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Abstract: 
Sampling the full diversity of interactions in an ecological community is a 
highly intensive effort. Recent studies have demonstrated that many network 
metrics are sensitive to both sampling effort and network size. Here, we 
develop a statistical framework, based on bootstrap resampling, that aims to 
assess sampling sufficiency for some of the most widely used metrics in 
network ecology, namely connectance, nestedness (NODF- nested overlap 
and decreasing fill) and modularity (using the QuaBiMo algorithm). Our 
framework can generate confidence intervals for each network metric with 
increasing sample size (i.e., the number of sampled interaction events, or 
number of sampled individuals), which can be used to evaluate sampling 
sufficiency. The sample is considered sufficient when the confidence limits 
reach stability or lie within an acceptable level of precision for the aims of the 
study. We illustrate our framework with data from three quantitative networks 
of plant and frugivorous birds, varying in size from 16 to 115 species, and 17 
to 2,745 interactions. These data sets illustrate that, for the same dataset, 
sampling sufficiency may be reached at different sample sizes depending on 
the metric of interest. The bootstrap confidence limits reached stability for the 
two largest networks, but were wide and unstable with increasing sample size 
for all three metrics estimated based on the smallest network. The bootstrap 
method is useful to empirical ecologists to indicate the minimum number of 
interactions necessary to reach sampling sufficiency for a specific network 
metric. It is also useful to compare sampling techniques of networks in their 
capacity to reach sampling sufficiency. Our method is general enough to be 
applied to different types of metrics and networks. 
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Introduction 

Understanding how species interact with one another is an important 

and challenging task for ecologists and evolutionary biologists. Over the 

recent decades the rise and rapid development of network science (Albert and 

Barabási 2002) has allowed ecologists to improve our understanding of 

species interactions and their underlying ecological and evolutionary 

mechanisms. Network studies have grown extraordinarily in the past few 

decades, and currently they have mainly focused on the analyses of network 

structure and robustness (Bascompte and Jordano 2007, Miranda et al. 

2013).  

Some of the most commonly used metrics to describe the structure of 

ecological networks are connectance, nestedness, modularity, and 

robustness (Dormann et al. 2009, Miranda et al. 2013). These structural 

properties have been demonstrated to be associated with community stability 

and ecosystem functioning (Bascompte et al. 2006, Takimoto and Suzuki 

2016). Empirical evidence suggest that most mutualistic networks are nested 

(Bascompte et al. 2003), and that a highly connected and nested architecture 

promotes community stability in mutualistic networks. However, in trophic 

networks this stability is enhanced with compartmented (modular) and weakly 

connected architectures (Thébault and Fontaine 2010). A modular pattern 

sometimes prevents the spread of perturbations across the network (Stouffer 

and Bascompte 2011).  

Nevertheless, sampling may influence the detection of network 

structures. Most network metrics are sensitive to sampling effort and network 

size (Dormann et al. 2009). Studying pollination networks, Olesen et al. 
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(2007) found a relationship between network size and nestedness and 

modularity. In general, if network size in seed dispersal increases, 

connectance decreases (Mello et al. 2011). Bascompte et al. (2003) also 

found, for plant-frugivore and plant-pollinator networks, that above a size of 50 

species, all networks were significantly nested. Consequently, studies having 

low sampling effort need to be interpreted with caution (Rivera-Hutinel et al. 

2012), for low sampling effort can influence the network pattern detected 

(Vizentin-Bugoni et al. 2015). However, sampling the full diversity of 

interactions is a highly intensive effort, and ecologists have now come to 

realize that most networks published to date may be under-sampled. Chacoff 

et al. (2012) found that, despite a large sampling effort, their pollination 

network was under-sampled, as they detected less than 60% of the potential 

interactions. Seed dispersal mutualistic networks may also be insufficiently 

sampled, since most of the published data sets describe small networks.  

Although a robust and well-designed sampling procedure is essential for 

the quality of data, the optimality of sample size and/or intensity effort 

depends on the objectives of the study (Orloci and Pillar 1991). A census of 

the species or interactions in a given area may not be necessary to detect a 

specific pattern in a network. Similarly, the number of interactions needed to 

reach sampling sufficiency will be different according to the network metrics 

and the different types of taxonomic groups within mutualistic and antagonistic 

networks.  

