Choice of window sizes (correlation and entropy) 
The choice of 0.6s (300 samples) on the correlation window was critical to gain statistical 

power. Choices of 1, 5 or 10s were shown to weaken the detection of network dynamics 

changes because they were intermingling high and low connectivity effects in the same 

window. On the other hand, values of entropy windows ranging from 100 to 200s yielded 

quite stable results. We selected a window size of 120s (200 samples) because it offered a 
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good tradeoff between estimation accuracy (200 samples are good enough to estimate 

covariance matrices of at most 120 variables) and stationarity.  

State clusterization 

To associate the network variability decreased observed in all patients with the occurrence of 

specific recurrent connectivity states, we jointly clustered the eigenvector centrality 

sequences in the analyzed time-matched comparisons using the k-means algorithm (Forgy, 

1965). We applied this clusterization in patients 1-9 where the number of eigenvector 

centrality samples was comparable. In the main results we fixed the number of clusters to 12 

to cover a sufficiently wide range of visually inspected connectivity states per patient. This 

cluster size was selected after exploring the stability of the results illustrated in Fig 5 for the 

range of values n=8:12. In particular, Fig S9 shows that these results were qualitatively very 

similar for the choices n=8,10,12.   

Statistical analysis 

The pre-seizure decrease in centrality entropy was statistically tested as follows. We started 

by windowing consecutive entropy samples (n=15, 30 minutes) in non-overlapping and 

paired time segments across each period and then we computed the effect size for each 

segment pair using Cohen’s d (Cohen 1992). We then clustered adjacent segments with a 

criterion of effect size being larger of 0.15 (low-medium effect) over a minimum of 4 

adjacent segments (2 hours), and considered the aggregated sum of these segments’ effect 

sizes as the main statistic. We further checked the statistical significance of this value through 

non-parametric statistical testing based on Monte Carlo sampling (Maris and Oostenveld, 

2007). More concretely, for each patient with time segments satisfying the above criterion, 

we computed 1,000 random permutations of the centrality entropy samples across both 

conditions (within pre-seizure or control period) at each time segment, and repeated the same 

segment clusterization procedure to obtain 1000 surrogate statistic values. These values were 

used to approximate a null distribution against which we compared the original aggregated 

effect size value via a right-tail sided significance test. If the test’s significance value was 

below 0.05, we considered the pre-seizure interval formed by the adjacent segments to 

exhibit significantly lower centrality entropy than the one obtained in the control period and 

we identified it as a critical phase.  In addition, we made use of the Kolmogorov Smirnov test 
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to assess that the critical phase distribution across patients was significantly different from a 

distribution of randomly placed significant clusters of the same duration. 

In general, to test paired or unpaired samples across time (e.g., pre-seizure vs. control period) 

or recording sites (e.g., seizure-onset sites across different periods) per patient, we made use 

of the Wilcoxon test for small sample sizes and the t-test for sufficiently large number of 

samples (>20). However, in most comparisons, non-comparable or very large number of 

samples could overestimate statistical effects. Hence, in those cases we computed and 

reported the effect size using Cohen’s d (based on the difference between medians/means for 

Wilcoxon test/t-test).  To deal with the multiple-comparison problem, we applied the Holm-

Bonferroni correction (Holm 1979) over patients in Fig 4 and over combination of regional 

comparisons in Fig 6. We resorted to linear regression and the coefficient of determination (R 

square) to evaluate the association between state probabilities/homogeneities and the decrease 

in centrality entropy. Finally, mean connectivity values across electrode pairs were computed 

using the Fisher transform (Fisher, 1920). 

Note on the typology of statistical tests 

The main results combined within-subject and group-level statistical tests depending on the 

question at hand. Within-subject tests can be found in Fig 3A, Fig 4C (right) and Fig 6. 