To evaluate the accuracy of the sampling procedure in networks, the 

approach used is manipulating data after sampling. In this regard, the 

common analyses applied in the literature for mutualistic networks are 
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rarefaction and accumulation curve analyses (Nielsen and Bascompte 2007, 

Chacoff et al. 2012, Rivera-Hutinel et al. 2012, Jordano 2015). For instance, 

Martinez et al. (1999) evaluated the relationships between food-web 

properties and richness among taxonomic webs and trophic webs using 

Monte Carlo simulations and confidence intervals. Here, we developed a 

statistical framework that aims to assess sampling sufficiency for some of the 

most used metrics in network ecology based on bootstrap resampling.  

The bootstrap method (Efron 1979, Efron and Tibshirani 1993) is based 

on the idea that the distribution of observed values in a sample is the best 

indicator of their distribution in the sampling universe from which the sample 

was taken. Our framework is similar to that of Martinez et al. (1999):  both, 

Monte Carlo simulations and bootstrap resampling, are based on repeated 

sampling. However, while Monte Carlo simulation involves randomization or 

reshuffling of the data, our resampling is made according to the bootstrap 

method with replacement, ultimately mimicking the resampling of the sampling 

universe. Our method is intended to answer the following question: how many 

interaction events or number of individuals are necessary to be sampled in 

order to reach stability for a given network metric? We showcase our 

approach estimating sampling sufficiency for nestedness, modularity, and 

connectance for three empirical mutualistic networks that widely ranged in 

size.  

 

Methods 

Bootstrap resampling technique 
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We adapted the method of bootstrap resampling from Pillar (1998) to 

assess sampling sufficiency for network metrics. Our framework is a 

resampling technique that can generate confidence intervals for each network 

metric with increasing sample size (i.e., the number of interaction events 

sampled or the number of observed individuals potentially interacting), which 

can be used to evaluate sampling sufficiency (Manly 1992, Pillar 1998). The 

observed values in a sample are taken as “a pseudo sampling universe”, the 

best available representation of the actual sampling universe from which the 

sample was taken. Each new sample obtained by resampling with 

replacement the sample is a “bootstrap sample”. The algorithm is the 

following: 

1) Randomly select a bootstrap sample of nk interaction events with 

replacement from the observed sample (pseudo sampling universe) with n 

interaction events; 

2) Compute the network metric of interest (θk) for the bootstrap sample 

and stores the resulting value; 

3) Repeat steps 1 and 2 a large number of times (say 1,000 times); 

4) Sort the values of θk from the smallest to the largest value. Based on 

this ordering, delimits the confidence limits for a given specified probability α. 

For example, with 1,000 bootstrap samples and a probability α of 0.05, the 

lower confidence limit at a given sample size will be the value of θk at the 25th 

position and the upper limit will be the value of θk  at the 976th position. 

5) Repeat steps 1, 2, 3, and 4 for a new bootstrap sample size nk + δ, 

where δ is an increase in sample size, repeating the process up to sample 

size of n interaction events. 
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Resampling data according to the bootstrap method will create a 

frequency distribution for the network metric of interest in samples with 

increasing size, mimicking the resampling of the sampling universe. The 

sample is considered sufficient within the range of sample sizes evaluated 

when the confidence limits reach stability or lie within an acceptable level of 

precision for the objectives of the study (Pillar 1998). Stability of the 

confidence limits indicates that with samples larger than a certain size there is 

no further gain in precision for the estimation of the analyzed network metric. 

We also applied the same algorithm considering the number of captured 

individuals, instead of the number of interaction, as sampling units. Our aim 

here was to investigate how many birds were necessary to reach sufficiency 

for each network metric. 

 

Network metrics 

We assessed sampling sufficiency for three commonly used network 

metrics: 

1) Connectance (C), which is the proportion of realized links in a network 

relative to the possible number of links (Dunne et al. 2002), with values 

ranging from 0 to 1. For bipartite networks it is calculated as C=L/(I x J), were 

L is the number of realized links; I and J are the number of species of each 

part, e.g., plants and animals. Connectance only distinguishes whether links 

are present or absent (unweighted, binary links), and the information about 

interaction frequencies is lost. 

2) Nestedness is characterized by a core of highly connected species 

(generalists) that interact mainly with each other, and a group of specialist 
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species that interact mainly with the generalist species (Bascompte et al. 

2003). We used NODF (nested overlap and decreasing fill) algorithm 

proposed by Almeida-Neto et al. (2008), which corrects biases resulting from 

matrix fill and matrix dimensions. Similar to connectance, information about 

interaction frequencies is lost. NODF ranges from 0 (non-nestedness) to 100 

(perfect nesting).  

3) Modularity is characterized by the degree to which there are groups of 

nodes (species) that interact more among each other than with other groups 

(modules) in a network (Guimera and Amaral 2005). We assessed modules 

using the QuaBiMo algorithm that computes modules in quantitative bipartite 

networks, based on a hierarchical representation of species link weights and 

optimal allocation to modules (Dormann and Strauss 2013). It ranges between 

0 (random network with no modules) to 1 (maximum modularity).  

The method described here has been implemented in R (R Core Team 

2013). Network metrics were calculated using the package Bipartite (Dormann 

et al. 2008). The bootstrap function and a script with an example are available 

as Supplementary material Appendices 2 and 3, and Table A4. 

 

Examples from Mutualistic Networks  

We illustrate our framework with data from three quantitative networks of 

plant and frugivorous birds (Table 1). Network size in each dataset varied 

from 16 to 115 species and 17 to 2,745 interactions events. Despite the fact 

that the original datasets contained quantitative data, we used two 

unweighted metrics to assess sampling sufficiency (connectance and NODF) 

that only distinguish whether links are present or absent (binary links), and 
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one weighted (quantitative) metric (QuaBiMo algorithm). However, it is not 

possible to use unweighted (binary) data with the bootstrap method because 

the frequency of interactions is necessary for the resampling procedure. 

In two networks, collected by ourselves (named CCS and SS; additional 

details for methods in Supplementary material Appendix 1), the birds were 

captured with mist-nets, and then placed into fabric bags to collect their 

faeces from bags. The seeds found in faecal samples were identified to the 

species level, when possible, to build an interaction matrix between birds and 

the plant that they consumed, with the number of interaction events (the 

number of times a specific bird species was captured with seeds of a specific 

plant species found in the faeces).  

For another test case we used the plant-frugivorous birds network 

described by Schleuning et al. (2011) (data available from the Interaction Web 

Database), which was built based on the observation of focal plants, 

comprising primary and secondary forests and various vegetation strata 

(Table 1). We used this network as an example of a large quantitative 

network. To record bird species feeding on each focal plant species, 

frugivorous bird visits were recorded at each focal plant individual. The 

interaction frequency was defined as the number of fruit-eating individuals on 

a plant species independent of fruit handling. We also used, as a separated 

network, only the data collected in secondary forest areas in Schleuning et al. 

(2011) (Table 1). The aim was test if the stability for these metrics is reached 

with a lower sampling effort compared to the entire network of Schleuning et 

al. (2011), that probably has a high interaction diversity for comprising primary 

and secondary forests. 
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Table 1. Description of the plant-frugivore networks datasets used with the bootstrap resampling technique. 

Dataset Habitat type Location Data type Methodology Bird Plant 
Number of 

interactions 

CCS and 
SS 

Atlantic Forest 
biome (forest-
grassland  
mosaics) 

Brazil 

Number Ijk of 
captures of bird 
species j with 
seeds of plant 
species k in the 
faeces 

Mist net 

6 10 17 

Pampa biome 
(grassland-forest 
mosaics) 

15 28 119 

Schleuning 
et al. (2011) 

Primary and 
secondary  tropical 
rainforest 

Africa, 
Kenya 

Number of fruit-
eating 
individuals on a 
plant species 

Focal plant 
species 

83 32 2745 

Schleuning 
et al. (2011) 

Secondary  tropical 
rainforest 

Africa, 
Kenya 

Number of fruit-
eating 
individuals on a 
plant species 

Focal plant 
species 

53 13 568 
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To obtain the bootstrap sample (algorithm step 1), for SS, we started 

with nk = 10 interaction events with replacement, and we repeated the 

resampling procedure 1,000 times (algorithm step 3). We then increased 

sample size by five interaction events (δ), and the process was repeated with 

nk + δ up to the maximum number of n events. For the smallest network CCS 

(with only 17 interactions events), we started with nk = 7 and used δ = 1. For 

the largest network of Schleuning et al. (2011) (2,745 interactions events) we 

used nk = 30 and δ = 50, and for the data collected in secondary forest areas 

in Schleuning et al. (2011) (with 568 interaction events) we used nk = 10 and 

δ = 10. In a second analysis, we used as sample size the actual number of 

birds captured in our own datasets (CCS and SS), with the same nk and δ 

than the interaction events. For all test case, we used 95% confidence 

intervals based on 1000 resampling interactions at each sample size. 