Group-level tests can be found in Fig 3B and 3C, Fig 4C (left), and Fig 5B, 5C, 5D. 	
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Fig 1. Main data of patients included in the study.  
F = female; M = male; TLE=temporal lobe epilepsy; PCE=posterior cortex epilepsy; R=right; L=left; 
A=amygdala; Ha=anterior hippocampus; Hp=posterior hippocampus; TP=temporal pole; EC=entorhinal cortex, 
Lateral OFC=lateral parts of the orbitofrontal cortex; TGi=inferior temporal gyrus; PHCp=posterior 
parahippocampal cortex; W=Wernicke’s area; AG=angular gyrus; Ia=anterior insula; Im=mid insula; 
Ip=posterior insula; M1=primary motor area; TPCp=posterior temporoparietal cortex; HS=Heschl’s area; 
FB=frontobasal area; CGp=posterior cingulate; TGs=superior temporal gyrus; TOJ=temporal occipital junction; 
POC=precuneus occipital cortex; B=Broca’s area; FS=focal seizure; w=with; wo=without;  CA=consciousness 
alteration; ATL: Anterior temporal lobectomy; RFTC=Radiofrequency thermocoagulation; SAH=Selective 
amygdalohyppocampectomy; NO=not-operated. 
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Fig 2. Study paradigm and network dynamics analysis.  
(A) Seizure onset time of the first recorded spontaneous clinical seizure from every patient (n=10). (B) 
Schematic representation of the experimental design: for each patient a pre-seizure period of up to 12 hours was 
matched to the same time period of the previous day that served as a baseline reference (control interictal 
period). (C) Multivariate (Gaussian) entropy, showing its dependence on the determinant of the covariance 
matrix (). Example for a case of two time series in which the determinant of the covariance is shown to shape 
the joint variability. (D) Network dynamics analysis: Simultaneous EEG recordings were first divided into 
consecutive and non-overlapping time windows of 0.6s (Top). Then, functional connectivity matrices were 
computed using zero-lagged absolute-valued Pearson correlation in each time windows (Middle-top 1). These 
matrices were modeled as weighted undirected graphs where nodes represented recorded contacts and edges 
strength represented correlation absolute values (Middle-top 2). The centrality of each contact in every graph 
was evaluated using the eigenvector centrality leading to a sequence of centrality vectors (Middle-bottom 1). 
The overall eigenvector centrality sequence was regarded as a set of simultaneous centrality time series (one for 
each patient recording site over time steps of 0.6s (Middle-bottom 2). Finally, time-dependent centrality entropy 
values were found for each period of interest by sequentially estimating the multivariate entropy of the centrality 
time series in non-overlapping and consecutive time windows of 120s (200 samples). The labels TB (Temporal 
basal area), EC (Entorhinal cortex), A (Amygdala), and HP (Hippocampus) are used as an example to illustrate 
where the anatomical information was conveyed in each step of the analysis 
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Fig 3. Time-dependent network state variability decreases near seizure onset during pre-seizure periods.  
(A) Average normalized (to the [0,1] range) centrality entropy for the main epileptic patients (n=8) during a pre-
seizure period (in red, 9.5 hours before the first seizure) and a control period (in blue, 9.5 hours from the 
preceding day). Averages were computed over time in non-overlapping windows of 15 entropy samples each 
(total of 30 min) during both periods. Each entropy sample was computed in a smaller window of 200 
subsamples (120s). Curves represent the sequence of centrality entropy mean values and error bars represent ± 
one standard deviation. In cyan, the sequence of consecutive time steps lying in a significant clusterized 
difference (randomization test, P<0.01).  (B) Percentage of times that 30-minute intervals lie within a significant 
cluster. In cyan, significant clusters are located in their original position. In grey, significant clusters are 
randomly placed along the pre-seizure periods of each patient. Error bars represent ± SEM (standard error of the 
mean). (C) Median (across patients) of the time-average mean functional connectivity along three consecutive 
sub-periods of interest during pre-seizure and control periods. The first sub-period (pre-critical) comprises 
intervals prior to the significant cluster, the intermediate sub-period (critical) comprises intervals within the 
cluster and the last sub-period (post/ending critical) comprises post-cluster intervals. In patients 1, 6 and 8, in 
which the critical phase was attached to the seizure onset, the last interval was considered to belong to the 
post/ending critical. Error bars denote SEM (standard error of the mean). Stars denote that there was a 
significant difference between the critical and the post/ending-critical sub-periods of the pre-seizure period 
(P<0.05, Wilcoxon test) 
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Fig 4: High-connectivity instances influence network dynamics alterations  
(A) Inspection of centrality values around the critical phase (in cyan) suggested a higher presence of 
homogeneous (yellow strips) values across recording sites during the pre-seizure period (left), which were 
associated to high-connectivity matrices (HCS, right). Color intensity (blue=lowest, red=highest) represents 
centrality and connectivity values across recording sites. (B) Schematic representation (one per patient) of cross-