 

Results 

The bootstrap confidence limits reached stability for the two largest 

networks for connectance, nestedness, and for modularity within the analyzed 

sample sizes. Therefore, samples were considered sufficient for these metrics 

(Fig. 1). The sample of the smallest network (CCS) was not sufficient for any 

of the analyzed metrics, since the confidence limits were wide and unstable 

with increasing sample size up to 17 interaction events. For modularity of the 

CCS network, e.g., the median with the maximum interactions events (17) 

was expected in 95% of the cases to lie between 0.46 and 0.75, differing by 

0.29. This difference is too wide to be indicative of sampling sufficiency 
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compared to the other networks (see detailed results in Supplementary 

material Appendix Table A1). 

The confidence limits for connectance generated by the bootstrap for the 

second smallest network (SS) reached stability with sample sizes larger than 

90 interaction events, but the confidence limits for nestedness became stable 

with sample sizes larger than about 60 events (Fig. 1). This means that 

increasing the sample size beyond 60 interaction events did not add new 

information that could affect the precision of the bootstrap estimation of 

nestedness. For the largest network (Schleuning et al. 2001), the stability of 

confidence limits for connectance, nestedness and modularity was reached, 

respectively, with sample sizes larger than about 280, 580, and 1000 

interaction events. When we considered, as a separated network, only the 

data collected in secondary forest areas in Schleuning et al. (2011) (with 568 

interaction events), we found different results: the bootstrap confidence limits 

reached stability for the metrics connectance, nestedness and modularity, 

respectively, with sample sizes larger than about 100, 150 and 230 interaction 

events (see Supplementary material Appendix Fig. A1). 

The results were similar when we considered captured bird individuals 

as sampling units (Fig. 2). Again, the smallest network (CCS) did not present 

sufficiency for any of the analyzed metrics, since the confidence limit values 

were wide and unstable with increasing sample size up to 14 captured 

individuals. The SS network was considered sufficient for all analyzed metrics, 

as the bootstrap confidence limits reached stability (Fig. 2; detailed results in 

Supplementary material Appendix Table A1). Similar results were expected in 

these cases, for the number of individual consumers were very similar to the 
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number of interaction events because we captured most bird individuals with 

only one plant species in its faeces. Consequently, the matrix using the 

number of events and the number of individuals captured in our data were 

very similar (see Supplementary material Appendix 1 Table A2 for CCS matrix 

with number of events as sample size, and Table A3 for CCS with number of 

birds captured as sample size). Despite the similarity in these results, we 

show and discuss them because the data available for most networks in 

literature and online databanks unfortunately only allow the extraction of 

interaction events. 
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Figure 1. Observed value (star), median and confidence limits of 

Connectance, Nestedness (NODF) and Modularity metrics obtained by 

resampling with replacement method using three quantitative mutualistic 

networks (plants and frugivore birds) and number of interaction events as 

sample size. The 95% confidence intervals were set based on 1000 

resampling interactions at each sample size. See Table 1 for detailed 

information of networks.  
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Figure 2. Observed value (star), median and confidence limits of 

Connectance, Nestedness (NODF) and Modularity metrics obtained by 

resampling with replacement method using two quantitative mutualistic 

networks (plants and frugivore birds) and number of bird individuals captured 

as sample size. The 95% confidence intervals are set based on 1000 

resampling interactions at each sample size. See Table 1 for detailed 

information of seed-dispersal networks (bird and plant) CCS and SS. 
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Discussion 

We assessed the stability and the precision of the estimated network 

metrics with the bootstrap method we propose here. Only for the smallest 

network (with 17 interaction events) the bootstrap confidence limits did not 

reach stability, but for the others (more than 100 interaction events) the 

confidence limits reached stability.  

The method is general enough to be applied to different types of metrics 

and networks. However, the type of network metric has to provide a single 

value at the end of the analysis. For example, modularity involved an 

optimization method, but we could use it because it gives a modularity Q 

value (Dormann and Strauss 2013). Further, since the aim is to evaluate 

sampling sufficiency of network metrics, the network must be a quantitative 

one because data containing the frequency of interactions is necessary for the 

resampling procedure (interaction events or captured individuals in the test 

cases). Also, we stress that the bootstrap resampling does not add species 

and interactions to the network; it only resamples the data with replacement, 

mimicking the resampling of the presumed sampling universe represented by 

the observed sample. 