period entropy differences as a function of two families of regressors: changes of (discretized) state probabilities 
and changes of state homogeneities across recording sites. (C) Variance explained by each family of regressors 
(Top, state probabilities; bottom, state homogeneities) in every patient highlights high-connectivity states as a 
common putative driver of the critical phase. Left: For each patient, discretized states (n=12) were sorted along 
the horizontal axis in mean connectivity decreasing order. For each sorted state, boxplots show the distribution 
of the coefficient of determination (%variance explained) of each state across patients. Stars (* P<0.05, ** 
P<0.01, Wilcoxon test) denote the significance and D (Cohen’s d) denotes the effect size of the difference 
between the coefficients of determination of HCS and the remaining states. Right: Cross-period comparison of 
regressors values associated with high-connectivity state (HCS) during the critical phase between the control 
and the pre-seizure period. Bars denote the average value of each regressor during the critical phase of the pre-
seizure (red) and control periods (blue) per patient. Error bars denote one standard deviation. Upper stars show 
that the differences in HCS probabilities and homogeneity were significant in all studied patients (* P<0.05, ** 
P<0.01, paired t-test) after multiple-test correction. All variables in this regression analysis were computed in 
time windows of 200 time samples (120s). 
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Fig 5:  Cross-validation analysis in additional periods (Patients 2-6, and 8) (A) Schematic representation of 
the cross-validation analysis involving Patients 2-6, and 8, and periods of the same lengths (within patient) for 
the 4 periods. Time-matched periods from 2 days before the seizure (pre-control) and from a varying number of 
days after the seizure (post-seizure) gave rise to two additional cross-period comparisons (C1 and C2) to the 
previously analyzed (C0). (B) Percentage of significant intervals across patients in the cross-period comparisons 
C0-2 (cluster-based test, P<0.01). Errors bars indicate SEM. (C) Reproducing the same pre-seizure connectivity 
curve in Fig 3C via comparison C0 (in red) and C1 (in blue). The upper star indicates that the difference 
between the time-average connectivity values in the critical and post-critical phase trended a significant effect (* 
P<0.1, Wilcoxon test, N=6). (D) Variance explained by each family of regressors of Fig 3C using the 
comparison C0 (left) and C1 (right). The upper star indicates that the difference between the coefficients of 
determination of HCS and the remaining states trended a significant effect (* P<0.1, Wilcoxon test). D denotes 
the effect size (Cohen’s d) of this difference. 
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Fig 6: Epileptogenic sites are specifically altered in the critical phase (Patients 1 and 3).   
In the two patients with best post-surgical outcome after resectomy, recording sites in the resected zone (RZ), 
seizure onset zone (SOZ) and in none of these regions (nEZ) were independently analyzed (Materials and 
Methods). (A) For each patient and period, site-average eigenvector centrality in the RZ, and nEZ averaged 
within non-overlapping and consecutive time windows of 120s (200 samples) during 9.5 hours prior to seizure 
onset time. In solid line, average centrality of the RZ. In dashed line, average centrality of the nEZ. Blue and red 
curves stand for the control and pre-seizure periods respectively. For illustration purposes, curves were averaged 
within windows of 30 minutes (15 samples per window) to enable direct comparison with the estimated critical 
phase (highlighted in cyan between two dashed vertical lines). Error bars denote one standard deviation. (B) 
Cross-period comparison (control in blue, pre-seizure in red) of sites’ centrality variability averaged over RZ, 
SOZ and nEZ inside (critical, left) and outside (non critical, right) the estimated critical phase (cyan segment in 
A). Each sample per recording site was computed by performing an average (across pre-ictal and non critical 
phases) of the centrality’s temporal standard deviation measured in non-overlapping and consecutive time 
windows of 120s (200 samples). (C) Effect of high-connectivity state into the epileptogenic zone. For each 
patient, bars showing the site-average connectivity strength RZ, SOZ and nEZ during the high-connectivity 
clusterized states (HCS, outer left) of both patients and during the remaining states (nHCS, outer right) in 
control (inner left) and pre-seizure (outer left) periods within the critical phase. Strength samples were computed 
for each site by performing averages over each set of time instances (HCS and non HCS) during the critical 
phase. In (B) and (C), sizes of significant effects (paired t-test, P<0.05, multiple-test corrected) equal or larger to 
0.5 were reported using Cohen’s d and approximated to the first decimal. In all subfigures, error bars represent ± 
one standard deviation. 
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Fig 7: Scheme representing the pre-ictal characterization with two sequential events of different nature and 
duration: the critical phase and the global functional connectivity decrease. 	
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