With the bootstrap method we are looking for the effect of sampling bias 

on network metrics. In a different way, previous studies compared different 

fieldwork sampling techniques and investigated to which extent their 

conclusions (structural properties of network) were influenced by the way 

samples were collected. For example, Gibson et al. (2011) analyzed the 

potential bias in network metrics when using time-based observations or 
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transects in plant-pollinator networks, with rarefaction analysis and null 

models approach. Analogously, the bootstrap method can be used to 

compare two methodologies in terms of sampling sufficiency. In seed 

dispersal networks between plants and birds, e.g., the sampling hours or 

number of observed plant individuals as sample size (through transect or 

focal-plant methodologies) can be compared with the number of bird 

individuals captured (with mist net) that need to be sampled in order to reach 

stability for each network metric.  

We assessed sampling sufficiency with the bootstrap method using 

interaction events as sampling units with three mutualistic networks that 

differed regarding sampling techniques. In addition, we used the captured bird 

individuals as sampling units to assess sufficiency for the networks we have 

collected. The potential advantage of using individual data over interaction 

events is that the first is more independent in comparison to the latter. 

Independence between sampling units is often an important assumption in 

data analysis, and the accuracy of the bootstrap method may be affected by 

lack of independence (Efron and Tibshirani 1993). However, in spite of the 

advantage of using individuals as sampling units, the data available for most 

networks in literature and online databanks unfortunately only allow the 

extraction of interactions events. 

In our study, we observed a variation of the median value of the metric 

generated by bootstrap resampling, mainly in small samples. We expected 

that the median would remain stable throughout the process, and only the 

confidence interval would change with increasing sample size. Since most 

network metrics are sensitive to sampling effort and network size (Dormann et 
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al. 2009), probably these metrics are biased, causing this variation in the 

median value of the metric. Further research, using simulated networks with 

known properties and dimensions, is needed to evaluate how accurate these 

network metrics are. 

Our results suggest an important point: sampling sufficiency can be 

reached at different sample sizes for the same dataset depending on the 

metric of interest. Nielsen and Bascompte (2007), analyzing the sensitivity of 

connectance and nestedness metrics to variation in sampling effort, also 

suggested that sampling intensity does not affect all network metrics in the 

same way, and that nestedness tends to stabilize rapidly with increasing 

sampling effort. Some confidence limits generated by the bootstrap reached 

stability with less than 100 interaction events, meaning that sampling more 

interaction events probably would have not significantly affected the 

estimation of this network pattern. 

However, it has been pointed out that studies of interactions should 

come from a robust and well-designed sampling procedure, mainly due to the 

influence of limited sampling effort in network properties (Dormann et al. 

2009, Vázquez et al. 2009, Chacoff et al. 2012, Vizentin-Bugoni et al. 2015). 

In our results, even though the bootstrap confidence limits for some network 

metrics reached stability in networks with less than 50 species, the range of 

confidence limits for the largest network (Schleuning et al. 2011), with 115 

species, was much smaller compared to the other two networks and, 

consequently, it is considered a more precise sample. Because the study of 

Schleuning et al. (2011) comprised primary and secondary forests and 

various vegetation strata, the interactions of this network are heterogeneous 
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(high interaction diversity) and, consequently, the stability for these metrics 

was reached only with a larger sampling effort compared to the other 

networks. 

The bootstrap method we propose here can help network ecologists by 

indicating the minimum number of interaction events (or other defined 

sampling units) necessary to reach sampling sufficiency for a specific network 

metric. It also allows comparing sampling protocols in terms of effort to reach 

sampling sufficiency. The concerns on the effect of sampling effort on network 

metrics in mutualistic (Nielsen and Bascompte 2007, Dorado et al. 2011, 

Chacoff et al. 2012, Vizentin-Bugoni et al. 2015) and food webs (Goldwasser 

and Roughgarden 1997, Martinez et al. 1999, Banašek-Richter et al. 2004) 

have grown in the last few years. We believe that our method is a significant 

contribution to assess sampling sufficiency in network ecology. 
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